ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 8 (2013), 137 – 144

THE NECESSARY AND SUFFICIENT CONDITIONS OF THE SHEAF OPTIMIZATION PROBLEM

Phan Van Tri

Abstract. The purpose of this paper is to introdue the sheaf optimization problem (SOP) and find the necessary and sufficient conditionss of SOP.

1 Introduction

In this paper, we will present the sheaf optimization problem (SOP) and find the necessary and sufficient conditions of SOP in \mathbb{R}^n .

Most of the results about properties and comparison of the sheaf solutions can be found in ([1]-[4]). The problems of sheaf differential equation are still open.

2 Preliminaries

In *n*-dimension Euclidian space \mathbb{R}^n , we have considered the control systems (CS):

$$\frac{dx(t)}{dt} = f(t, x(t), u(t))$$
(2.1)

where $x : [0,T] \to \mathbb{R}^n$, $f : [0,T] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$. A solution to (2.1) is $x(t) = x(t,t_0,x_0,u)$ which as:

$$x(t) = x_0 + \int_{t_0}^t f(s, x(s), u(s)) ds$$
(2.2)

 $x_0 \in H_0 \subset \mathbb{R}^n, u(t) \in U$ admissible controls, U is the unbounded and closed set in $\mathbb{R}^n, t \in [0, T] \subset \mathbb{R}^+$.

²⁰¹⁰ Mathematics Subject Classification: 49K15; 93C15. Keywords: Sheaf solutions; Sheaf Control; Sheaf Optimization.

Definition 1. A state pair (x_0, x_1) of solutions of control systems (2.1) will be a controllable if after time t_1 we shall find a control $u(t) \in U$ such that:

$$x(t_1) = x(t_0, x_0, t_1, u(t_1)) = x_1$$
(2.3)

Definition 2. A control system (2.1) is said to be:

- (GC) global controllable if every state pair of set solution $(x_0, x_1) \in \mathbb{R}^n$.
- (GA) global achievable if for every $x_1 \in \mathbb{R}^n$ we have a state pair of solution $(0, x_1)$ that is GC.
- (GAZ) global achievable to zero if for every $x_1 \in \mathbb{R}^n$ we have a state pair $(x_1, 0) \in \mathbb{R}^n$ that will be controlable.

In [2] the authors have study the comparison problems of sheaf solutions for set control differential equations (SCDEs).

In [4] the author has study the problems (GC), (GA) and (GAZ) for set control differential equations (SCDEs).

In [6] the authors have study the same problems (GC), (GA) and (GAZ) for fuzzy set control differential equations (FSCDEs).

Definition 3. The sheaf solution (or sheaf trajectory) H_t is denoted by a number of solutions that make into sheaves (lung one on top of the other and often tied toghether):

$$H_{t,u} = \{x(t) = x(t_0, x_0, t, u(t)) \mid x_0 \in H_0, t \in [t_0, T], u(t) \in U\}.$$
(2.4)

Assume that at time $t \in [t_0, T]$, u(0) = 0, $x(0) = x_0$ for two admissible controls u(t), $\overline{u}(t) \in U$ we have two form of sheaf solutions:

$$H_{t,u} = \{x(t) = x(t_0, x_0, t, u(t)) \mid x_0 \in H_0, t \in [t_0, T], u(t) \in U\}$$

$$H_{t,\overline{u}} = \{\overline{x}(t) = x(t_0, x_0, t, \overline{u}(t)) | x_0 \in H_0, t \in [t_0, T], \overline{u}(t) \in U\}$$

$$(2.5)$$

where $x(t) = x(t, x_0, t, u(t))$ - solution of CS (2.1) (see Fig.1)

Definition 4. The Hausdorff distance between set $H_{t,u}$ and $H_{t,\overline{u}}$ is denoted by:

$$d_H(H_{t,u}, H_{t,\overline{u}}) = \max\left\{\sup_{x(t)\in H_{t,u}} d(x(t), H_{t,\overline{u}}), \sup_{\overline{x}(t)\in H_{t,\overline{u}}} d(\overline{x}(t), H_{t,u})\right\}.$$

Figure 1: The sheaf solutions of control systems (2.1) in two admissible controls u(t)and $\bar{u}(t) = u(t) + \Delta u$.

Definition 5. The pair of sheaf solutions H_0 , $H_1 \subset \mathbb{R}^n$ will be controllable if after time t_1 we shall find a control $u(t) \in U$ and one map $\sigma : \mathbb{R}^n \times \mathbb{R} \longrightarrow \mathbb{R}^n$ such that:

$$\sigma(H_0, u(t_1)) = H_1 \tag{2.6}$$

Theorem 6. (See [5]) If every state pair (x_0, x_1) belongs to solutions of CS (2.1) then the sheaf solution of CS (2.1) is controllable.

Definition 7. The control system (2.1) is said to be:

or

- (SC1) sheaf controllable in type 1, if for any set $H_1 \subset \mathbb{R}^n$ such that the pair of sheaf solutions H_0, H_1 is controllable.
- (SC2) sheaf controllable in type 2, if for all $\epsilon > 0$, there exists $\delta(\epsilon) > 0$ such that $x_0 \in H_0, \ \overline{x}_0 \in \overline{H}_0$ with $d_H(H_0, \overline{H}_0) < \delta$ then

$$d_H(H_{t,u}, \overline{H}_{t,u}) < \epsilon. \tag{2.7}$$

(SC3) sheaf controllable in type 3, if for all $\epsilon > 0$, there exists $\delta(\epsilon) > 0$ such that $x_0 \in H_0, \ \overline{x}_0 \in \overline{H}_0$ with $d_H(H_0, \overline{H}_0) < \delta$ then

$$d_H(H_{t,u}, \overline{H}_{t,\overline{u}}) < \epsilon$$

$$d_H(H_{t,\overline{u}}, \overline{H}_{t,u}) < \epsilon.$$
(2.8)

Lemma 8. (See [2]) If control system (2.1) with $||f(t, x(t), u(t))|| \leq c(t, ||x(t)||)$ for all $\epsilon > 0$, there exists $\delta(\epsilon) > 0$ such that: $d(x(t_1), x(t_2)) < \delta$ then

$$d_H(H_{t_1,u(t_1)}, H_{t_2,u(t_2)}) < \epsilon$$
(2.9)

http://www.utgjiu.ro/math/sma

Theorem 9. (See [5]) Assume that f(t, x(t), u(t)) in CS (2.1) satisfy:

$$\|f(t,\overline{x}(t),\overline{u}(t)) - f(t,x(t),u(t))\| \leq L\left(1 + \|\overline{x}(t) - x(t)\| + \|\overline{u}(t) - u(t)\|\right) \quad (2.10)$$

then the control systems CS(2.1) is sheaf-controllable in type 1 (SC1).

Corollary 10. If CS (2.1) is SC1, the right hand side f(t, x(t), u(t)) satisfies condition of Lemma (10) then for all $\epsilon > 0$ there exists $t_1 \in I$ such that:

$$|t_1 - t_0| < \delta, d_H(H_0, H_1) < \epsilon$$

Theorem 11. (See [5]) Assume that $x_0 \in H_0$, $\overline{x}_0 \in \overline{H}_0$ for all $\epsilon > 0$, there exists $\delta(\epsilon) > 0$ such that: $d_H(H_0, \overline{H}_0) < \delta$ then

$$d_H(H_{t,u},\overline{H}_{t,u}) < \epsilon$$

that means CS(2.1) is sheaf controllable in type 2 (CS2).

Theorem 12. (See [5]) Assume that for all $\epsilon > 0, \exists \delta(\epsilon) > 0$ we have:

- (i) $u(t), \overline{u}(t) \in U, \|\Delta u\| < \delta$
- (*ii*) $H_0, \overline{H}_0 \in Q : d_H(H_0, \overline{H}_0) < \delta$
- (iii) $H_{t,u(t)}, \overline{H}_{t,\overline{u}(t)}$ sheaf solutions CS (2.1) is SC1 and SC2 then control system CS (2.1) is sheaf controllable in type 3 (SC3).

Theorem 13. (See [5]) Assume that for CS (2.1) a right hand side $f \in C(I \times \mathbb{R}^n \times \mathbb{R}^d, \mathbb{R}^n)$ satisfies:

$$\|f(t,\overline{x}(t),\overline{u}(t)) - f(t,x(t),u(t))\| \leq c(t) \left[\|\Delta x\| + \|\Delta u\|\right]$$

$$(2.11)$$

where c(t) infinite integrable on I = [0,T]. We have for all $\epsilon > 0$, there exists $\delta(\epsilon) > 0$:

- (a) If $u(t), \overline{u}(t) \in U : ||\Delta u|| < \delta$ then CS (2.1) is SC1.
- (b) If $x_0 \in H_0, \overline{x}_0 \in \overline{H}_0$ with $d_H(H_0, \overline{H}_0) < \delta$ then CS (2.1) is SC2.
- (c) The control system (2.1) with (2.11) and (a), (b) is SC3.

3 The necessary and sufficient conditions of the sheaf optimization problem

Let's consider again the control systems (CS):

$$\frac{dx(t)}{dt} = f(t, x(t), u(t)),$$
(3.1)

 $x(0) = x_0 \in H_0$, where $t \in J = [0,T] \subset \mathbb{R}^+$, $x(t) \in Q$, Q is the open set in $\subset \mathbb{R}^n$, $u(t) \in U \subset \mathbb{R}^n$ - admissible controls. Assume that for CS (3.1) there exist solution $x(t) = x(t, t_0, x_0, u)$ and sheaf solution $H_{t,u}$.

Definition 14. We say that for control system (3.1) is given: SOP - the Sheaf Optimization Problem, if it denotes:

$$\begin{cases} I(u) = \int_{0}^{T} \int_{H_{t,u}} \varphi(t, x(t), u(t)) dx dt + h(x(T)) \to \min \\ \frac{dx(t)}{dt} = f(t, x(t), u(t)) \\ H_{t,u} = \{x(t_0, x_0, t, u(t)) | x_0 \in H_0, u \in U, t \in [t_0, T] \subset \mathbb{R}^+\}, \end{cases}$$
(3.2)

where $h: \mathbb{R}^n \to \mathbb{R}, \varphi: J \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ are integrable continuous functions.

We consider the Hamilton - Jacobi - Bellman's (HJB) partial differential equation:

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f(t, x, u) + V(t, x) \div f(t, x, u) + \varphi(t, x, u) = 0$$
(3.3)

with bundary condition $\int_{H_{T,u}} V(T,x) dx(T) = h(x(T)), V(0,x) = V(0,x_0).$

Lemma 15. Assume that V(t,x) is a solution of HJB (3.3) with the boundary conditions $\iint_{H_{T,u}} V(T,x)dx(T) = h(x(T)), V(0,x) = V(0,x_0), \text{ if function } W(t,x,u) := \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f(t,x,u) + V(t,x) \div f(t,x,u) + \varphi(t,x,u) \ge 0 \text{ and } u(t) \text{ is admissible control then for SOP (3.2) there exists estimate:}$

$$I(u) - \iint_{H_{t,u}} V(0, x_0) dx_0 = \int_0^T \iint_{H_{t,u}} W(t, x(t), u(t)) dx dt.$$

Proof. Putting $P(t, u) = \iint_{H_{t,u}} V(t, x) dx + \int_{0}^{t} \iint_{H_{t,u}} \varphi(t, x(t), u(t)) dx dt$, (*) we have

$$\begin{split} \frac{d}{dt}P(t,u) &= \int_{H_{t,u}} \left[\frac{d}{dt}V(t,x).dx + V(t,x).\frac{d}{dt}dx \right] + \int_{H_{t,u}} \varphi(t,x(t),u(t))dx \\ &= \int_{H_{t,u}} \int_{H_{t,u}} \left[\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}.f + V. \div f + \varphi(t,x(t),u(t)) \right] dx \\ &= \int_{H_{t,u}} \int_{H_{t,u}} W(t,x(t),u(t,x(t)))dx, \end{split}$$

where $\div f.dx = \frac{d}{dt}dx$, then

$$P(T,u) - P(0,u) = \int_{0}^{T} \frac{dP}{dt} dt$$
$$= \int_{0}^{T} \iint_{H_{t,u}} W(t,x(t),u(t,x(t))) dx dt(**)$$

By (*) we have

$$P(T,u) = \iint_{H_{T,u}} V(T,x) dx(T) + \iint_{0}^{T} \iint_{H_{t,u}} \varphi(t,x,u) dx dt$$
$$= h(x(T)) + \iint_{0}^{T} \iint_{H_{t,u}} \varphi(t,x,u) dx dt$$
$$= I(u)$$

and $P(0, u) = \iint_{H_0} V(0, x_0) dx_0$ then (**) implies that

$$I(u) - \iint_{H_0} V(0, x_0) dx_0 = \int_0^T \iint_{H_{t,u}} W(t, x(t), u(t, x(t))) dx dt.$$

Theorem 16. (Necessary conditions) If SOP (3.2) has solution, that means there exists optimal control u * (t) such that $I(u^*) = \min_{u(t) \in U} I(u)$ and V(t, x) is a solution of HJB (3.3), then the necessary conditions for SOP (3.2) are:

- $(i) \iint\limits_{H_{t,u}} V(T,x) dx(T) = h(x(T))$
- (*ii*) $W(t, x^*, u^*) = 0$,

where
$$W(t, x, u) = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f(t, x, u) + V(t, x) \div f(t, x, u) + \varphi(t, x, u) \ge 0.$$

Proof. Suppose that the SOP (3.2) has a solution, that means $I(u^*) = \min_{u(t) \in U} I(u)$. Because V(t, x) - solution of HJB (3.3):

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f(t, x, u) + V \div f(t, x, u) + \varphi(t, x, u) = 0$$

with $\int_{H_{T,u}} \int V(T,x) dx(T) = h(x(T))$, if function W(t,x,u) satisfies:

$$W(t, x, u) = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x, u) + V \div f(t, x, u) + \varphi(t, x, u) \ge 0$$

that integrable on sheaf solutions $H_{t,u}$. By Lemma 15, if u(t) is admissible control then for optimization control problem SOP (3.2) there exists estimate:

$$I(u) = \iint_{H_0} V(0, x_0) dx_0 + \int_0^T \iint_{H_{t,u}} W(t, x(t), u(t)) dx dt.$$

Assume that for SOP (3.2) has optimal control $u^*(t)$ then for all $t \in [0, T]$, we have $W(t, x^*, u^*) = 0$.

Theorem 17. (Sufficient conditions) Assume that u - any admissible control for SOP (3.2) and V(t, x) solution of HJB (3.3).

If satisfy the followings:

- (i) $\int\limits_{H_{T,u}} V(T,x) dx(T) = h(x(T))$
- $(ii) \ W(t,x,u) = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t,x,u) + V. \div f(t,x,u) + \varphi(t,x,u) \ge 0$
- (iii) there exists u^* such that $I(u^*) = \iint_{H_0} V(0, x_0) dx_0$

then u^* is optimal control for SOP (3.2).

Proof. Suppose that any admissible control $u(t) \in U \subset \mathbb{R}^d$, and solution of HJB (3.3) with $\iint_{H_{T,u}} V(T,x) dx(T) = h(x(T))$ such that for SOP (3.2) we have

$$I(u) = \iint_{H_0} V(0, x_0) dx_0 + \int_0^T \iint_{H_{t,u}} W(t, x(t), u(t)) dx dt$$

By condition (iii) of this theorem implies that:

$$I(u^*) - \iint_{H_0} V(0, x_0) dx_0 = \int_0^T \iint_{H_{t,u}} W(t, x^*(t), u^*(t)) dx dt = 0$$

and implies that $u^*(t)$ - optimal control for SOP (3.2).

References

- [1] A. D. Ovsyannikov, *Mathematical methods in sheaf controls* (In Russian), Leningrad University Pub., 1980.
- [2] N. D. Phu and T.T. Tung, Some properties of sheaf-solutions of sheaf fuzzy control Problems, Electronic Journal of Differential Equations Vol (2006), N. 108, 1-8. MR2255223. Zbl 1110.93031.
- [3] N. D. Phu and T.T. Tung, Some results on sheaf solutions of sheaf set control problem, J. Nonlinear Analysis: TMA, 9 (2007), 1309 - 1315. MR2323280. Zbl 1113.49003.
- [4] N. D. Phu, On the Global Controllable for Set Control Differential Equations, International Journal of Evolution Equations, 4 (3) (2009), 281-292. MR2654508. Zbl 1195.93062.
- [5] N. D. Phu and P. V. Tri, Some kinds of sheaf control problems for control systems, J. Applied Mathematics 3 (2012), 39-44. MR2904668.
- [6] N. D. Phu and L. Q. Dung, On the Stability and Controllability of Fuzzy Set Control Differential Equations, International Journal of Reliability and Safety 5 No 3-4 (2011), 320-335.

Phan Van Tri Faculty of Mathematics and Statistics, Ton Duc Thang University, No. 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City, Viet Nam. e-mail: tripv@tdt.edu.vn