
Surveys in Mathematics and its Applications

ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 8 (2013), 23 – 34

POSITIVE BLOCK MATRICES ON HILBERT AND
KREIN C∗-MODULES

M. Dehghani, S. M. S. Modarres and M. S. Moslehian

Abstract. Let H1 and H2 be Hilbert C∗-modules. In this paper we give some necessary and
sufficient conditions for the positivity of a block matrix on the Hilbert C∗-module H1 ⊕ H2. If
(H1, J1) and (H2, J2) are two Krein C∗-modules, we study the J̃-positivity of 2 × 2 block matrix(

A X

X] B

)
on the Krein C∗-module (H1 ⊕H2, J̃ = J1 ⊕ J2), where X] = J2X

∗J1 is the (J2, J1)-adjoint of the

operator X. We prove that if A is J1-selfadjoint and B is J2-selfadjoint and A is invertible, then

the operator

(
A X

X] B

)
is J̃-positive if and only if A ≥J1 0, B ≥J2 0 and X]A−1X ≤J2 B. We

also present more equivalent conditions for the J̃-positivity of this operator.

1 Introduction and preliminaries

Hilbert C∗-modules are generalizations of Hilbert spaces by allowing the inner
product to take values in a C∗-algebra rather than in the field of complex numbers.
The theory of Hilbert C∗-modules has applications in the study of locally compact
quantum groups, non-commutative geometry and KK-theory. Actually Hilbert C∗-
modules can be considered as a ‘quantization’ of the Hilbert space theory; see e.g.
[10].
Let A be a C∗-algebra. A complex linear space H is said to be an inner product
A-module if H is a right A-module together with a C∗-valued map (x, y) 7→ 〈x, y〉 :
H ×H → A such that
(i) 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉 (x, y, z ∈H , α, β ∈ C);
(ii) 〈x, ya〉 = 〈x, y〉a (x, y ∈H , a ∈ A);
(iii) 〈y, x〉 = 〈x, y〉∗ (x, y ∈H );
(iv) 〈x, x〉 ≥ 0 and if 〈x, x〉 = 0, then x = 0 (x ∈H ).
An inner product A-module H which is complete with respect to the induced norm
‖x‖ = ‖〈x, x〉‖

1
2 (x ∈H ) is called a Hilbert A-module or a Hilbert C∗-module over
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A. Every Hilbert space is a Hilbert C-module.
Suppose that H1 and H2 are two Hilbert A-modules. We denote by L(H1,H2) the
set of all bounded linear operators T : H1 →H2 which are adjointable in the sense
that there is a map T ∗ : H2 →H1 such that

〈Tx, y〉 = 〈x, T ∗y〉 (x ∈H1, y ∈H2).

Let (H , 〈·, ·〉) be a Hilbert C∗-module. Then L(H ) := L(H ,H ) is a C∗-algebra
with the identity operator IH . An operator T ∈ L(H ) is called selfadjoint if T ∗ = T

and is positive if 〈Tx, x〉 ≥ 0 for all x ∈ H . We denote by T
1
2 the unique positive

square root of T . If T is a positive invertible operator we write T > 0. For selfadjoint
operators T and S on H , we say T ≤ S if S − T ≥ 0. A selfadjoint idempotent
operator T ∈ L(H ) is called a projection.
Let H1 and H2 be Hilbert A-modules. The operator T ∈ L(H1,H2) is called a
contraction if T ∗T ≤ IH1 and is called an isometry if T ∗T = IH1 . We write R(T )
and N (T ) for the range and null space of the operator T , respectively.
Let H1 and H2 be Hilbert C∗-modules over A. Every operator A ∈ L(H1 ⊕H2)
is uniquely determined by operators Aij ∈ L(Hj ,Hi) (1 ≤ i, j ≤ 2) defined by
Aij = πiAτj , where τj is the canonical embedding of Hj in H1 ⊕H2 and πi is the
natural projection from H1 ⊕H2 onto Hi. Note that π∗i = τi. Let us represent A
by the block matrix

A =

(
A11 A12

A21 A22

)
. (1.1)

Clearly the operator A is selfadjoint if and only if A is of the form

(
A11 A12

A∗12 A22

)
,

where A11 and A22 are selfadjoint operators on H1 and H2, respectively. The

diagonal block matrix

(
A11 0
0 A22

)
is denoted by A11 ⊕A22.

Proposition 1. [7, Lemma 2.1] Suppose that H1 and H2 are Hilbert A-modules.

Let A ∈ L(H1), C ∈ L(H2,H1) and B ∈ L(H2). Then

(
A C
C∗ B

)
≥ 0 if and

only if A ≥ 0, B ≥ 0 and

|ϕ(〈Cy, x〉)|2 ≤ ϕ(〈Ax, x〉)ϕ(〈By, y〉). (1.2)

for all x ∈H1, y ∈H2 and all ϕ ∈ S(A), where S(A) is the state space of A.

Linear spaces with indefinite inner products were used for the first time in
the quantum field theory in physics by Dirac [6]. Krein spaces as an indefinite
generalization of Hilbert spaces were formally defined by Ginzburg [8]. The notion
of a Krein C∗-modules is a natural generalization of a Krein space. In sequel we
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Positive block matrices on Hilbert and Krein C∗-modules 25

present the standard terminology and some basic results on Krein spaces and Krein
C∗-modules. For a complete exposition on the subject see [1, 2, 9, 11].

Let (H , 〈·, ·〉) be a Hilbert C∗-module over a C∗-algebra A. Suppose that a
nontrivial selfadjoint involution J on H , i.e. J = J∗ = J−1, is given to produce an
A-valued indefinite inner product

[x, y]J := 〈Jx, y〉 (x, y ∈H ).

Then (H , J) is called a Krein C∗-module. Trivially a Krein space is a Krein C∗-
module over A = C. The Minkowski space is a well-known Krein space.

Example 2. Let Mn(C) be the algebra of all complex n × n matrices and let 〈·, ·〉
be the standard inner product on Cn. For selfadjoint involution

J0 =

(
In−1 0

0 −1

)
,

where In−1 denotes the identity of Mn−1(C), let us consider the indefinite inner
product [·, ·]J0 on Cn given by

[x, y]J0 = 〈J0x, y〉 =
n−1∑
k=1

xkȳk − xnȳn

for all x = (x1, · · · , xn) , y = (y1, · · · , yn) ∈ Cn. The Krein space (Cn, J0) is called
a Minkowski space.

Let (H1, J1) and (H2, J2) be Krein C∗-modules. The (J1, J2)-adjoint operator
of A ∈ L(H1,H2) is defined by

[Ax, y]J2 = [x,A]y]J1 (x ∈H1 , y ∈H2),

which is equivalent to say that A] = J1A
∗J2. Trivially (A])] = A. Let (H , J) be a

Krein C∗-module. An operator A ∈ L(H ) is said to be J-selfadjoint if A] = A, or
equivalently, A = JA∗J . For J-selfadjoint operators A and B, the J-order, denoted
as A ≤J B, is defined by

[Ax, x]J ≤ [Bx, x]J (x ∈H ).

It is easy to see that A ≤J B if and only if JA ≤ JB. The J-selfadjoint operator
A ∈ L(H ) is said to be J-positive if A ≥J 0. Note that neither A ≥ 0 implies

A ≥J 0 nor A ≥J 0 implies A ≥ 0; for instance, let A =

(
1 −1
1 −3

)
in 2-dimensional

Minkowski space (C2, J0). Then A is J0-positive, but A is not positive.

******************************************************************************
Surveys in Mathematics and its Applications 8 (2013), 23 – 34

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v08/v08.html
http://www.utgjiu.ro/math/sma


26 M. Dehghani, S. M. S. Modarres and M. S. Moslehian

Positivity of 2×2 block matrices of operators on Hilbert spaces have been studied
by many authors; see e.g. [4, 5, 12, 13] and references therein. In section 2, we study
the positivity of 2×2 block matrices of adjointable operators on Hilbert C∗-modules.
We give a necessary and sufficient condition for the contractibility of an adjointable
operator on a Hilbert C∗-module via positivity of a certain block matrix. Then
we characterize the positive block matrices of adjointable operators on Hilbert C∗-
modules (Theorem 6).

In section 3, we assume that (H1, J1), (H2, J2) are Krein C∗-modules and consider
the Krein C∗-module (H̃ = H1 ⊕H2, J̃ = J1 ⊕ J2). We investigate the positivity
of 2 × 2 block matrices on Krein C∗-module (H̃ , J̃). We give some necessary and

sufficient conditions for the J̃-positivity of 2 × 2 block matrix

(
A X
X] B

)
on the

Krein C∗-module (H̃ , J̃). We also give the relation between contractions and 2× 2
block matrices in the setting of Krein C∗-modules.

2 Positivity of block matrices of adjointable operators
on Hilbert C∗-modules

The following lemma characterize the relation between contractions and the positivity
of a block matrix of operators on Hilbert C∗-modules.

Lemma 3. Let H1 and H2 be Hilbert A-modules. An operator C ∈ L(H2,H1) is a

contraction if and only if the block matrix

(
IH1 C
C∗ IH2

)
∈ L(H1⊕H2) is positive.

Proof. Suppose that

(
IH1 C
C∗ IH2

)
≥ 0. By the definition, we have〈(

IH1 C
C∗ IH2

)(
x
y

)
,

(
x
y

)〉
= 〈x, x〉+ 2Re〈Cy, x〉+ 〈y, y〉 ≥ 0

for all x ∈H1, y ∈H2. Now put x = −Cy. Then

〈Cy,Cy〉 − 2Re〈Cy,Cy〉+ 〈y, y〉 ≥ 0.

It follows that 〈Cy,Cy〉 ≤ 〈y, y〉 for all y ∈H2. Therefore C∗C ≤ IH2 .
Conversely, suppose that C∗C ≤ IH2 and ϕ ∈ S(A). The map (·, ·) 7→ ϕ(〈·, ·〉) is a
positive sesquilinear form. Using the Cauchy–Schwarz inequality we conclude that

|ϕ(〈Cy, x〉)|2 ≤ ϕ(〈Cy,Cy〉)ϕ(〈x, x〉) ≤ ϕ(〈y, y〉)ϕ(〈x, x〉).

Let A = IH1 and B = IH2 in (1.2). Then Proposition 1 implies that(
IH1 C
C∗ IH2

)
≥ 0.
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A closed submodule F of a Hilbert C∗-module H is called orthogonally complemented
if H = F ⊕ F⊥, where F⊥ = {x ∈ H : 〈x, y〉 = 0 for all y ∈ F}. It is
well-known that the closed submodules of Hilbert C∗-modules are not orthogonally
complemented, in general. However, the null space of an element of L(H1,H2) with
closed range is orthogonally complemented, which can be stated as follows:

Proposition 4. [10, Theorem 3.2] Let H1 and H2 be two Hilbert C∗-modules and
let A ∈ L(H1,H2). If R(A) is closed, then R(A∗) is closed and the following
orthogonal decompositions holds:

H1 = N (A)⊕R(A∗), H2 = R(A)⊕N (A∗).

Furthermore, The closeness of any one of the following sets implies the closeness of
the remaining three sets:

R(A),R(A∗),R(AA∗),R(A∗A).

Let H1 and H2 be Hilbert C∗-modules. An operator U ∈ L(H2,H1) is called a
partial isometry if R(U) is orthogonally complemented and there exists an orthogonally
complemented submodule F of H2 such that U is isometric on F and U |F⊥ = 0. It
is well-known that U is a partial isometry if and only if U∗U (or UU∗) is a projection;
cf [10, Chapter 3]. To get our next result we need the following lemma, which is a
generalization of a known result [3, Lemma 2.4.2].

Lemma 5. Let H , H1 and H2 be Hilbert A-modules. Suppose that T ∈ L(H ,H1)
and S ∈ L(H ,H2) such that R(T ) and R(S) are orthogonally complemented. If
T ∗T = S∗S, then T = US for some partial isometry U : H2 →H1.

Proof. Assume that T ∗T = S∗S. Let y ∈ R(S). Then y = Sx for some x ∈ H .
Define Uy := Tx. Suppose that x′ ∈ H and Sx = Sx′. Hence S(x − x′) = 0. We
have

〈T (x− x′), T (x− x′)〉 = 〈T ∗T (x− x′), x− x′〉
= 〈S∗S(x− x′), x− x′〉
= 〈S(x− x′), S(x− x′)〉 = 0.

It follows that Tx = Tx′. Therefore U is well-defined on R(S). In addition,

‖Uy‖2 = ‖Tx‖2

= ‖〈T ∗Tx, x〉‖
= ‖〈S∗Sx, x〉‖
= ‖Sx‖2 = ‖y‖2 (y ∈ R(S)).
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So U is an isometry on R(S).
Next, let y ∈ R(S) and xn ∈ H such that yn = Sxn and limn→∞ yn = y. Then
Uyn = Txn for all n and

‖Uyn − Uym‖2 = ‖〈T (xn − xm), T (xn − xm)〉‖
= ‖〈S(xn − xm), S(xn − xm)〉‖
= ‖〈yn − ym, yn − ym〉‖
= ‖yn − ym‖2.

As {yn} is a Cauchy sequence, so is {Uyn}. Therefore we can define

Uy := lim
n→∞

Uyn = lim
n→∞

Txn (y ∈ R(S)).

We define U to be zero from the orthogonal complement of R(S) into the orthogonal
complement of R(T ). Note that U can be regarded as a diagonal matrix.
Clearly T = US. The operator U is a partial isometry, indeed, let z ∈ R(T ). Then
z = limn→∞ Tx

′
n for some x′n ∈ H . Analogue to the above construction, we can

define

U∗z := lim
n→∞

U∗zn := lim
n→∞

Sx′n (z ∈ R(T ))

and U∗ to be zero from the orthogonal complement of R(T ) onto R(S) and conclude
that S = U∗T . Therefore

〈Uy, z〉 = 〈 lim
n→∞

Txn, z〉 = lim
n→∞

〈xn, T ∗z〉 = lim
n→∞

〈xn, lim
m→∞

T ∗Tx′m〉

= lim
n→∞

〈xn, lim
m→∞

S∗Sx′m〉 = lim
n→∞

〈Sxn, lim
m→∞

Sx′m〉 = 〈y, U∗z〉

for all y ∈ R(S), z ∈ R(T ) and so U∗ is actually the adjoint of U . Moreover

U∗Uy = lim
n→∞

U∗Txn = lim
n→∞

Sxn = y (y ∈ R(S)).

and

UU∗z = lim
n→∞

USx′n = lim
n→∞

Tx′n = z (z ∈ R(T )).

Hence U∗U = PR(S)
and UU∗ = PR(T )

are projections onto R(S) and R(T ),

respectively. It follows that U is a partial isometry.

A characterization of positive 2 × 2 block matrices can be obtained by using
Lemma 3 as follows:
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Theorem 6. Let H1 and H2 be Hilbert C∗-modules and let A ∈ L(H1) and B ∈
L(H2) such that R(A) and R(B) be closed submodules of H1 and H2, respectively.

Then the block matrix

(
A C
C∗ B

)
∈ L(H1 ⊕H2) is positive if and only if A ≥ 0 ,

B ≥ 0 and there exists a contraction G such that C = A
1
2GB

1
2 .

Proof. Let A ≥ 0 and B ≥ 0 and let C = A
1
2GB

1
2 for some contraction G. Then

Lemma 3 forces that

(
IH1 G
G∗ IH2

)
≥ 0. It follows from

(
A C
C∗ B

)
=

(
A

1
2 0

0 B
1
2

)(
IH1 G
G∗ IH2

)(
A

1
2 0

0 B
1
2

)
.

that

(
A C
C∗ B

)
is positive.

Conversely, suppose that M =

(
A C
C∗ B

)
≥ 0. Then M = N∗N for some N ∈

L(H1 ⊕ H2). We can write N =
(
P Q

)
, where P ∈ L(H1,H1 ⊕ H2) and

Q ∈ L(H2,H1 ⊕H2) are defined by P = Nτ1 and Q = Nτ2, respectively. To see
this, let x1 ∈H1 and x2 ∈H2. Then

(
P Q

)( x1
x2

)
= Px1 +Qx2 = N(x1, 0) + N(0, x2) = N(x1, x2).

Therefore

M =

(
A C
C∗ B

)
= N∗N =

(
P ∗

Q∗

)(
P Q

)
=

(
P ∗P P ∗Q
Q∗P Q∗Q

)
.

It follows that A = P ∗P ≥ 0, B = Q∗Q ≥ 0 and C = P ∗Q.
Due to R(A) is closed, R(A

1
2 ) = R(A) is closed. Moreover, it follows from R(A) =

R(P ∗P ) and Proposition 4 that R(P ) is closed. Similarly, R(B
1
2 ) and R(Q) are

closed. Since A
1
2A

1
2 = A = P ∗P and B

1
2B

1
2 = B = Q∗Q Lemma 5 implies that

there exist partial isometries U1 and U2 such that P = U1A
1
2 , Q = U2B

1
2 and

U1U
∗
1 = PR(P ), U

∗
2U2 = PR(B) are projections onto R(P ) and R(B), respectively.

Therefore C = P ∗Q = A
1
2U∗1U2B

1
2 . Set G := U∗1U2. Then

G∗G = U∗2U1U
∗
1U2 = U∗2PR(P )U2 ≤ U∗2 IH1⊕H2U2 = U∗2U2 = PR(B) ≤ IH2

and C = A
1
2GB

1
2 .
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3 Positivity of block matrices of operators on Krein C∗-
modules

In this section we study the positivity of a block matrix of operators acting on Krein
C∗-modules.
Let (H1, J1) and (H2, J2) be Krein C∗-modules. Note that a selfadjoint involution
on H1⊕H2 may be defined in some different ways. It is easy to see that J̃ = J1⊕J2
is a selfadjoint involution on H1 ⊕H2. Let A be the block matrix introduced in
(1.1). Then we have

A] = J̃A∗J̃ =

(
J1 0
0 J2

)(
A∗11 A∗21
A∗12 A∗22

)(
J1 0
0 J2

)
=

(
J1A

∗
11J1 J1A

∗
21J2

J2A
∗
12J1 J2A

∗
22J2

)
.

Therefore A is J̃-selfadjoint if and only if A =

(
A11 A12

A]
12 A22

)
in which A11 is J1-

selfadjoint and A22 is J2-selfadjoint.
To get our next result we need the following lemma.

Lemma 7. Suppose that R and S are J-selfadjoint operators on a Krein C∗-module
(H , J). Then R ≥J S if and only if W ]RW ≥J W ]SW for all W ∈ L(H ).
Specially R ≥J 0 if and only if W ]RW ≥J 0 for all W ∈ L(H ).

Proof. Clear.

Theorem 8. Let (H1, J1) and (H2, J2) be Krein C∗modules. Suppose that A is J1-

selfadjoint and B is J2-selfadjoint. If A is invertible, then the operator

(
A X
X] B

)
is J̃-positive if and only if A ≥J1 0, B ≥J2 0 and X]A−1X ≤J2 B.

Proof. By the assumptions, A is an invertible J1-selfadjoint operator. It follows
that AJ1 is invertible and selfadjoint. Then AJ1 = (AJ1)

∗ = J1A
∗. It follows

that J1A
−1 = (A−1)∗J1. Therefore A−1 is J1-selfadjoint. Hence X]A−1X is J2-

selfadjoint. By the definition, we have(
IH1 −A−1X
0 IH2

)]

=

(
J1 0
0 J2

)(
IH1 0

−(A−1X)∗ IH2

)(
J1 0
0 J2

)
=

(
IH1 0

−X]A−1 IH2

)
.

Therefore(
IH1 −A−1X
0 IH2

)](
A X
X] B

)(
IH1 −A−1X
0 IH2

)
=

(
A 0
0 B −X]A−1X

)
.
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From this relation, Lemma 7 and taking into account that the operator(
IH1 −A−1X
0 IH2

)

is invertible, we deduce that the operator

(
A X
X] B

)
is J̃-positive if and only if the

operator

(
A 0
0 B −X]A−1X

)
is J̃-positive. Therefore

(
A X
X] B

)
is J̃-positive

if and only if A ≥J1 0, B ≥J2 0 and X]A−1X ≤J2 B.

The following corollary is well-known for operators on Hilbert C∗-modules which
we present it as a result of Theorem 8.

Corollary 9. Let H1 and H2 be Hilbert C∗-modules and let A ∈ L(H1), B ∈ L(H2)

such that A > 0 and B ≥ 0. The block matrix

(
A C
C∗ B

)
∈ L(H1⊕H2) is positive

if and only if C∗A−1C ≤ B.

Proof. Let J̃ =

(
IH1 0
0 IH2

)
in Theorem 8.

Theorem 10. Let (H1, J1) and (H2, J2) be Krein C∗-modules. Suppose that A ∈
L(H1) is J1-positive and B ∈ L(H2) is J2-positive. If A and B are invertible
and R(J1A) and R(J2B) are closed submodules, then the following statements are
equivalent.

(i)

(
A X
X] B

)
is J̃-positive.

(ii) (J1A)−
1
2J1X(J2B)−

1
2 is a contraction.

(iii) X]A−1X ≤J2 B.

Proof. (i)⇒ (ii).

By the definition,

(
J1A J1X

(J1X)∗ J2B

)
≥ 0. Then Theorem 6 implies that J1X =

(J1A)
1
2G(J2B)

1
2 for some contraction G. Since A and B are invertible we conclude

that G = (J1A)−
1
2J1X(J2B)−

1
2 is a contraction.

(ii)⇒ (iii).
The condition (ii) is equivalent to

(J2B)−
1
2X∗J1A

−1X(J2B)−
1
2 = (J2B)−

1
2 (J1X)∗(J1A)−

1
2 (J1A)−

1
2 (J1X)(J2B)−

1
2 ≤ IH2 .

It follows that X∗J1A
−1X ≤ J2B. Therefore X]A−1X ≤J2 B.

(iii)⇒ (i).
It follows from Theorem 8.
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An operator X ∈ L(H2,H1) is called a (J2, J1)-contraction if X]X ≤J2 IH2 , or
equivalently, X∗J1X ≤ J2.

Remark 11. The J̃-positivity of block matrix

(
IH1 X
X] IH2

)
∈ L(H1⊕H2) implies

that J1 ≥ 0 and J2 ≥ 0 which is impossible. Therefore in contrast to operators
on Hilbert C∗-modules Lemma 3 is not valid in the setting of Krein C∗-modules.
Moreover the following example show that the (J2, J1)-contractibility of X, i.e. X]X ≤J2

IH2 does not imply the J̃-positivity of block matrix

(
IH1 X
X] IH2

)
.

Example 12. Consider the Minkowski space (C2, J0) with J0 =

(
1 0
0 −1

)
. Let

X =

(
i i
i 2i

)
. Then

X] = J0X
∗J0 =

(
1 0
0 −1

)(
−i −i
−i −2i

)(
1 0
0 −1

)
=

(
−i i
i −2i

)
and

J0 −X∗J0X =

(
1 1
1 2

)
≥ 0.

Therefore X]X ≤J0 I, where I =

(
1 0
0 1

)
. It means that X is a J0-contraction.

Now let J̃0 = J0 ⊕ J0 and T =

(
I X
X] I

)
. Then

J̃0T =

(
J0 0
0 J0

)(
I X
X] I

)
=

(
J0 J0X
J0X

] J0

)
=


1 0 i i
0 −1 −i −2i
−i i 1 0
−i 2i 0 −1

 .

The matrix J̃0T is not positive, because it has negative eigenvalues. It follows that
T is not J̃0-positive, while X is a J0-contraction.

In the following theorem we introduce a good candidate for description of contractions
by means of J̃-positive 2× 2 block matrices.

Theorem 13. Let (H1, J1) and (H2, J2) be Krein C∗-modules.Then

(
J1 X
X] J2

)
is J̃-positive if and only if X is a contraction.
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Proof. Let T =

(
J1 X
X] J2

)
. By the definition, T ≥J̃ 0 if and only if J̃T ≥ 0. It

means that (
J1 0
0 J2

)(
J1 X
X] J2

)
=

(
IH1 J1X

(J1X)∗ IH2

)
≥ 0. (3.1)

Lemma 3 forces that (3.1) is equivalent to (J1X)∗(J1X) ≤ IH2 . Also we have
X∗X = X∗J2

1X = (J1X)∗(J1X) ≤ IH2 .
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