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A KAZHDAN GROUP WITH AN INFINITE OUTER
AUTOMORPHISM GROUP

Traian Preda

Abstract. D. Kazhdan has introduced in 1967 the Property (T) for local compact groups (see
[3]). In this article we prove that for n > 3 and m € N the group SL,(K) X My, . (K) is a Kazhdan
group having the outer automorphism group infinite.

Definition 1. ([1]) Let (m,H) be a unitary representation of a topological group G.
(i) For a subset Q of G and real number e > 0, a vector £ € H is (Q, €)-invariant

if :
supzeql|m(@)§ — &I < el[¢]]-

(i) The representation (m,H) almost has invariant vectors if it has (Q,€) -
invariant vectors for every compact subset Q of G and every € > 0. If this holds, we
write 1g < .

(i1i) The representation (m,H) has non - zero invariant vectors if there exists
& #0 in H such that w(x) = & for all g G. If this holds, we write 1 C .

Definition 2. ([3/) Let G be a topological group.

G has Kazhdan’s Property (T), or is a Kazhdan group, if there exists a compact
subset Q of G and € > 0 such that, whenever a unitary representation @ of G has a
(Q, ) - invariant vector, then ™ has a non-zero invariant vector.

Proposition 3. ([1]) Let G be a topological group.The following statements are
equivalent:

(i) G has Kazhdan’s Property(T);

(ii) whenever a unitary representation (w, H) of G weakly contains 1, it contains
1g (in symbols: 1 < 7 implies 1¢ C 7 ).

Definition 4. Let K be a field. An absolute value on K is a real - valued function
x — |z| such that, for all x and y in K:
(i) |z| >0 and |z| =0 2 =0
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(ii)ey] = all]
(iti)|z + y| < |z[ + |yl.
An absolute value defines a topology on K given by the metric

d(z, y) =lx —yl.

Definition 5. A field K is a local field if K can be equipped with an absolute value
for which K is locally compact and not discrete.

Example 6. K =R and K = C with the usual absolute value are local fields.

Example 7. ([1] and [2]) Groups with Property (T):
a) Compact groups, SL,(Z) for n > 3.
b) SL,(K) for n >3 and K a local field.

Lemma 8. ( Mautner’s lemma)([1])
Let G be a topological group, and let (mw,H) be a unitary representation of G. Let
x € G and assume that there exists a net (y;); in G such that lim yixyi_l =e. If¢
1

is a vector in ‘H which is fixed by y; for all i, then & is fixed by x.

Theorem 9. Let K be a local field. The group SL,(K) acts on My, n(K) by left
multiplication (g, A) — gA, g € SL,(K) and A € M,, 1 (K).

Then the semi - direct product S Ly,(K)x My, y,(K) has Property (T) for (V)n > 3
and (V)m € N.

Proof. Let (m,H) be a unitary representation of G = SL,(K) x M, ,,»(K) almost
having invariant vectors. Since SL,(K) has Property (T), there exists a non - zero
vector £ € H which is SL,(K) - invariant.

Since K is non - discret, there exists a net ()\;); in K with A; # 0 and such that
lim \; = 0.

(2

Let Apq(x) € My, (K) the matrix with = as (p,q) - entry and 0 elsewhere and

(Ai)ap € SLy(K) the matrix:

N ifa=fBanda=0p

N oifa=pBand a=(p+ 1)mod(n+ 1) + [p/n]

(Ai)ap = (0.1)
1 if a=pand a ¢ {p, (p+ 1)mod(n + 1) + [p/n]}

0 ifa#Fp

= A;iApg(x) = dpg(Nix), where 6pq(Niz) € My, 1 (K) is the matrix with Az as (p, q)
- entry and 0 elsewhere.
Then lim A;Apq(z) = 0y .-

Since in G we have
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(As, Opm) (I, Apg () (Ais On,m)_l = (In, AiDpg(z))

and since £ € H is (A;, Oy ) - invariant =

= from Mautner’s Lemma that £ is Ajy(z) - invariant.

Since Apq(x) generates the group M, ,,(K) = £ is G - invariant and G has
Property (T). O

Corollary 10. The groups SL,(K) x K" and SL,(R) x M, (R) has Property (T),
(V)n > 3.

Proposition 11. For § € SL,(Z), let Ss : T' = T, S5((a, A)) = (v, Ad), (V) (e, A) €
I'. Then:

a) Ss € Aut(T).

b) ®:SL,(Z) — Aut(T') , ®(0) = S5 is a group homomorphism.

¢)Ss € Int(T") if and only if 6 € {£I}. In particular, the outer automorphism of
I' is infinit.

Proof. a) Ss((a1, A1) - (o2, A2)) = Ss((a1, A1) - S5((az, A2)) <
= S(;((Cklag, A+ 041142)) = (Ozl,Al(g) . (OéQ,AQd) =
= (051042, (Al + a1A2)5) = (051042, A+ a1A25)
Analogous Ss-1 is morfism and S5 - Ss—1 = S5-1 - Ss = Ip.
b)@(él : (52) = @((51) : ‘13((52) = 551.52 = 551 : S(;Q.
¢) Assume that S5 € Int(I') = (3)(aw, Ao) € I such that
Ss5((a, A)) = (v, Ao)(a, A) (g, Ag) 7, (V) (e, A) € T
= (a, Ad) = (040040461, Ag + apgA — aoaaale) =
= i) a = apaay !, (V)a € SLy(Z) = a € {£1,}
= ii) A0 = Ao+ A — ado, V)a € SL,(Z),(V)A € M,(Z) = Ay = 0, and
0==+I,.
= Out(l") = Aut(l) /Int(F) is infinite.
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