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SOME CRITERIA FOR TWO NEW INTEGRAL
OPERATORS

Laura Stanciu and Daniel Breaz

Abstract. Using the Hadamard product, we define two new integral operators. The main
object of the present paper is to discuss some univalence conditions for these operators. Several
corollaries of the main results are also considered.

1 Introduction
Let A denote the class of functions of the form
oo
f(z) =2+ Zanz”,
n=2
which are analytic in the open unit disk
U={z:2€C and |[z]<1}

and satisfy the following usual normalization condition

f(0)=f(0)—1=0,

C being the set of complex numbers.

We denote by S the subclass of A consisting of functions f(z) which are univalent
in U.

For two functions, f(z) € A and g(z) given by

g(z) = z—i—anz”, (1.1)
n=2
their Hadamard product (or convolution) is defined by

(f#9)(2) =24 anbaz". (1.2)
n=2
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For a function g € A defined by (1.1), where b, > 0, (n > 2), we define the family
S(g,p) so that it consists of functions f € A satisfying the condition

2(f*9)(2)
[(f *9)(2)]?

provided that (f * g)(z) # 0.

Note that S(1%;, p) = S(p), where the class S(p), 0 < p < 2 of analytic and univalent
functions was defined by D. Yang and J. Liu [4].

Also, if f € S(p) then the following property is true

2f'(2)
[f(2)]?

1‘5pyz\2 (2€U;0<p<2), (1.3)

- 1‘ <plf (D) (1.4)

relation proved in [3].
Using the Hadamard product defined by (1.2), we define two families of integral
operators:

. n e
P (f20)() = ((1 Fnta-0) [ T[(Cxeoe dt) (15)
=1

a; €C; fi,gi € Aforalli € {1,2,...,n}.

1

z n B
Gnop (f,9)(2) = (5/0 e T (v 90 (0)° dt) (1.6)
=1

a; €C; fi,gi € A; M >1forallie{l,2,..,n}.

In the present paper, we study the univalence conditions involving the families of
integral operators defined by (1.5) and (1.6).

In the proof of our main results (Theorem 3 and Theorem 6) we need the following
univalence criterion. The univalence criterion, asserted by Theorem 1 below, was
proven by Pescar [2].

Theorem 1. [2] Let o € C with Rea > 0, c € C with |¢| < 1,c# -1. Iffe A

satisfies
2a 2c Zf”(Z)
elef®+ (1= 1) S7

<1

— )

for all z € U then the integral operator
Fo(z) = (a / o1 f’(t)dt)a
0
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Finally, in our present investigation, we shall also need the familiar Schwarz
Lemma (see, for details, [1]).

Lemma 2. (General Schwarz Lemma) [1] Let the function f be regular in the
disk Ur = {z € C: |z] < R}, with |f(2)| < M for fized M. If f has one zero with
multiplicity order bigger than m for z =0, then

7@ S Hrl™ (€ U).

The equality can hold only if

where 6 is constant.

2 Main Results

Theorem 3. Let f; € A for alli € {1,2,....,n}, a« € C and M; > 1 with

n

Sl + DM +1],  ceCe# L. (2.1)
=1

-1
le] <1-— a

IffOT’ all i € {1727 ”-777’}7 f’b S S(gwpz)a 0<p; <2 and
[(fixe")(2)] < My, (z€0) (2.2)
then the integral operator Fy, (f,9)(z) defined by (1.5) is in the class S.

Proof. We begin by observing that the integral operator F,,, (f,g)(z) in (1.5) can
be rewritten as follows:

Z n % e9i a—1 m
Fooa (f.9)(2) = ((1 + o — 1))/0 pnla=1) H <(fg>(t)) dt) .

t
=1

Let us define the function h(z) by

o= [ ()

firgi € Aforallic {1,2,..,n}.
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The function h(z) is indeed regular in U and satisfies the following usual normalization

condition:
h(0) = '(0) — 1 = 0.

Now, calculating the derivatives of h(z) of the first and second orders, we readily

obtain ) ((f N )>a_1
h’(z):I:[ 7*2 z

A SNV )
W) @y i=1 ( (fi* e9)(2) 1) el

and

which readily shows that

!
C|Z”2a + <1 _ ’2‘204) < (Z)

ah!(z)
= lefse o (1 Jaf) = inl Srens)
sch’a;l ;(W +1)
SRR o

i=1
Furthermore, from the hypothesis (2.2) of Theorem 3, we have
[(fixe?) () <M (2€0)
then by General Schwarz Lemma, we thus obtain
[(fixe?)(2)| < Mi|z| (2 €U)
for all i € {1,2,....,n}.
Next, by making use of (2.3), we have
zh'"(z)
ah!(z)

0]2]20‘ + <1 — ]2\20‘>

a—1
< el +

M—llJrl)Mi—i—l)

2 ((

n

> lpi + 1) M; + 1]
=1
<1 (2€U,ceC,M;>1)

a—1
s\cr+\
(8]

skesk sk ok sk ok ok s ok sk sk ok ok sk sk ok sk sk sk ok sk sk sk s sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk sk ok sk sk sk sk ok sk sk sk s sk sk sk sk sk ok sk sk ok ok sk ok sk sk ok ok sk skok ok sk ok

Surveys in Mathematics and its Applications 7 (2012), 117 — 124
http://www.utgjiu.ro/math/sma


http://www.utgjiu.ro/math/sma/v07/v07.html
http://www.utgjiu.ro/math/sma

Some criteria for two new integral operators 121

where we have also used the hypothesis (2.1) of Theorem 3.
Finally, by applying Theorem 1, we conclude that the integral operator Fy,,o (f, 9)(2)
defined by (1.5) is in the class S. O

Setting g1 = g2 = ... = g = 0 in Theorem 3 we have
Corollary 4. Let f; € A for alli € {1,2,....,n}, a € C and M; > 1 with

n

SNlpi+ )M +1], ceCe# 1.

i=1
If for alli € {1,2,....,n}, fi € S(pi), 0 < p; < 2 satisfy the condition (1.4) and
1fi(z)| < M; (2 €U)

-1
le] <1-— a

then the integral operator

Frya (f)(2) = <(1 +n(a—1)) /ozlj (fiiﬂ)aldt) e

15 in the class S.

Setting n =1 and M =1 in Corollary 4 we have
Corollary 5. Let f € A, a € C and

o —

lef <1 -

1
‘(p+2), ceC,c# -1
If f € S(p), 0 < p <2 satisfies the condition (1.4) and

f(z) <1 (2€0)

then the integral operator

s in the class S.

Theorem 6. Let f; € A, a € C and M; > 1 for all i € {1,2,...,n}. If for all
i€{1,2,...,n}, fi € S(gi,pi), 0 <p; <2 and

|(fixgi)(2)| <M (2 €U) (2.4)
then for any complexr number (3,
Ref > |af Y [(pi + 1)M; + 1] (2.5)
i=1

the integral operator Gy,5 (f,9)(2) defined by (1.6) is in the class S.
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Proof. We define a function

h(z) = /O ﬁ <(f*tg)(t)>a dt (2.6)

and we obtain that h(0) = h/(0) — 1 = 0. We calculate the derivatives of the first
and second orders. From (2.6) we have

- Hl <(fz *Zgi)(Z))"“

and

Zh” Oéi( fz*gz ) _1>
1 (fi*gi)(2)
which readily shows that

28 1128 zh" (2)
el + (1= =) s

n

cloP? + (1 - 1272 Z( J{:;’( ))_1>‘

S'C‘ﬂmZ( Ve )
B ()

z
Since |(fi * gi)(2)] < M;, z € U and f; € S(gi,pi), 0 <p; <2 forallie {1,2,....,n},
then from General Schwarz Lemma and (1.3), we obtain

z fz*gz , Z)
fz*gz z

o228 _ 1428 zh"(2)
2%+ (1= 1) 3

<+ i3, ((

§|C|+|ﬁlz pi+1)M;+1]  (z€U)

M—1‘+1>Mi+1>

which, in the light of the hypothesis (2.5), we have

23 ap, 2h" (2)
clz|™ 4+ (1 —|z| )ﬁh’(z) <1 (z€0).
Applying Theorem 1 for the function h(z), we obtain that the integral operator
Gn.p (f,9)(%) defined by (1.6) is in the class S. O
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Setting g1 = go = ... = g, = 0 in Theorem 6, we have

Corollary 7. Let fi € A, o € C and M; > 1 for all i € {1,2,...,n}. If for all
ie{1,2,...n}, fi € S(pi), 0 < p; <2 satisfy the inequality (1.4) and

[fi(z)| < M; (2 €U)

then for any complexr number (3,

Ref > |o 3 [(pi + 1)M; + 1]
=1

the integral operator

@l

G, (f9)(2) = (ﬁ /OZ et T (ae)® dt)
i=1

is in the class S.
Setting n = 1 and M =1 in Corollary 7, we have

Corollary 8. Let f € A, a € C and M > 1. If f € S(p), 0 < p < 2 satisfies the
inequality (1.4) and

f)l <M (2€0)

then for any complex number (3,
Ref > |of[(p+1)M + 1]

the integral operator

wl=

Gra () = (8 [ 0t o) ar)

0

is in the class S.
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