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A SPECIAL CASE OF RATIONAL θS FOR
TERMINATING θ-EXPANSIONS

Santanu Chaktaborty

Abstract. There have been quite a few generalizations of the usual continued fraction expansions

over the last few years. One very special generalization deals with θ-continued fraction expansions

or simply θ-expansions introduced by Bhattacharya and Goswami [1]. Chakraborty and Rao [3]

subsequently did elaborate studies on θ-expansions in their paper. They also obtained the unique

invariant measure for the Markov process associated with the generalized Gauss transformation

that generated θ-expansions for some special θs. In this work, we investigate an interesting question

regarding the nature of θs for θ-expansion of 1
θ
terminating at stage two, particularly with θ rational.

1 Introduction

1.1 Usual Continued Fraction Expansions

An expression of the form

a0 +
1

a1 + 1
a2+...

where a0, a1, a2, ... are real or complex numbers is called a continued fraction expansion.
However, in most of the interesting studies, a0, a1, a2, ... are assumed to be positive
integers. If the resulting number is between zero and one, then a0 is assumed to be
zero. A continued fraction with these a0, a1, a2, ... is also very popularly written as

[a0; a1, a2, · · · ]

In case a0 is zero, one writes

[a1, a2, · · · ]
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60 S. Chaktaborty

The theory of usual continued fraction expansions has wide applications in analysis,
probability theory and number theory. As of now, there had been studies on
continued fraction expansions for quite a few centuries. A very important reference
on continued fractions is by Khinchin [5] that was published in the form of a
monograph. Later there had been quite a few generalized versions of continued
fractions found in the works of Bissinger [2], Everett [4] and Renyi [6].

1.2 θ-Continued Fraction Expansions

In the new millennium, a very special kind of generalization can be found in the works
of Bhattacharya and Goswami [1] who introduced the concept of θ-expansions for a
number in [0, θ) with 0 < θ < 1.

An expression of the form

a0θ +
1

a1θ + 1
a2θ+...

where a0, a1, a2, ... are real or complex numbers is called a θ-continued fraction
expansion. For our study, we assume a0, a1, a2, ... to be positive integers. Like
usual continued fraction expansions, we can also write it as

[a0θ; a1θ, a2θ, · · · ]θ

where the suffix θ is to stress that it is a θ-expansion. But since this article only
considers θ-expansions, we will suppress the suffix and will always write it as

[a0θ; a1θ, a2θ, · · · ]

If the resulting number is between 0 and θ, then a0 is assumed to be zero and we
write it as

[a1θ, a2θ, · · · ]

An elaborate study on necessary and sufficient conditions for existence and
uniqueness of θ-expansions for a number in [0, θ) was done in Chakraborty and
Rao [3]. These conditions are quite non-trivial when one compares them with the
ones for the usual continued fraction expansion. We give a brief overview in the
next section to familiarize the readers with θ-expansions.

1.3 Generalized Gauss Map and Invariant Measure

The usual continued fraction expansion is generated by the Gauss transfor-
mation and there is a unique invariant measure for the Gauss transformation. This
transformation is given by
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Rational θs for terminating θ-expansions 61

U(x) =

(
1

x
−
[

1

x

])
Ix(0, 1)

where I is the indicator function. The corresponding invariant measure is

1

log 2

1

1 + x
dx

Chakraborty and Rao [3] obtained a generalized version of the Gauss transformation
that generates the θ-expansions and they call it generalized Gauss map:

T (x) =

(
1

x
− θ

[
1

θx

])
Ix(0, θ)

where I is again the indicator function. They showed that when θ-expansion of 1
θ

terminates at the first stage, that is, when θ2 is the reciprocal of a positive integer,
the invariant measure for the Gauss map generalizes to that for the generalized
Gauss map [3]:

1

log (1 + θ2)

θ

1 + θx
dx

But there is no clue as to how to obtain the invariant measure for other values of θ
in the work of Chakraborty and Rao [3].

1.4 Motivation for our present problem

Our main goal was to obtain an invariant measure for the generalized Gauss transfor-
mation when the θ-expansion of 1

θ
does not terminate at stage one and we understood

that even the θ-expansion of 1
θ

terminating at stage two is not easy to dela with.
To understand the complexity of the problem, we look at the following comparison.

In case of usual continued fraction expansion, a number is rational if the expansion
is terminating. But for θ-expansions, the situation is not so simple. It can be easily
seen that θ is not necessarily rational, even when the θ-expansion of 1

θ
terminates at

stage one. For example, if θ2 = 0.2, then
1

θ2
= 5, and hence

1

θ2
is a positive integer,

but θ is not rational. Therefore, it makes sense to study terminating θ- expansions
with rational θ. In this article, we only study the case when θ-expansion of 1

θ
terminates at stage two, obtain necessary and sufficient condition when θ is rational
in this case and use this condition to generate all possible rational θs. So, using this
expression for the solution of θ, we will try to investigate the situations when θ is
rational and the θ-expansion of 1

θ
terminates at stage two, i.e., 1

θ
= n1θ + 1

n2θ
for

two positive integers n1 and n2.
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In the next section, we discuss some preliminaries with respect to θ-continued
fraction expansions. In section 3, we discuss the necessary and sufficient conditions
for θ to be rational when the expansion terminates at stage 2. In section 4, we
discuss more properties of n1 and n2 for θ to be rational. In section 5, we discuss
how to generate rationals of various types using the conditions derived earlier on n1
and n2 under a special situation. We consider three subcases. We conclude with
some remarks in section 6.

2 Preliminaries in θ-expansions

In this section, we give a brief overview of θ expansions. As mentioned in the
previous section, an expression of the form

a0θ +
1

a1θ + 1
a2θ+...

is called a θ-continued fraction expansion or simply θ-expansion where a0, a1, a2, ...
are assumed to be positive integers. If the resulting number is between 0 and θ, then
a0 is assumed to be zero. Starting with a positive real number x, one can obtain its
θ-continued fraction expansion in terms of a0, a1, a2, · · · as follows:

2.1 Definitions of a0, a1, a2, · · · in θ-expansion

Let x > 0. Let a0 = max{n ≥ 0 : nθ ≤ x}. If x already equals a0θ, we write x =

[a0θ], otherwise define r1 by x = a0θ + 1
r1 where 0 < 1

r1 < θ. Then r1 >
1
θ
≥ θ and

let a1 = max{n ≥ 0 : nθ ≤ r1}. If r1 = a1θ, then we write x = [a0θ; a1θ]. Otherwise
we define r2 like r1 and proceed accordingly. This way, the process terminates at
some stage n or continues indefinitely. In the former case, we write the expansion
as [a0θ; a1θ, ..., anθ] and is called a terminating continued fraction expansion. In the
latter case, we write the expansion as [a0θ; a1θ, ...] and is called a non-terminating
continued fraction expansion. Then one can define the n-th convergent of x as
follows

pn
qn

= [a0θ; a1θ, ..., anθ]

for n ≥ 1 where [a0θ; a1θ, ..., anθ] is a θ-expansion terminating at stage n. Here a0 is
zero if the number x is less than θ and we write the n-th convergent as [a1θ, ..., anθ].
Then one can show that the n-th convergent of x,

pn
qn converges to x as n tends to

∞.
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Rational θs for terminating θ-expansions 63

2.2 When does a θ-expansion of the form [a1θ, a2θ, ...] arise as the
θ-expansion of a number x less than θ?

The conditions were given in Chakraborty and Rao [3] for both terminating and

non-terminating expansions of 1
θ

.

2.2.1 θ-expansion of
1

θ
terminating at stage m (finite)

For terminating expansion of 1
θ

, say 1
θ

= [n1θ; n2θ, ..., nmθ], we have the following
conditions on x:

i) Each ai ≥ n1.
ii) In case for some i ≥ 1 and p < m,

< ai+1, ..., ai+p >=< n1, ..., np >

then we should have ai+p+1 ≤ np+1 if p + 1 is even and ai+p+1 ≥ np+1 if p + 1 is
odd. Moreover, if m is even and p+ 1 equals m, then ai+p+1 < np+1.

iii) If θ-expansion of x terminates at a finite stage, say, k, then ak must satisfy
ak > n1 and further if for some even p < m,

< ak−p, ..., ak−1 >=< n1, ..., np >

then ak > np+1.

2.2.2 θ-expansion of
1

θ
is not terminating

For non-terminating expansion of 1
θ
, say, 1

θ
= [n1θ; n2θ, ...], following are the conditions

on x:

i) Each ai ≥ n1.
ii) In case for some i ≥ 1 and p ≥ 1,

< ai+1, ..., ai+p >=< n1, ..., np >

then ai+p+1 ≤ np+1 if p+ 1 is even and ai+p+1 ≥ np+1 if p+ 1 is odd.

iii) In the terminating case, the last ak must satisfy ak > n1 and further if for
some even p ≥ 1,

< ak−p, ..., ak−1 >=< n1, ..., np >

then ak > np+1.
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64 S. Chaktaborty

2.3 θ-expansion of 1
θ

: conditions on n1, n2, · · ·

Chakraborty and Rao [3] stated the conditions for both terminating and non-terminating
θ-expansions. Here we only mention the conditions for θ-expansion terminating at
the mth stage:

i) ni > n1 for i = 2 or m whereas ni ≥ n1 for 2 < i < m.

ii) If for some i and p with i+ p < m, < ni+1, ..., ni+p >=< n1, ..., np >, then we
should have ni+p+1 ≤ np+1 if p+ 1 is even and ni+p+1 ≥ np+1 if p+ 1 is odd.

For m = 2 or 3, they derived the conditions explicitly. For our purpose, we only
need m = 2 and so, from now on, we will only consider rational θs with θ-expansion

of
1

θ
terminating at stage two. For m = 2, Chakraborty and Rao [3] has the following

result that we wil use in subsequent sections:

Theorem 1. The θ-expansion of 1
θ

terminates at stage two, i.e., 1
θ

= n1θ + 1
n2θ

for two positive integers n1 and n2 if and only if n2 > n1 + 1 and θ =
√
n2 − 1
n1n2 .

3 Conditions for θ rational

As mentioned earlier, we will only investigate the situation for rational θs with the
θ-expansion of 1

θ
terminating at stage two. So, from now on, we fix our notations

as follows: 1
θ

= n1θ + 1
n2θ

for two positive integers n1,n2 ;θ is rational, say, θ =
p
q

where p and q are relatively prime positive integers. The question we now ask is the
following: what should be the necessary and sufficient conditions on n1 and n2 so
that θ is rational?

Theorem 2. Given 1
θ

= n1θ + 1
n2θ

, the necessary and sufficient condition on n1

and n2 so that θ is rational is as follows: there exists a positive integer m and two
more squared positive integers m1 and m2 so that

n1 =
mm2

mm1 + 1
and n2 = mm1 + 1

Proof. First we assume

n1 =
mm2

mm1 + 1
and n2 = mm1 + 1

where m is a positive integer and m1 and m2 are squared positive integers. We will
show that θ is rational. By the assumption, we have, n2−1 = mm1 and n1n2 = mm2.

Therefore, n2 − 1
n1n2 = m1

m2
. Now, since m1 and m2 are squared integers, let m1 = p2
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Rational θs for terminating θ-expansions 65

and m2 = q2 for two positive integers p and q. So, θ =
√
n2 − 1
n1n2 =

√
m1
m2

=
p
q .

Since both p and q are positive integers, θ must be a rational.

Conversely, if θ is rational, say, θ =
p
q , where p and q are relatively prime positive

integers, then we would like to show that

n1 =
mm2

mm1 + 1
and n2 = mm1 + 1

where m is a positive integer and m1 and m2 are squared positive integers.

It is clear that

θ =

√
n2 − 1

n1n2
=
p

q

which implies

θ2 =
n2 − 1

n1n2
=
p2

q2

Since p and q are relatively prime, i.e., (p, q) = 1, so, (p2, q2) = 1. Now, if there
exists a positive integer m such that (n2 − 1, n1n2) = m for some positive integer

m, then, n2 − 1 = mp2 and n1n2 = mq2. So, n2 = mp2 + 1 and n1 =
mq2

mp2 + 1
.

Call m1 = p2 and m2 = q2. Then, obviously, m1 and m2 are two squared positive
integers and n1, n2 satisfy

n1 =
mm2

mm1 + 1
and n2 = mm1 + 1

for some positive integer m. Thus the proof is complete.

Remark 3. When (n2 − 1, n1n2) = 1, we have, n2 − 1 = p2 and n1n2 = q2.
Therefore, p2 + 1 divides q2.

Example 4. Let θ = 7
10 . Then, 1

θ
= 2θ + 1

50θ
. So, n1 = 2, n2 = 50 and obviously,

(n2 − 1, n1n2) = 1.

Remark 5. When (n2−1, n1n2) = m > 1, we have, n2−1 = mp2 and n1n2 = mq2.
So, n2 = mp2+1 divides q2 because m and mp2+1 can not have any common factor.
Since m divides n2 − 1, it can not divide n2 and hence, it must divide n1. So, if
n1 = mr, then n2r = q2.

Example 6. Consider θ = 2
3 . Then, 1

θ
= 2θ + 1

9θ
. So, m = n1 = 2, n2 = 9 and

r = 1. Obviously, (n2 − 1, n1n2) = 2 > 1.

We shall discuss the two cases mentioned in the above two remarks elaborately
in the next section to further investigate conditions on n1 and n2 for θ to be rational.
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4 More Conditions on n1 and n2

In this section, we investigate the nature of n1 and n2 given that 1
θ

= n1θ+ 1
n2θ

and

θ rational with θ =
p
q where p and q are relatively prime positive integers. Then,

by Theorem 2 from the previous section, there exists a positive integer m so that
(n2 − 1, n1n2) = m. We consider two cases depending on m = 1 or m > 1.

Case 1: m = 1

In this case, n2 − 1 is coprime with n1n2. We start with some trivial examples.

In the first example, we consider p = 2. Then, n2 = 5. So, n1n2 = 5n1 = q2.
Now, q2 being a squared number, 25 must divide q2 thereby implying that n1 is
divisible by 5. But this is not possible as n1 < n2.

In the second example, we consider p = 3. Then, n2 = 10. So, n1n2 = 10n1 = q2.
Therefore, 100 must divide q2 and hence, 10 should divide n1. Once again this is
not possible as n1 < n2.

In the above mentioned examples, n2 was chosen either a prime or a product
of distinct primes and we failed to obtain a rational θ satisfying 1

θ
= n1θ + 1

n2θ
.

We are going to see that in such a case, we can not have an example of rational θ
satisfying 1

θ
= n1θ + 1

n2θ
with (n2 − 1, n1n2) = 1.

But if n2 is neither a prime nor a product of distinct primes, then there is indeed
some example giving rise to rational θ of our need. Let us go back to Example 6 in
the previous section. In that example, we had θ = 7

10 so that 1
θ

= 2θ + 1
50θ

. So,
n2 = 50. Now in the prime factor decomposition of 50, 5 appears twice. So, 50 is
neither a prime nor a product of distinct primes. Now let us state our theorem.

Theorem 7. Let θ be a rational and the θ-expansion of 1
θ

is given by 1
θ

= n1θ+ 1
n2θ

with n1 and n2 are positive integers satisfying (n2−1, n1n2) = 1. Then, n2 is neither
a prime nor a product of distinct primes.

Proof. The proof is easy and goes by the method of contradiction. Suppose we
assume that n2 is a product of distinct primes p1, · · · , pk (case k = 1 takes care of
prime n2s). Then, from n1n2 = q2, we see that p1, · · · , pk must divide n1. But this
is not possible as this leads to n1 ≥ n2 which is false. Hence, the proof is complete
by the method of contradiction.

So, we conclude that n2 = p2 + 1 must be of the form pk11 · · · p
kl
l where p1, · · · , pl

are prime numbers and at least one of k1, · · · , kl must be bigger than 1. Is it
possible that l = 1? We don’t know. But we can answer some questions. Suppose
n2 = p2 + 1 = pk11 . Then how should be p1 and k1?

Our next theorem provides us with the answer.

Theorem 8. Let θ be a rational given by θ =
p
q and the θ-expansion of 1

θ
is given

by 1
θ

= n1θ+ 1
n2θ

with n1 and n2 are positive integers satisfying (n2− 1, n1n2) = 1.
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Also, let p2 + 1 = pk11 where p1 is prime and k1 > 1. Then the following conditions
are satisfied:

(i) k1 must be odd, say, k1 = 2k∗1 + 1,

(ii) p1 is different from 2,

(iii) p must be even, i.e., p = 2p∗ for some positive integer p∗,

(iv) If p1 = 2p∗1 + 1, then p∗1 must be even, i.e., there exists a positive integer p∗∗1
such that p∗1 = 2p∗∗1 .

Proof. (i) If k1 is even, say, k1 = 2k∗1, then p2 + 1 = p
2k∗1
1 which implies two squared

numbers p2 and (p
k∗1
1 )2 differ only by 1. This is not possible. So, k1 must be odd,

say, k1 = 2k∗1 + 1 for some positive integer k∗1.

(ii) If p is even, it is clear that p1 can not be 2. But if p is odd, say, p = 2p∗ + 1
then p1 = 2 so that p2 + 1 = 22k

∗
1+1 . This implies 4p∗

2
+ 4p∗ + 2 = 22k

∗
1+1 ⇒

2p∗2 + 2p∗ + 1 = 22k
∗
1 which is not possible. So, p1 can not be 2 and p has to be even

so that p1 is odd. Therefore, p1 = 2p∗1 + 1 for some positive integer p∗1.

(iii) From (ii), p is already even. Hence, p = 2p∗ for some positive integer p∗.

(iv) From (i), (ii) and (iii), we have,

p2 + 1 = 4p∗2 + 1 = (2p∗1 + 1)2k
∗
1+1

=

2k∗1+1∑
j=0

(
2k∗1 + 1

j

)
(2p∗1)

j =

2k∗1+1∑
j=2

(
2k∗1 + 1

j

)
(2p∗1)

j + 2p∗1 + 1

Now each term in
∑2k∗1+1

j=2

(
2k∗1 + 1

j

)
(2p∗1)

j is divisible by 4 and hence 2p∗1 is

divisible by 4 which means p∗1 is even. So, p1 = 4p∗1 + 1. This completes the
proof.

We now investigate the various combinations of p, q, n1, and n2 that appear in

the θ-expansion of
1

θ
.

For example, if p is even, p2 is even and p2 + 1 is odd. So, n2 (which is same as
p2 +1) is odd. Now since p is even, q has to be odd and so, n1 (which divides q2) has

to be odd too. For p even, we can think of the example θ = 18
65 where n2 = 325 is

odd and n1 = 13 is also odd. One can observe that (n2−1, n1n2) = (324, 4225) = 1.

On the other hand, if p is odd, p2 is odd and p2 + 1 is even. So, n2 (which is
same as p2 + 1) is even and hence q2 (which is divisible by n2) is even implying q
even. So, n1 (which divides q2) can be odd or even. For p odd, consider once again

the example θ = 7
10 so that n2 = 50 is even and n1 = 2 is also even. In this case,

(n2 − 1, n1n2) = (49, 100) = 1.

Case 2: m > 1
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In this case, we have, n2 = mp2 + 1 which should divide q2. Going by the
arguments in the previous case, we can state the following Theorem 9 which is
analogous to Theorem 7.

Theorem 9. Let θ be a rational and the θ-expansion of 1
θ

is given by 1
θ

= n1θ+ 1
n2θ

with n1 and n2 are positive integers satisfying (n2 − 1, n1n2) = m > 1. Then,
n2 = mp2 + 1 is neither a prime nor a product of distinct primes.

The proof of Theorem 9 is exactly similar to that of Theorem 7. Therefore, n2
is of the form pk11 · · · p

kl
l where p1, · · · , pl are distinct primes and at least one of

k1, · · · , kl is bigger than 1.
One can pose a similar question as to whether l could be 1 or not and try to

formulate a theorem as Theorem 8. In other words, is it possible to get a prime p1
and a positive integer k1 so that mp2 + 1 = pk11 ? The answer is yes.

A subsequent question is: Is k1 necessarily odd (like Theorem 8)? The answer is
no. Look at the following example:

Example 10. m = 3, p = 4, p1 = 7, k1 = 2. Then, mp2 + 1 = 49 = pk11 . In this

example, choose q = 7. Then, n1 = 3, n2 = 49 so that θ = 4
7 .

We may also ask: Is p1 necessarily different from 2 (like Theorem 8)? The answer
is no again:

Example 11. Choose m = 7, p = 3. Then, mp2 + 1 = 64 so that p1 = 2, k1 = 6.
In this case, choose q = 8 so that n1 = 7, n2 = 64 so that θ = 3

8 .

Another question is: Is p necessarily even? The answer is no again because of
the above example, i.e., Example 11 where p = 3.

Finally, if p1 is odd, is it of the form 4p∗1 + 1 for some positive integer p∗1 (like
Theorem 8)? The answer is, once again, no; this is because of the Example 10 above.
In this example, p1 = 7 which is of the form 4p∗1 + 3 for p∗1 = 1. So, an analogous
theorem as Theorem 8 does not hold good when m > 1.

In the following section, we investigate various possibilities as to how to get
different rationals θ so that 1

θ
= n1θ + 1

n2θ
when r = 1. For r > 1, we do not have

any concrete result and we only mention some examples in the concluding section.

5 Generating rational θs for r = 1

Throughout this section, we assume r = 1 where q2 = n2r (r is the quotient when
n2 divides q2). Then we first assume the following:

(?) If p is even, say, p = 2p∗, then p∗ equals 1 or p∗ is a prime or a power of a
prime. And if p is odd, then p is a prime or a power of a prime.

Then consider the following theorem:
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Rational θs for terminating θ-expansions 69

Theorem 12. Assume (?). Then
(i) Assume p to be even. Then obviously q is odd and for every positive integer

i, q = 2p∗2i± 1 so that θ =
p

2p∗2i± 1
.

(ii) Assume p to be odd and q to be even. Then for all odd positive integers i,
q = p2i± 1 so that θ =

p
p2i± 1

.

(iii) Assume p to be odd and q to be odd too. Then for every positive integer i,
q = 2p2i± 1 and θ =

p
2p2i± 1

.

Proof. For (i), since p is even, p = 2p∗ and since q is odd, q = 2j + 1 for some
positive integer j. Then q2 has to be odd. Therefore, n2 = mp2 + 1 is odd. Since
r = 1, we have, q2 = n2 = mp2 + 1, so that

(2j + 1)2 = 4mp∗2 + 1⇒ 4j2 + 4j + 1 = 4mp∗2 + 1⇒ mp∗2 = j(j + 1) (5.1)

Since we assume p∗ to be a prime or power of a prime, therefore, p∗2 divides
either j or j + 1. So, j is either p∗2i or p∗2i− 1 for any positive integer i and hence,
m should be of the form i(p∗2i ± 1) and q should be of the form 2p∗2i ± 1. So,
n2 = (2p∗2i ± 1)2. Also, since n1n2 = mq2 = mn2, we have, n1 = m = i(p∗2i ± 1).
So, for each positive integer i, θ =

p
2p∗2i± 1

is a possible value.

For (ii), let q = 2j for some positive integer j. Then, n2 = mp2 + 1 is even and
so m is odd. Now since r = 1, we have,

q2 = n2 = mp2 + 1⇒ 4j2 = mp2 + 1⇒ mp2 = (2j − 1)(2j + 1) (5.2)

Now, since p is a prime or a power of a prime, p2 divides either 2j − 1 or 2j + 1.

Therefore, p2i = 2j − 1 or p2i = 2j + 1, i.e., j =
p2i± 1

2 for odd integers i. This

implies, m = i(p2i± 2) for odd integers i. Since r is 1, n1 is same as m and hence it
is odd and n2 = p2i(p2i± 2) + 1 = (p2i± 1)2 for odd positive integers i. As a result,
q = p2i± 1 and θ =

p
p2i± 1

for odd positive integers i.

For (iii) let q = 2j + 1 for some positive integer j. In this case, since r = 1, we
have,

q2 = n2 = mp2 + 1⇒ 4j2 + 4j + 1 = mp2 + 1⇒ mp2 = 4j(j + 1) (5.3)

Since p is a prime or a power of a prime, p2 divides either j or j+ 1. Hence, j = p2i
or p2i− 1 so that m = 4i(p2i± 1), q = 2p2i± 1 and θ =

p
2p2i± 1

for every positive

integer i. Since r is 1, so n1 is same as m and hence it is even.

For part (i), consider the following examples:
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Example 13. If p∗ = 1 (i.e. p = 2), then m = j(j + 1) for every positive integer

j and hence, for every j, θ = 2
2j + 1 has its θ-expansion terminating at stage 2. If

p∗ = 2 or p∗ = 3, then for every i, θ = 4
8i± 1 or θ = 6

12i± 1 are possible values.

Example 14. In Example 13, p∗ = 1 and n1 = m is even. In general, if p∗ is odd
and i is also odd, then m is even: consider i = 1, p∗ = 3, m = 10, θ = 6

19 . In this
case, n1 = 10 and n2 = 361.

Example 15. On the other hand, if p∗ is even and i is odd, then m is odd: consider
i = 1, p∗ = 4, m = 15, θ = 8

31 . In this case, n1 = 15 and n2 = 961.

For part (ii), consider the following example:

Example 16. For p prime or power of a prime and q even, some examples are:
p = 7, m = i(49i ± 2), θ = 7

49i± 1; p = 9, m = i(81i ± 2), θ = 9
81i± 1 etc. where

the i-s are odd so that m is odd and q is even.

For part (iii), consider the following examples:

Example 17. For p prime and q odd, some examples are: p = 3, m = 4i(9i±1), θ =
3

18i± 1; p = 5, m = 4i(25i ± 1), θ = 5
50i± 1; p = 7, m = 4i(49i ± 1), θ = 7

98i± 1
etc. where the i-s are odd so that m is odd and q is also odd.

Now we remove assumption (?). Then if p is even, p∗ is neither a prime nor
a power of a prime. Let p∗ = pl11 ...p

ls
s be the prime factorization of p∗. Then, we

don’t know which pi divides j and which pi divides j + 1. But from equation (5.1),

it is clear that if for some i1 and i2, pi1 divides j, p
li1
i1

also divides j and if pi2

divides j + 1, p
li2
i2

also divides j + 1. On the other hand, if p is odd, p is neither a

prime nor a power of a prime. Then let p = pl11 · · · plss . So, if q is even, from (5.2),
mp2 = (2j−1)(2j+ 1), it is clear that for a certain pair (i1, i2), if pi1 divides 2j−1,

p
li1
i1

should also divide 2j − 1 and if pi2 divides 2j + 1, p
li2
i2

should also divide 2j + 1.
And if q is odd, from (5.3), mp2 = 4j(j + 1) and it is clear that for a certain pair

(i1, i2), if pi1 divides j, then p
li1
i1

should also divide j and if pi2 divides j + 1, then

p
li2
i2

should also divide j + 1. With all these understanding, we can prove a more
general theorem:

Theorem 18. Let us remove assumption (?). Then
(i) If p is even and equals 2p∗, p∗ is neither a prime nor a power of a prime.

Let p∗ = p∗1p
∗
2 where p∗1 = pl11 · · · plss divides j and p∗2 = p

ls+1

s+1 · · · p
ls+t

s+t divides j + 1.

Then, there exists a pair (i1, i2) so that j is of the form (pl11 · · · plss )2i1 and j+1 is of

the form (p
ls+1

s+1 · · · p
ls+t

s+t )
2i2 so that (pl11 · · · plss )2i1 +1 = (p

ls+1

s+1 · · · p
ls+t

s+t )
2i2. For such a

pair (i1, i2), we have, q =
√

4p2l11 · · · p
2ls
s p

2ls+1

s+1 · · · p
2ls+t

s+t i1i2 + 1 . So, θ is of the form
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θ =
p√√√√4

s+t∏
i=1

p2lii i1i2 + 1

. Also, if (i1, i2) is a pair, then (i1+
∏s+t
i=1 p

2li
i , i2+

∏s+t
i=1 p

2li
i )

is also a pair that gives rise to another q and another θ.
(ii) p is odd and p is neither a prime nor a power of a prime. Since q is even, let

p = p∗1p
∗
2 where p∗1 = pl11 · · · plss divides 2j − 1 and p∗2 = p

ls+1

s+1 · · · p
ls+t

s+t divides 2j + 1.

Then, there exists a pair (i1, i2) so that 2j − 1 is of the form (pl11 · · · plss )2i1 and

2j+ 1 is of the form (p
ls+1

s+1 · · · p
ls+t

s+t )
2i2 so that (pl11 · · · plss )2i1 + 2 = (p

ls+1

s+1 · · · p
ls+t

s+t )
2i2.

For such a pair (i1, i2), we have, q =
√∏s+t

i=1 p
2li
i i1i2 + 1 = (pl11 · · · plss )2i1 + 1 =

(p
ls+1

s+1 · · · p
ls+t

s+t )
2i2−1 . So, θ is of the form θ =

p√√√√s+t∏
i=1

p2lii i1i2 + 1

. Also, if (i1, i2) is

a pair, then (i1 +
∏s+t
i=1 p

2li
i , i2 +

∏s+t
i=1 p

2li
i ) is also a pair that gives rise to another

q and another θ.
(iii) p is odd and p is neither a prime nor a power of a prime. Since q is odd,

let p = p∗1p
∗
2 where p∗1 = pl11 · · · plss divides j and p∗2 = p

ls+1

s+1 · · · p
ls+t

s+t divides j + 1.

Then, there exists a pair (i1, i2) so that j is of the form (pl11 · · · plss )2i1 and j + 1

is of the form (p
ls+1

s+1 · · · p
ls+t

s+t )
2i2 so that (pl11 · · · plss )2i1 + 1 = (p

ls+1

s+1 · · · p
ls+t

s+t )
2i2. For

such a pair (i1, i2), we have, q =
√

4
∏s+t
i=1 p

2li
i i1i2 + 1 = 2(pl11 · · · plss )2i1 + 1 =

2(p
ls+1

s+1 · · · p
ls+t

s+t )
2i2−1 . So, θ is of the form θ =

p√√√√4

s+t∏
i=1

p2lii i1i2 + 1

. Also, if (i1, i2)

is a pair, then (i1 +
∏s+t
i=1 p

2li
i , i2 +

∏s+t
i=1 p

2li
i ) is also a pair that gives rise to another

q and another θ.

We also mention a simpler version of theorem 6 for understanding the subsequent
examples:

Theorem 19. Let us remove assumption (?).
(i) If p is even, assume p∗ = p1p2 where p1 and p2 are distinct primes. If p1p2

divides j or j + 1, the conclusion is exactly like theorem 5(i). If p1 divides j and
p2 divides j + 1, then there exists a pair (i1, i2) so that j is of the form p21i1 and
j+ 1 is of the form p22i2 so that p21i1 + 1 = p22i2. For such a pair (i1, i2), using (5.1),
we have, m = i1i2 so that q =

√
mp2 + 1 =

√
4p21p

2
2i1i2 + 1. So, θ is of the form

p√
4p21p

2
2i1i2 + 1

. If 2j + 1 is a possible value of q, then 2(j + p21p
2
2) + 1 is also a

possible value of q.
(ii) If p is odd, assume p = p1p2 where p1 and p2 are distinct primes. Let q = 2j

be even. If p1p2 divides 2j − 1 or p1p2 divides 2j + 1, the conclusion is exactly like
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theorem 5(ii). If p1 divides 2j − 1 and p2 divides 2j + 1, then there exists a pair
(i1, i2) so that 2j − 1 is of the form p21i1 and 2j + 1 is of the form p22i2 so that
p21i1 +2 = p22i2 where i1 and i2 are odd. For such a pair (i1, i2), from (5.2), we have,
m = i1i2 so that q =

√
mp2 + 1 =

√
p21p

2
2i1i2 + 1 = p21i1 + 1 = p22i2 − 1. So, θ is of

the form
p√

p21p
2
2i1i2 + 1

=
p

p21i1 + 1
=

p
p22i2 − 1

. If 2j is a possible value of q, then

2(j + p21p
2
2) is also a possible value of q.

(iii) If p is odd, assume p = p1p2 where p1 and p2 are distinct primes. Let
q = 2j + 1 be odd. If p1p2 divides j or j + 1, the conclusion is exactly like theorem
5(iii). If p1 divides j and p2 divides j + 1, then there exists a pair (i1, i2) so that
j is of the form p21i1 and j + 1 is of the form p22i2 so that p21i1 + 1 = p22i2 where
i1 and i2 are odd. For such a pair (i1, i2), from (5.3), we have, m = 4i1i2 so that
q =

√
mp2 + 1 =

√
4p21p

2
2i1i2 + 1 = 2p21i1 + 1 = 2p22i2 − 1. So, θ is of the form

p√
4p21p

2
2i1i2 + 1

=
p

2p21i1 + 1
=

p
2p22i2 − 1

. If 2j + 1 is a possible value of q, then

2(j + p21p
2
2) + 1 is also a possible value of q.

We consider the following examples to understand Theorem 19:

Example 20. For part (i) of Theorem 19, suppose p∗ = 6. Then, p∗ has two
distinct prime factors, namely, 2 and 3. Now, from (5.1), we already have mp∗2 =
36m = j(j + 1). In case 36 divides j or 36 divides j + 1, it is like Theorem 12
(i). So, we assume the following: either 4 divides j and 9 divides j + 1 or 9 divides
j and 4 divides j + 1 or 36 divides j. If 4 divides j and 9 divides j + 1, then
there exist i1 and i2 so that 4i1 + 1 = 9i2. One has to choose possible pairs of
(i1, i2). The first possible pair is (2, 1) so that j = 8, j + 1 = 9 and j(j + 1)

equals 72. Therefore, m = i1i2 = 2, q = 17 and θ = 12
17 . One can observe that,

one can obtain subsequent pairs of (j, j + 1) by simply adding multiples of 36 to
(8, 9): (44, 45), (80, 81), (116, 117), (152, 153) etc. In these cases, corresponding θs

and ms are given by m = 180, θ = 12
161; m = 377, θ = 12

233; m = 646, θ = 12
305

etc. Similarly, if 9 divides j and 4 divides j + 1, we need pairs (i1, i2) so that
9i1 + 1 = 4i2. The first possible pair of (i1, i2) is (3, 7) which gives rise to the

first possible pair of (j, j + 1) to be (27, 28). In this case, θ = 12
55 and m = 21.

The subsequent pairs of (j, j + 1) are obtained by adding 36 to both the coordinates,
namely, (63, 64), (99, 100), (135, 136) etc. The corresponding values of θ and m are

as follows: m = 112, θ = 12
127; m = 275, θ = 12

199; m = 510, θ = 12
271 , m = 510 etc.

We can consider many such examples where p∗ is just the product of two distinct
primes, like, p∗ = 10, 14, 15 etc. In these cases, once we get the first pairs of
(j, j + 1), the subsequent ones are obtained by adding 100, 196, 225 etc. respectively
to each of the co-ordinates of the previous pair. In general, if p∗ = p1p2 where p1
and p2 are two distinct primes, then after obtaining the first pair, the subsequent
pairs are obtained by adding p∗2 to each of the co-ordinates of the previous pair and
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so on.

Example 21. For part (ii) of Theorem 19, let p = 15. Then, from mp2 = (2j −
1)(2j+ 1), either 225 divides 2j− 1 or 225 divides 2j+ 1 or 9 divides 2j− 1 and 25
divides 2j + 1 or 25 divides 2j − 1 and 9 divides 2j + 1. The case with 225 dividing
2j − 1 or 2j + 1 is similar to the case when p is a prime or a power of a prime. So,
we concentrate on the last two cases. Then, an example of such a pair (2j−1, 2j+1)

is (25, 27) where 25 divides 2j − 1 and 9 divides 2j + 1 is: m = 3, θ = 15
26 . Then it

is clear that n2 = 676, n1 = 3. Subsequent pairs of (2j − 1, 2j + 1) are obtained by
adding multiples of 450 to both coordinates. So, the next pair is (475, 477). On the
other hand, if we desire to have a pair where 9 divides 2j − 1 and 25 divides 2j + 1,
then such a pair for (2j − 1, 2j + 1) is (423, 425). In this case, m = 799, θ = 15

424
etc. The next subsequent pair of (2j − 1, 2j + 1) by adding 450 to both coordinates
is (873, 875).

Example 22. For part (iii) of Theorem 19, let p = 15. Then, from mp2 = 4j(j+1),
either 225 divides j or 225 divides j + 1 or 9 divides j and 25 divides j + 1 or 25
divides j and 9 divides j + 1. The case with 225 dividing j or j + 1 is similar to the
case when p is a prime or a power of a prime. So, we concentrate on the last two
cases. Then, an example of such a pair (j, j + 1) is (99, 100) where 9 divides j and

25 divides j + 1 is: m = 176, θ = 15
199 . Then it is clear that n2 = 39601, n1 = 176.

Another example of such a pair (j, j + 1) is (125, 126) where 25 divides j and 9

divides j + 1 is: m = 280, θ = 15
251 . In this case, n2 = 63001, n1 = 280. Subsequent

pairs are obtained by adding 450 to both coordiantes of (j, j + 1) in both these cases.

However, the situation is not so simple as Theorem 19 as Theorem 18 suggests.
So, we can write down more examples to illustrate Theorem 18:

Example 23. For part (i) of Theorem 18, let p = 144 so that p∗ = 72 = 23 ·32 = 8·9.
We need a q = 2j + 1 so that 81 divides j and 64 divides j + 1. Choose j = 1215.
Then 81 divides 1215 and 64 divides 1216. In this case, the pair is (i1, i2) = (15, 19).
So, m = 285 and q equals q = 2 · 1215 + 1 = 2431 =

√
4 · 82 · 92 · 15 · 19 + 1. Then

θ equals θ = 144
2431 . Next we need a q = 2j + 1 so that 64 divides j and 81 divides

j + 1. Choose j = 3968. Then, 64 divides 3968 and 81 divides 3969. In this case,
the pair is (62, 49). So, m = 3038 and q = 2 · 3968 + 1 = 7937. Therefore, θ equals

θ = 144
7937 .

Example 24. For part (ii) of Theorem 18, let p = 45 = 32 · 5 = 9 · 5. Then 92 = 81
divides 2j−1 and 52 = 25 divides 2j+1. Then in order to find a q, we have to find a
pair (i1, i2) so that 2j−1 = 81i1 and 2j+1 = 25i2. Such a pair is (i1, i2) = (33, 107)
so that 2j − 1 = 2673 and 2j + 1 = 2675. For such a pair, we have, q = 2j = 2674
and θ = 45

2674 . Similarly, we can find a q so that 25 divides 2j − 1 and 81 divides
2j+ 1. We have the pair (i1, i2) = (55, 17) so that 2j− 1 = 1375 and 2j+ 1 = 1377.

For this pair, q = 2j = 1376 and θ = 45
1376 .
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Example 25. For part (iii) of Theorem 18, consider once again p = 45 = 32·5 = 9·5.
So, we first find a q so that 92 = 81 divides j and 52 = 25 divides j+1. Then, for the
pair (i1, i2) = (4, 13), we have, j = 324 and j+1 = 325 so that m = 208, q = 649 and

θ = 45
649 . Next, we find a q so that 25 divides j and 81 divides j+ 1. Then, the pair

(68, 21) is our key. It gives us j = 1700 and j+1 = 1701 so that m = 5712, q = 3401

and θ = 45
3401 .

6 Concluding Remarks

Remark 26. It would be interesting to see whether there is an example for p2 + 1 =
pk11 in section 4. Of course, one has to have the conditions that k1 is odd, p is even,
and p1 is of the form 4p∗∗1 + 1 for some positive integer p∗∗1 .

Remark 27. In the previous section, we had the assumption r = 1 and we came up
with formulas as to how to generate all possible such rational θs. But when r > 1,
the situation is not easily understandable. Suppose we start with some ’meaningful’
m and p. Then, from (mp2 + 1)r = q2, one understands that r < mp2 + 1 as
otherwise, we get n1 ≥ n2 which is not possible. Also, we observe that either both
mp2 + 1 and r are perfect squares, say, mp2 + 1 = m2

1 and r = m2
2 with the obvious

understanding that m1 > m2 so that q = m1m2 and θ =
p

m1m2
or r is a factor of

mp2 + 1 with mp2 + 1 containing a perfect square and of the form mp2 + 1 = m2
3m4

where m3 > 1 and m2
3 > m4 and m4 - a prime or a product of distinct primes

in which case r = m4 so that q = m3m4 and θ =
p

m3m4
. But the question that

always remains is the following: how to choose p and m? Below, we make some
observations in all three of our cases, namely, (i) p even, q odd, (ii) p odd, q even
and (iii) p odd, q odd:

(i) For p = 2p∗ even, we have, q2 = (mp2 + 1)r = (4mp∗2 + 1)r ⇒ 4j2 + 4j+ 1 =
4mp∗2r + r. Then, r − 1 should be divisible by 4. Let r = 4r∗ + 1 for some positive
integer r∗. Then, we have, q2 = 4j2 + 4j + 1 = 16mp∗2r∗ + 4mp∗2 + 4r∗ + 1. This
implies, j(j + 1) = 4mp∗2r∗ +mp∗2 + r∗ etc.

(ii) For p odd and q even, n2 is even and both n1 and m are odd. Then, from
(mp2 + 1)r = q2 = (2j)2 = 4j2. If r is odd, mp2 + 1 is divisible by 4. It can be
seen that under the given assumptions on m and p (both odd), m should be of the
form 4m∗ − 1 and p should be of the form 2p∗ + 1. But if r is even, then, if m
is even (odd), n2 is odd (even) and n1 is always even irrespective of m being even
or odd. (a) First we consider m to be even. Then, in (mp2 + 1)r = q2 = 4j2, m
is of the form 2m∗ and p = 2p∗ + 1. (b) Then we consider m to be odd. So, if
(mp2 + 1)r = q2 = 4j2, m is of the form 2m∗ + 1 and p = 2p∗ + 1.

(iii) For p odd and q odd, r is also odd. As a result, n2 (a factor of q2) is odd
and so m is even (since n2 = mp2 + 1) and hence, n1 = mr is even. Then, from
(mp2 + 1)r = 4j2 + 4j + 1 where m is of the form m = 2m∗and p = 2p∗ + 1.
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So, we do not have any concrete result and we mention only some examples to
understand Remark 27:

Example 28. For (i), we choose r∗ = 1 so that r = 5 and j(j + 1) = 5mp∗2 + 1.

One possible value of (j, j + 1) = (42, 43). In this case, p∗ = 19, m = 1 and θ = 38
85 .

Choosing r∗ = 2, we have, r = 9 and j(j + 1) = 9mp∗2 + 2. In this case, we can get

a pair, (j, j + 1) = (13, 14) so that θ = 4
27 and m = 5 or say, (j, j + 1) = (22, 23) so

that θ = 4
45 and m = 14. Another example with m odd is: m = 15, θ = 8

93 where

q2 = 961r where r = 9 = 4.2 + 1 so that r∗ = 2. So, n1 = 135 and n2 = 961 here.

Example 29. For (ii), first we consider even q and odd r. Take m = 3, p∗ = 2, p =
5 so that n2 = mp2 + 1 = 76 and q2 = n2r = 76r = 4j2 which implies 19r = j2. If
we choose r = 19, then n1 = 3r = 57, q = 38 and θ = 5

38 . Here r = 19 is odd and
n2 = 76 is even.

Example 30. For (ii), next we consider even q, even r and even m. Take m =
2, p∗ = 3, p = 7 so that n2 = mp2 + 1 = 99 and q2 = n2r = 99r = 4j2. If we choose
r = 44, it is even and n1 = 2r = 88, q = 66, n2 = 99 and θ = 7

66 .

Example 31. For (ii), finally we consider even q, even r and odd m. Take m =
3, p∗ = 7, p = 15 so that n2 = mp2 + 1 = 676 and q2 = n2r = 676r1 = 4j2 ⇒
169r = j2. If we choose r = 4 is even, n2 = 676 is even and n1 = 12 is also even.
So, q = 52 and θ = 15

52 .

Example 32. For (iii), choose m = 2, p∗ = 3, p = 7 so that n2 = mp2 +1 = 99 and
q2 = (mp2 + 1)r = 99r = (2j + 1)2. If we choose r = 11 is odd, then n1 = 2r = 22

and n2 = 99 is odd. So, q = 33 and θ = 7
33 .

Remark 33. Even though the results are interesting from number theoretic point of
view, the author believes that these results might help in further analysis related to
continued fraction expansions and ergodic theory.

Remark 34. Although we studied only the situation when θ-expansion of
1

θ
terminates

at stage two, it will be interesting to look into the cases with 1
θ

having terminating θ-
expansion that terminates at stages higher than 2. Some examples of such non-trivial
rational θs with θ =

p
q are as follows:

(a) p even, q odd: consider θ = 4
11 . Then, one can show that

1

θ
= [7θ; 13θ, 17θ, 484θ]

(b) p odd, q even: consider θ = 5
6 . Then, one can show that

1

θ
= [θ; 3θ, 5θ, 5θ, 10θ, 18θ]
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(c) p odd, q odd: consider θ = 3
7 . Then, one can show that

1

θ
= [5θ; 12θ, 21θ, 7θ]
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