ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 7 (2012), 27 – 30

A KAZHDAN GROUP WITH AN INFINITE OUTER AUTOMORPHISM GROUP

Traian Preda

Abstract. D. Kazhdan has introduced in 1967 the Property (T) for local compact groups (see [3]). In this article we prove that for $n \geq 3$ and $m \in \mathbb{N}$ the group $SL_n(\mathbf{K}) \ltimes \mathcal{M}_{n,m}(\mathbf{K})$ is a Kazhdan group having the outer automorphism group infinite.

Definition 1. ([1]) Let (π, \mathcal{H}) be a unitary representation of a topological group G. (i) For a subset Q of G and real number $\varepsilon > 0$, a vector $\xi \in \mathcal{H}$ is (Q, ε) -invariant if:

$$\sup_{x\in O}||\pi(x)\xi-\xi||<\varepsilon||\xi||.$$

- (ii) The representation (π, \mathcal{H}) almost has invariant vectors if it has (Q, ε) -invariant vectors for every compact subset Q of G and every $\varepsilon > 0$. If this holds, we write $1_G \prec \pi$.
- (iii) The representation (π, \mathcal{H}) has non zero invariant vectors if there exists $\xi \neq 0$ in \mathcal{H} such that $\pi(x)\xi = \xi$ for all $g \in G$. If this holds, we write $1_G \subset \pi$.

Definition 2. ([3]) Let G be a topological group.

G has Kazhdan's Property (T), or is a Kazhdan group, if there exists a compact subset Q of G and $\varepsilon > 0$ such that, whenever a unitary representation π of G has a (Q, ε) - invariant vector, then π has a non-zero invariant vector.

Proposition 3. ([1]) Let G be a topological group. The following statements are equivalent:

- (i) G has Kazhdan's Property(T);
- (ii) whenever a unitary representation (π, \mathcal{H}) of G weakly contains 1_G , it contains 1_G (in symbols: $1_G \prec \pi$ implies $1_G \subset \pi$).

Definition 4. Let K be a field. An absolute value on K is a real - valued function $x \to |x|$ such that, for all x and y in K:

(i)
$$|x| \ge 0$$
 and $|x| = 0 \Leftrightarrow x = 0$

2010 Mathematics Subject Classification: $22\mathrm{D}10;\,22\mathrm{D}45.$

Keywords: Representations of topological groups; Kazhdan Property (T); Mautner's lemma.

28 Traian Preda

$$(ii)|xy| = |x||y|$$

 $(iii)|x+y| \le |x| + |y|.$

An absolute value defines a topology on K given by the metric

$$d(x, y) = |x - y|$$
.

Definition 5. A field K is a local field if K can be equipped with an absolute value for which K is locally compact and not discrete.

Example 6. $K = \mathbb{R}$ and $K = \mathbb{C}$ with the usual absolute value are local fields.

Example 7. ([1] and [2]) Groups with Property (T):

- a) Compact groups, $SL_n(\mathbb{Z})$ for $n \geq 3$.
- b) $SL_n(\mathbf{K})$ for $n \geq 3$ and \mathbf{K} a local field.

Lemma 8. (Mautner's lemma)([1])

Let G be a topological group, and let (π, \mathcal{H}) be a unitary representation of G. Let $x \in G$ and assume that there exists a net $(y_i)_i$ in G such that $\lim_i y_i x y_i^{-1} = e$. If ξ is a vector in \mathcal{H} which is fixed by y_i for all i, then ξ is fixed by x.

Theorem 9. Let K be a local field. The group $SL_n(K)$ acts on $\mathcal{M}_{n,m}(K)$ by left multiplication $(g, A) \to gA$, $g \in SL_n(K)$ and $A \in \mathcal{M}_{n,m}(K)$.

Then the semi - direct product $SL_n(\mathbf{K}) \ltimes \mathcal{M}_{n,m}(\mathbf{K})$ has Property (T) for $(\forall) n \geq 3$ and $(\forall) m \in \mathbb{N}$.

Proof. Let (π, \mathcal{H}) be a unitary representation of $G = SL_n(\mathbf{K}) \ltimes \mathcal{M}_{n,m}(\mathbf{K})$ almost having invariant vectors. Since $SL_n(\mathbf{K})$ has Property (T), there exists a non - zero vector $\xi \in \mathcal{H}$ which is $SL_n(\mathbf{K})$ - invariant.

Since **K** is non - discret, there exists a net $(\lambda_i)_i$ in **K** with $\lambda_i \neq 0$ and such that $\lim_i \lambda_i = 0$.

Let $\Delta_{pq}(x) \in \mathcal{M}_{n,m}(\mathbf{K})$ the matrix with x as (p,q) - entry and 0 elsewhere and $(A_i)_{\alpha\beta} \in SL_n(\mathbf{K})$ the matrix:

$$(A_{i})_{\alpha,\beta} = \begin{cases} \lambda_{i} & \text{if } \alpha = \beta \text{ and } \alpha = p \\ \lambda_{i}^{-1} & \text{if } \alpha = \beta \text{ and } \alpha = (p+1) mod(n+1) + [p/n] \\ 1 & \text{if } \alpha = \beta \text{ and } \alpha \notin \{p, (p+1) mod(n+1) + [p/n]\} \\ 0 & \text{if } \alpha \neq \beta \end{cases}$$
(0.1)

 $\Rightarrow A_i \Delta_{pq}(x) = \delta_{pq}(\lambda_i x)$, where $\delta_{pq}(\lambda_i x) \in \mathcal{M}_{n,m}(\mathbf{K})$ is the matrix with $\lambda_i x$ as (p, q) - entry and 0 elsewhere.

Then $\lim_{i} A_i \Delta_{pq}(x) = 0_{n,m}$.

Since in G we have

$$(A_i, 0_{n,m})(I_n, \Delta_{pq}(x))(A_i, 0_{n,m})^{-1} = (I_n, A_i \Delta_{pq}(x))$$

and since $\xi \in \mathcal{H}$ is $(A_i, 0_{n,m})$ - invariant \Rightarrow

 \Rightarrow from Mautner's Lemma that ξ is $\Delta_{pq}(x)$ - invariant.

Since $\Delta_{pq}(x)$ generates the group $\mathcal{M}_{n,m}(\mathbf{K}) \Rightarrow \xi$ is G - invariant and G has Property (T).

Corollary 10. The groups $SL_n(\mathbf{K}) \ltimes \mathbf{K}^n$ and $SL_n(\mathbb{R}) \ltimes \mathcal{M}_n(\mathbb{R})$ has Property (T), $(\forall) n \geq 3$.

Proposition 11. For $\delta \in SL_n(\mathbb{Z})$, let $S_{\delta} : \Gamma \to \Gamma$, $S_{\delta}((\alpha, A)) = (\alpha, A\delta), (\forall)(\alpha, A) \in \Gamma$. Then:

- a) $S_{\delta} \in Aut(\Gamma)$.
- b) $\Phi: SL_n(\mathbb{Z}) \to Aut(\Gamma)$, $\Phi(\delta) = S_{\delta}$ is a group homomorphism.
- $c)S_{\delta} \in Int(\Gamma)$ if and only if $\delta \in \{\pm I\}$. In particular, the outer automorphism of Γ is infinit.

Proof. a)
$$S_{\delta}((\alpha_{1}, A_{1}) \cdot (\alpha_{2}, A_{2})) = S_{\delta}((\alpha_{1}, A_{1})) \cdot S_{\delta}((\alpha_{2}, A_{2})) \Leftrightarrow$$

 $\Leftrightarrow S_{\delta}((\alpha_{1}\alpha_{2}, A_{1} + \alpha_{1}A_{2})) = (\alpha_{1}, A_{1}\delta) \cdot (\alpha_{2}, A_{2}\delta) \Leftrightarrow$
 $\Leftrightarrow (\alpha_{1}\alpha_{2}, (A_{1} + \alpha_{1}A_{2})\delta) = (\alpha_{1}\alpha_{2}, A_{1}\delta + \alpha_{1}A_{2}\delta)$
Analogous $S_{\delta^{-1}}$ is morfism and $S_{\delta} \cdot S_{\delta^{-1}} = S_{\delta^{-1}} \cdot S_{\delta} = I_{\Gamma}$.
b) $\Phi(\delta_{1} \cdot \delta_{2}) = \Phi(\delta_{1}) \cdot \Phi(\delta_{2}) \Leftrightarrow S_{\delta_{1} \cdot \delta_{2}} = S_{\delta_{1}} \cdot S_{\delta_{2}}$.
c) Assume that $S_{\delta} \in Int(\Gamma) \Rightarrow (\exists)(\alpha_{0}, A_{0}) \in \Gamma$ such that $S_{\delta}((\alpha, A)) = (\alpha_{0}, A_{0})(\alpha, A)(\alpha_{0}, A_{0})^{-1}, (\forall)(\alpha, A) \in \Gamma$.
 $\Rightarrow (\alpha, A\delta) = (\alpha_{0}\alpha\alpha_{0}^{-1}, A_{0} + \alpha_{0}A - \alpha_{0}\alpha\alpha_{0}^{-1}A_{0}) \Rightarrow$
 $\Rightarrow i) \alpha = \alpha_{0}\alpha\alpha_{0}^{-1}, (\forall)\alpha \in SL_{n}(\mathbb{Z}) \Rightarrow \alpha \in \{\pm I_{n}\}$
 $\Rightarrow ii) A\delta = A_{0} \pm A - \alpha A_{0}, (\forall)\alpha \in SL_{n}(\mathbb{Z}), (\forall)A \in \mathcal{M}_{n}(\mathbb{Z}) \Rightarrow A_{0} = 0_{n} \text{ and } \delta = \pm I_{n}$.
 $\Rightarrow Out(\Gamma) = Aut(\Gamma) / Int(\Gamma) \text{ is infinite.}$

References

- [1] B. Bekka, P. de la Harpe, A. Valette, *Kazhdan's Property (T)*, Monography, Cambridge University Press, 2008. MR2415834.
- [2] P. de la Harpe, A. Valette, La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque 175, Soc. Math. France, 1989. MR1023471(90m:22001). Zbl 0759.22001.
- [3] D. Kazhdan, Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl. 1 (1967), 63 - 657. MR209390. Zbl 0168.27602.

30 Traian Preda

Traian Preda University of Bucharest, Str. Academiei nr.14, București,

Romania.

e-mail: traianpr@yahoo.com
