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APPLICATION OF HOMOTOPY ANALYSIS
METHOD FOR SOLVING NONLINEAR CAUCHY

PROBLEM

V.G. Gupta and Sumit Gupta

Abstract. In this paper, by means of the homotopy analysis method (HAM), the solutions of

some nonlinear Cauchy problem of parabolic-hyperbolic type are exactly obtained in the form of

convergent Taylor series. The HAM contains the auxiliary parameter ~ that provides a convenient

way of controlling the convergent region of series solutions. This analytical method is employed to

solve linear examples to obtain the exact solutions. The results reveal that the proposed method is

very effective and simple.

1 Introduction

Nonlinear partial differential equation are known to describe a wide variety of
phenomena not only in physics, where applications extend over magneto fluid-
dynamics, water surface gravity waves, electromagnetic radiation reactions, and ion
acoustic waves in plasma, just to name a few, but also in biology and chemistry, and
several other fields. Very few problems in physics, or indeed in any branch of natural
science, can be solved directly consequently, one usually first study an ideal model,
which is chosen to reflect as much as possible of the natural of the real scientific
system, as an appropriate approximation and then handle other effects via some
effective perturbative and/or non perturbative techniques.

Perturbation theory (PT) is widely used to investigate physical systems that can
be exactly solved but contain small perturbations parameters [7, 11] when applying
PT to such a system, expansion around the perturbation parameter is involved, and
approximants are expressed as power series of these parameters. On the other hand,
non perturbative techniques have been established to explore physical problems
which do not a small physical parameter to be used as the perturbation parameter.
The non-parameter expansion method [6], the optimized perturbation theory (OPT)
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[14], the variational perturbation theory (VPT) [5, 24] and the linear δ- expansion
method (LDE) [1, 2, 15, 25, 26], are typical nonperturbative methods, and have been
developed as a powerful tools in quantum field theory and in varies physical contexts
during the past three decades. These methods do not involve perturbation series in
powers of physical parameters, and the convergence of approximate is controlled by
some artificial parameters which do not exists in the original problems. The artificial
parameters are fixed at the end of calculations according to some criterion such as
the principle of minimal sensitivity (PMS), which requires the approximants have
the least dependence on these parameters over perturbation techniques. One of the
most popular non perturbative techniques is homotopy analysis method (HAM), first
proposed by Shi-Jun Liao [16]-[18] a powerful analytical method for solving linear
and nonlinear differential and integral equations. The HAM was successfully applied
to solve many nonlinear problems such as nonlinear Riccati differential equation with
fractional order [8], nonlinear Vakhnenko equation [28], the Glauert-jet problem
[29], fractional KdV-Burgers-Kuramoto Equation [10], a generalized Hirota-Satsuma
coupled KdV equation [19], nonlinear heat transfer [20], to projectile motion with
the quadratic law [9], to boundary layer flow of nanofluid past a stretching sheet [12],
to the Poisson-Boltzmann equation of semiconductor devices [4], solitary solution of
discrete MKdV equation [27], to the system of Fractional differential equations [13],
to the Oldroyd 6- constant fluid with magnetic field [21], MHD-flow of an Oldroyd
8-constant fluid [22], to the nonlinear flows with slip boundary condition [23] and so
on. In this paper we consider Cauchy problem for the nonlinear parabolic-hyperbolic
equation of the following type(

∂

∂t
−4

)(
∂2

∂t2
−4

)
u = F (u), (1.1)

with the initial conditions

∂k

∂tk
(X, 0) = φk(X), X = (x1, x2, ...xi), k = 0, 1, 2,

where the nonlinear term is represented by F (u) and 4 is the Laplace operator
in Rn Here we solve these problems by homotopy analysis method and shows that
homotopy perturbation method is the special case of homotopy analysis method at
~ = −1 , obtained by A.Roozi et.al [3].

2 Homotopy analysis method

In order to show the basic idea of HAM, consider the following differential equation

N [u(x, t)] = 0, (2.1)

where N is a nonlinear operator, x and t denote the independent variables and u is
an unknown function. For simplicity, we ignore all boundary or initial conditions,
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Application of homotopy analysis method ... 107

which can be treated in the similar way. By means of the HAM, we first construct
the so-called zeroth-order deformation equation.

(1− q)L [φ(x, t; q)− u0(x, t)] = q ~ H(x, t) N [φ(x, t; q)] , (2.2)

where q ∈ [0, 1] is the embedding parameter, ~ 6= 0 is an auxiliary parameter, L is
an auxiliary linear operator, φ(x, t; q) is an unknown function, u0(x, t) is an initial
guess of and H(x, t) denotes a nonzero auxiliary function. It is obvious that when
the embedding parameter q = 0 and q = 1, equation (2.2) becomes

φ(x, t; 0) = u0(x, t), φ(x, t; 1) = u(x, t),

respectively. Thus as q increases from 0 to 1, the solution varies from the initial
guess u0(x, t) to the solution u(x, t) . Expanding φ(x, t; q) in Taylor series with
respect to q , one has

φ(x, t; q) = u0(x, t) +
∞∑

m=1

um(x, t)qm, (2.3)

where
um(x, t) =

1
m!

∂mφ(x, t; q)
∂qm

|q = 0.

The convergence of the series (2.3) depends upon the auxiliary parameter ~. If
it is convergent at q = 1, one has

u(x, t) = u0(x, t) +
∞∑

m=1

um(x, t),

which must be one of the solutions of the original nonlinear equation, as proven by
Liao [16]-[18]. Define the vectors

~un = (u0(x, t), u1(x, t), . . . , un(x, t)) .

Differentiate the zeroth-order deformation equation (2.1) m-times with respect
to q and then dividing them by m! and finally setting q = 0, we get the following m
th-order deformation equation:

L [um(x, t)− χmum−1(x, t)] = ~ <m( ~um−1), (2.4)

where

<m( ~um−1) =
1
m!

∂m−1N [φ(x, t; q)]
∂qm−1

|q = 0,

and

χm =

{
0, m ≤ 1
1, m > 1.
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It should be emphasized that um(x, t) for m ≥ 1 is governed by the linear
equation (2.4) with linear boundary conditions that comes form the original problem,
which can be solved by the symbolic computation software such as Mathematica
or Maple. For the convergence of the above method we refer the reader to Liao.
If equation (2.1) admits unique solution, then this method will produce the unique
solution. If equation (2.1) does not posses a unique solution, the HAM will give a
solution among many other possible solutions.

3 Applications

In this section the applicability of HAM shall be demonstrated by the following
examples:

3.1 Example 1

Consider the following equation(
∂

∂t
− ∂2

∂x2

)(
∂2

∂t2
− ∂2

∂x2

)
u = −

(
1
3
∂2u

∂x2

)2

+
(

1
6
∂2u

∂t2

)3

− 16.u, (3.1)

with the initial conditions

u(x, 0) = −x4,
∂u

∂t
(x, 0) = 0,

and
∂2u

∂t2
(x, 0) = 0.

To solve equation (3.1) by means of the homotopy analysis method let us consider
the following linear operator:

L [φ(x, t; q)] =
∂3φ(x, t; q)

∂t3
,

with the property that

L

[
c1 + c2t+ c3

t2

2

]
,

which implies that

L−1(.) =

t∫
0

t∫
0

t∫
0

(.) dt dt dt,
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we now define the nonlinear operator as

N [φ(x, t; q)] =
∂3φ(x, t; q)

∂t3
− ∂3φ(x, t; q)

∂t∂x2
− ∂4φ(x, t; q)

∂t2∂x2
+
∂4φ(x, t; q)

∂x4

+
1

216

(
∂2φ(x, t; q)

∂t2

)3

− 1
9

(
∂2φ(x, t; q)

∂x2

)2

+ 16φ(x, t; q).

Using the above definition, we construct the zeroth- order deformation equation by

(1− q)L [φ(x, t; q)− u0(x, t)] = q ~ H(x, t) N [φ(x, t; q)] , (3.2)

where q ∈ [0, 1] is the embedding parameter, ~ 6= 0 is an auxiliary parameter, L is
an auxiliary linear operator, φ(x, t; q) is an unknown function, u0(x, t) is an initial
guess of and H(x, t) denotes a nonzero auxiliary function. It is obvious that when
the embedding parameter q = 0 and q = 1, equation (3.2) becomes

φ(x, t; 0) = u0(x, t), φ(x, t; 1) = u(x, t),

then we obtain the m th-order deformation equation:

L [um(x, t)− χmum−1(x, t)] = ~<m( ~um−1)
=⇒

um(x, t) = χmum−1(x, t) + ~L−1 (H(x, t)<m( ~um−1)) ,

where

<m( ~um−1) =
∂3um−1

∂t3
− ∂3um−1

∂t∂x2
− ∂4um−1

∂t2∂x2
+
∂4um−1

∂x4
+

1
9

m−1∑
i=0

∂2ui
∂x2

∂2um−1−i
∂x2

− 1
216

m−1∑
i=0

m−1−i∑
j=0

∂2ui
∂t2

∂2uj
∂t2

∂2um−j−i−1

∂t2
+ 16um−1,

solve the above equation under the initial conditions

um(x, 0) = 0 and
∂um
∂t

(x, 0) = 0.

For simplicity let us take u0(x, t) = −x4 and

um(x, t) = χmum−1(x, t) + ~
t∫
0

t∫
0

t∫
0

(
∂3um−1

∂t3
− ∂3um−1

∂ξ1∂x2 − ∂4um−1

∂ξ21∂x
2 + ∂4um−1

∂x4

)
dξ1 dξ2 dt

+~
t∫
0

t∫
0

t∫
0

1
9

∑m−1
i=0

∂2ui
∂x2

∂2um−1−i

∂x2 dξ1 dξ2 dt

−~
t∫
0

t∫
0

t∫
0

(
1

216

∑m−1
i=0

∑m−1−i
j=0

∂2ui
∂t2

∂2uj

∂t2
∂2um−j−i−1

∂t2
− 16um−1

)
dξ1 dξ2 dt,
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the other components are given by

u1(x, t) = 0
u2(x, t) = 0
u3(x, t) = −~ 4 t3

u4(x, t) = u5(x, t) = ... = 0.

Therefore the approximate solution is given by at ~ = −1

u(x, t) = −x4 + 4 t3

which is an exact solution and is same as obtained by and is same as obtained by
A.Roozi et.al [3].

3.2 Example 2

Consider the following equation(
∂

∂t
− ∂2

∂x2

)(
∂2

∂t2
− ∂2

∂x2

)
u =

(
∂2u

∂t2

)2

−
(
∂2u

∂x2

)2

− 2 u2,

with the initial conditions

u(x, 0) = ex,
∂u

∂t
(x, 0) = ex and

∂2u

∂t2
(x, 0) = ex,

we now define the nonlinear operator as

N [φ(x, t; q)] =
∂3φ(x, t; q)

∂t3
− ∂3φ(x, t; q)

∂t∂x2
− ∂4φ(x, t; q)

∂t2∂x2
+
∂4φ(x, t; q)

∂x4

+
(
∂2φ(x, t; q)

∂t2

)2

−
(
∂2φ(x, t; q)

∂x2

)2

+ 2φ2(x, t; q),

then we obtain the m th-order deformation equation:

L [um(x, t)− χmum−1(x, t)] = ~ <m( ~um−1),

where

<m( ~um−1) =
∂3um−1

∂t3
− ∂3um−1

∂t∂x2
− ∂4um−1

∂t2∂x2
+
∂4um−1

∂x4
+
m−1∑
i=0

∂2ui
∂x2

∂2um−1−i
∂x2

−
m−1∑
i=0

∂2ui
∂t2

∂2um−1−i
∂t2

+ 2
m−1∑
i=0

uium−1−i,
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then the linear differential equation can be written as

um(x, t) = χmum−1(x, t) + ~
t∫
0

t∫
0

t∫
0

(
∂3um−1

∂t3
− ∂3um−1

∂ξ1∂x2 − ∂4um−1

∂ξ21∂x
2 + ∂4um−1

∂x4

)
dξ1 dξ2 dt

+~
t∫
0

t∫
0

t∫
0

(∑m−1
i=0

∂2ui
∂x2

∂2um−1−i

∂x2 −
∑m−1

i=0
∂2ui
∂t2

∂2um−1−i

∂t2
+ 2

∑m−1
i=0 ui um−1−i

)
dξ1 dξ2 dt,

we start with the initial approximation

u0(x, t) =
(

1 + t+
t2

2

)
ex,

solve the above equation under the initial conditions

um(x, 0) = 0 and
∂um
∂t

(x, 0) = 0,

we get

u1(x, t) = −~ t3 ex

6

u2(x, t) = −~2 t4 ex

24

u3(x, t) = −~3 t5 ex

120
,

and so on therefore the approximate solution is given by at ~ = −1

u(x, t) = ex+t,

which is an exact solution and is same as obtained by and is same as obtained by
A.Roozi et.al [3].

3.3 Example 3

Consider the following equation(
∂

∂t
− ∂2

∂x2

)(
∂2

∂t2
− ∂2

∂x2

)
u = u

∂u

∂t
− ∂2u

∂t2
∂u

∂x
,

with the initial conditions

u(x, 0) = cos(x),
∂u

∂t
(x, 0) = −sin(x) and

∂2u

∂t2
(x, 0) = −cos(x),

we now define the nonlinear operator as

N [φ(x, t; q)] =
∂3φ(x, t; q)

∂t3
− ∂3φ(x, t; q)

∂t∂x2
− ∂4φ(x, t; q)

∂t2∂x2
+
∂4φ(x, t; q)

∂x4

−φ(x, t; q)
∂φ(x, t; q)

∂t
− ∂2φ(x, t; q)

∂t2
∂φ(x, t; q)

∂x
.
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Then we obtain the m th-order deformation equation:

L [um(x, t)− χmum−1(x, t)] = ~ <m( ~um−1), (3.3)

where

<m( ~um−1) =
∂3um−1

∂t3
− ∂3um−1

∂t∂x2
− ∂4um−1

∂t2∂x2
+
∂4um−1

∂x4
+
m−1∑
i=0

ui
∂um−1−i

∂t

−
m−1∑
i=0

∂2um−1

∂t2
∂um−1−i
∂x

,

we start with the initial approximation

u0(x, t) = cos(x)− tsin(x)−
(
t2

2

)
sin(x),

and

um(x, t) = χmum−1(x, t) + ~
t∫
0

t∫
0

t∫
0

(
∂3um−1

∂t3
− ∂3um−1

∂ξ1∂x2 − ∂4um−1

∂ξ21∂x
2 + ∂4um−1

∂x4

)
dξ1 dξ2 dt

+~
t∫
0

t∫
0

t∫
0

(
−um−1

∂um−1

∂t − ∂2um−1

∂t2
∂um−1

∂x

)
dξ1 dξ2 dt,

solve the above equation under the initial conditions

um(x, 0) = 0 and
∂um
∂t

(x, 0) = 0,

we get

u1(x, t) = −~ t3 sin(x)
6

− ~ t4 cos(x)
24

u2(x, t) = −~2 t5 sin(x)
120

− ~2 t6 cos(x)
720

u3(x, t) = −~3 t7 sin(x)
5040

− ~2 t8 cos(x)
40320

and so on therefore the approximate solution is given by at ~ = −1

u(x, t) = cos(x+ t), (3.4)

which is an exact solution and is same as obtained by and is same as obtained by
A.Roozi et.al [3].
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3.4 Example 4

Consider the following equation(
∂

∂t
− ∂2

∂x2
1

− ∂2

∂x2
2

)(
∂2

∂t2
− ∂2

∂x2
1

− ∂2

∂x2
2

)
u =

∂u

∂t
− 2u, (3.5)

with the initial conditions

u(x1, x2, 0) = sinh(x1 + x2),
∂u

∂t
(x1, x2, 0) = 2sinh(x1 + x2),

and
∂2u

∂t2
(x1, x2, 0) = 4sinh(x1 + x2),

we now define the nonlinear operator as

N [φ(x, t; q)] = ∂3φ(x1,x2,t;q)
∂t3

− ∂3φ(x1,x2,t;q)
∂t∂x2

1
− ∂3φ(x1,x2,t;q)

∂t∂x2
2

− ∂4φ(x1,x2,t;q)
∂x2

1∂t
2

+∂4φ(x1,x2,t;q)
∂x4

1
+ ∂4φ(x1,x2,t;q)

∂x2
1∂x

2
2
− ∂4φ(x1,x2,t;q)

∂t2∂x2
2

+ ∂4φ(x1,x2,t;q)
∂x2

1∂x
2
2

+ ∂4φ(x1,x2,t;q)
∂x4

2

−∂φ(x1,x2,t;q)
∂t + 2φ(x1, x2, t; q).

Then we obtain the m th-order deformation equation:

L [um(x1, x2, t)− χmum−1(x1, x2, t)] = ~ <m( ~um−1), (3.6)

where

<m( ~um−1) =
∂3um−1

∂t3
− ∂3um−1

∂t∂x2
1

− ∂3um−1

∂t∂x2
2

− ∂4um−1

∂x2
1∂t

2
+
∂4um−1

∂x4
1

+
∂4um−1

∂x2
1∂x

2
2

−∂
4um−1

∂t2∂x2
2

+
∂4um−1

∂x2
1∂x

2
2

+
∂4um−1

∂x4
2

− ∂um−1

∂t
+ 2um−1

Taking the initial approximation

u0(x1, x2, t) =
(
1 + 2t+ 2t2

)
sinh(x1 + x2)

and other components are

u1(x1, x2, t) = −4~ t3 sinh(x1 + x2)
3

u2(x1, x2, t) =
2~2 t4 sinh(x1 + x2)

3

u3(x1, x2, t) = −4~3 t5 sinh(x1 + x2)
15

and so on therefore the approximate solution is given by at ~ = −1

u(x1, x2, t) = sinh(x1 + x2) e2t (3.7)

which is an exact solution and is same as obtained by and is same as obtained by
A.Roozi et.al [3].
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4 Conclusions

The homotopy analysis method is used for calculating numerical solution for nonlinear
Cauchy’s problems. Different from all other analytical methods, it provides us with a
simple way to adjust and control the convergence region of solution series by choosing
proper values of auxiliary parameter ~ , auxiliary function H(t) and auxiliary linear
operator L. Also we showed that homotopy perturbation method is the special case
of homotopy analysis method. There are some important points to make here. First,
we have great freedom to choose the auxiliary parameter ~ , auxiliary function H(t)
and auxiliary linear operator L and the initial guesses. Second the HAM was shown
to be simple, yet powerful analytic-numeric scheme for solving various nonlinear
problems. Numerical computation has been done by Maple 13 software package.
Acknowledgement. The authors appreciate the comment of the reviewers, which
have lead to definite improvement in the paper.
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