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EXPLICIT STABILITY CONDITIONS FOR
NEUTRAL TYPE VECTOR FUNCTIONAL
DIFFERENTIAL EQUATIONS. A SURVEY

Michael I. Gil’

Abstract. This paper is a survey of the recent results of the author on the stability of

linear and nonlinear neutral type functional differential equations. Mainly, vector equations are

considered. In particular, equations whose nonlinearities are causal mappings are investigated.

These equations include neutral type, ordinary differential, differential-delay, integro-differential

and other traditional equations. Explicit conditions for the Lyapunov, exponential, input-to-state

and absolute stabilities are derived. Moreover, solution estimates for the considered equations are

established. They provide us the bounds for the regions of attraction of steady states. A part of the

paper is devoted to the Aizerman type problem from the the absolute stability theory. The main

methodology presented in the paper is based on a combined usage of the recent norm estimates

for matrix-valued functions with the generalized Bohl - Perron principle, positivity conditions for

fundamental solutions of scalar equations and properties of the so called generalized norm

1 Introduction

1. This paper is a survey of the recent results of the author on the stability
of the neutral type linear and nonlinear vector functional differential equations.
Functional differential equations naturally arise in various applications, such as
control systems, mechanics, nuclear reactors, distributed networks, heat flows, neural
networks, combustion, interaction of species, microbiology, learning models, epide-
miology, physiology, and many others. The theory of functional differential equations
has been developed in the works of V. Volterra, A.D. Myshkis, N.N. Krasovskii, B.
Razumikhin, N. Minorsky, R. Bellman, A. Halanay, J. Hale and other mathematicians.

The problem of the stability analysis of neutral type equations continues to
attract the attention of many specialists despite its long history. It is still one of the
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2 M. I. Gil’

most burning problems of the theory of functional differential equations because of
the absence of its complete solution. The basic method for the stability analysis is the
method based on the Lyapunov type functionals. By that method many very strong
results are obtained. However finding the Lyapunov type functionals for vector
neutral type equations is often connected with serious mathematical difficulties,
especially in regard to non-autonomous equations. To the contrary, the stability
conditions presented in the suggested survey are mainly explicitly formulated in
terms of the determinants and eigenvalues of auxiliary matrices dependent on a
parameter. This fact allows us to apply the well-known results of the theory of
matrices to the stability analysis.

2. Recall that the Bohl - Perron principle means that the homogeneous ordinary
differential equation (ODE) dy/dt = A(t)y (t ≥ 0) with a variable n × n-matrix
A(t), bounded on [0,∞) is exponentially stable, provided the nonhomogeneous ODE
dx/dt = A(t)x+ f(t) with the zero initial condition has a bounded solution for any
bounded vector valued function f , cf. [7]. In [26, Theorem 4.15] the Bohl - Perron
principle was generalized to a class of retarded systems with a scalar measure; besides
the asymptotic (not exponential) stability was proved. Afterwards the result of the
book [26] was improved under additional conditions and was effectively used for the
stability analysis of the first and second order scalar equations, cf. [3, 4, 5] and
references therein. In the book [23] the Bohl - Perron principle have been extended
to differential delay equations in the general case. Moreover, in that book a result
similar to the Bohl - Perron principle on the connections between homogeneous
and non-homogeneous differential delay equations in the terms of the Lp -norm was
derived.

In the present paper we suggest a generalization of the Bohl - Perron principle
to a class of neutral type equations.

3. We also consider some classes of equations with nonlinear causal mappings and
linear neutral parts. These equations include neutral type, differential, differential-
delay, integro-differential and other traditional equations. The stability theory of
equations with causal mappings is in an early stage of development, cf. [6, 33].

In this article we present conditions for the Lyapunov stability, L2-absolute
stability, input-to-state stability and the exponential stability of solutions of the
pointed nonlinear equations.

The literature on the absolute stability of retarded and continuous systems is
rather rich. The basic stability results for differential-delay equations are presented
in the well-known books [29, 42].

4. Furthermore, in the paper [2] M.A. Aizerman conjectured that a single input-
single output system is absolutely stable in the Hurwitzian angle. That hypothesis
caused the great interest among the specialists. Counter-examples were set up that
demonstrated it was not, in general, true. Therefore, the following problem arose:
to find the class of systems that satisfy Aizerman’s hypothesis. The author has
showed in [11] that any system satisfies the Aizerman hypothesis if its impulse
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Neutral type vector equations 3

function is non-negative. The similar result was proved for multivariable systems,
distributed ones, and retarded systems (see [23] and references therein). In this
paper we investigate the Aizerman’s hypothesis for neutral type equations.

5. The paper consists of 11 sections. In Section 2, the main notations used in the
paper are presented. Section 3 deals with linear time-invariant systems. Besides,
estimates for various norms of fundamental solutions and characteristic matrices
are derived. By the derived estimates we then obtain the stability conditions for
equations with nonlinear causal mappings. The generalized Bohl - Perron principle
is presented in Section 4. In Section 5 we illustrate the application of the generalized
Bohl - Perron principle to linear time variant systems ”close” to autonomous ones.

Sections 6-8 are devoted to vector nonlinear equations with separated linear
parts and nonlinear causal mappings. Namely, in Section 6 we establish conditions
providing the Lyapunov stability in the space of continuous vector valued functions.
Section 7 is devoted to the L2-absolute stability. The exponential stability of
solutions to nonlinear equations is considered in Section 8. The results presented
in Sections 6-8 generalize the stability criteria from [14, 16, 17] (see also [23]). The
Aizerman type problem is discussed in Section 9.

In Section 10, by virtue of the generalized norm, we establish global stability
conditions for nonlinear systems with diagonal linear parts. In Section 11 we present
a test for the input-to-state stability.

2 Notations

Let Cn be the complex n-dimensional Euclidean space with the scalar product (., .)Cn

and the Euclidean norm ‖x‖n =
√

(x, x)Cn (x ∈ C
n). C(a, b) = C([a, b],Cn) is the

space of continuous functions defined on a finite or infinite real segment [a, b] with
values in C

n and the norm ‖w‖C(a,b) = supt∈[a,b] ‖w(t)‖n. C1(a, b) = C1([a, b],Cn)
is the space of continuously differentiable functions defined on [a, b] with values in
C
n and the norm ‖w‖C1(a,b) = ‖w‖C(a,b) + ‖ẇ‖C(a,b), where ẇ is the derivative of w.

In addition, Lp(a, b) = Lp([a, b],Cn) (p ≥ 1) is the space of functions w defined on
[a, b] with values in C

n and the finite norm

‖w‖Lp(a,b) = [

∫ b

a
‖w(t)‖pndt]1/p (1 ≤ p <∞); ‖w‖L∞(a,b) = vrai supt∈[a,b]‖w(t)‖n,

I is the unit operator in the corresponding space.

For an n×n-matrix A, λk(A) (k = 1, ..., n) denote the eigenvalues of A numerated
in an arbitrary order with their multiplicities, A∗ is the adjoint to A and A−1 is the
inverse to A; ‖A‖n = supx∈Cn ‖Ax‖n/‖x‖n is the spectral (operator) norm; N2(A) is
the Hilbert-Schmidt (Frobenius) norm of A: N2

2 (A) = Trace AA∗, AI = (A−A∗)/2i
is the imaginary component.
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4 M. I. Gil’

The following quantity plays an essential role in the sequel:

g(A) = (N2
2 (A)−

n
∑

k=1

|λk(A)|2)1/2.

In Section 2.2 of [15] it is proved that g2(A) ≤ N2(A)− |Trace A2|,

(2.1) g2(A) ≤ 2N2
2 (AI) and g(e

iτA+ zI) = g(A)

for all τ ∈ R and z ∈ C. If A1 and A2 are commuting matrices, then

(2.2) g(A1 +A2) ≤ g(A1) + g(A2).

From Corollary 2.1.2 [15], it follows

Lemma 1. For any invertible n× n-matrix A, the inequality

(2.3) ‖A−1‖n ≤
n−1
∑

k=0

gk(A)√
k!ρk+1(A)

is true, where ρ(A) is the smallest absolute eigenvalue of A: ρ(A) = mink=1,...,n |λk(A)|.

3 Autonomous systems

3.1 Estimates for L
2− and C− norms of fundamental solutions

For a positive constant η <∞ consider the problem

(1.1) ẏ(t)−
∫ η

0
dR̃(τ)ẏ(t− τ) =

∫ η

0
dR(τ)y(t− τ) (t ≥ 0),

(1.2) y(t) = φ(t) for − η ≤ t ≤ 0,

where φ ∈ C1(−η, 0) is given; R(s) = (rij(s))
n
i,j=1 and R̃(s) = (r̃ij(s))

n
i,j=1 are

real n × n-matrix-valued functions defined on [0, η], whose entries have bounded
variations var(rij) and var(r̃ij), and finite numbers of jumps. In addition, R̃(s) does
not have a jump at t = 0. The integrals in (1.1) are understood as the Lebesgue
- Stieltjes integrals. A solution of problem (1.1), (1.2) is an absolutely continuous
vector function y(t) defined on [−η,∞) and satisfying (1.1) and (1.2).

We define the variation of R(.) as the matrix V ar(R) = (var(rij))
n
i,j=1 and denote

V (R) := ‖V ar(R)‖n. So V (R) is the spectral norm of matrix V ar (R). Similarly
V (R̃) is defined. It is assumed that

(1.3) V (R̃) < 1.
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Neutral type vector equations 5

The matrix-valued function

K(z) = Iz − z

∫ η

0
exp(−zs)dR̃(s)−

∫ η

0
exp(−zs)dR(s) (z ∈ C)

is the characteristic matrix-valued function to equation (1.1) and the zeros of det K(λ)
are the characteristic values of K(.); λ ∈ C is said a regular value of K(.), if
det K(λ) 6= 0. Everywhere below it is assumed that all the characteristic values of
K(.) are in the open left half-plane C−. We also give some conditions that provide
the location of the characteristic values in C−.

Due to Theorem 3.1.1 from [29, p. 114], under condition (1.3) equation (1.1)
is asymptotically stable and L2-stable, if all the characteristic values of K(.) are in
C−. Moreover, the integral

(1.4) G(t) :=
1

2π

∫ ∞

−∞
eitωK−1(iω)dω (t ≥ 0)

exists and the function G(t) defined by (1.4) for t ≥ 0 and by G(t) = 0 for −η ≤ t < 0
is called the fundamental solution to (1.1). G(t) is a solution to (1.1) and G(0) = I,
cf. [29].

Finally, denote

v0 :=
2 V (R)

1− V (R̃)
, θ(K) := sup

−v0≤ω≤v0

‖K−1(iω)‖n,

and

W (K) :=

√

2θ(K)(1 + V (R̃))(1 + θ(K)V (R)).

Theorem 2. Let condition (1.3) hold and all the zeros of det K(z) be in C−. Then
the fundamental solution of (1.1) satisfies the inequalities,

(1.5) ‖G‖L2(0,∞) ≤W (K),

(1.6) ‖Ġ‖L2(0,∞) ≤
V (R)‖G‖L2(0,∞)

1− V (R̃)
≤ V (R)W (K)

1− V (R̃)

and
(1.7)

‖G‖2C(0,∞) ≤ 2‖Ġ‖L2(0,∞)‖G‖L2(0,∞) ≤ a20(K), where a0(K) :=W (K)

√

2V (R)

1− V (R̃)
.

The proof of this theorem is presented in the next subsection.
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6 M. I. Gil’

Let us point estimates for θ(K). Recall that N2(A) is the Hilbert-Schmidt
(Frobenius) norm and

g(A) = (N2
2 (A)−

n
∑

k=1

|λk(A)|2)1/2

(see Section 2), and

(1.8) ‖A−1‖n ≤
n−1
∑

k=0

gk(A)√
k!ρk+1(A)

for an invertible n× n-matrix A. In addition,

(1.9) g2(A) ≤ 2N2
2 (AI) and g(e

iτA+ zI) = g(A)

for all τ ∈ R and z ∈ C. Put

B(z) = z

∫ η

0
exp(−zs)dR(s) +

∫ η

0
exp(−zs)dR(s).

So K(z) = zI−B(z). By (1.9) g(B(z)) = g(K(z)). Thanks to (1.8), for any regular
value z of K(.), the inequality

(1.10) ‖[K(z)]−1‖n ≤ Γ(K(z)) (z ∈ C)

is valid, where

Γ(K(z)) =
n−1
∑

k=0

gk(B(z))√
k!ρk+1(K(z))

and ρ(K(z)) is the smallest absolute value of the eigenvalues of K(z):

ρ(K(z)) = min
k=1,...,n

|λk(K(z))|.

If B(z) is a normal matrix, then g(B(z)) = 0, and ‖[K(z)]−1‖n ≤ ρ−1(K(z)). For
example, that inequality holds, if K(z) = zI − Ãze−zη −Ae−zη, where A and Ã are
commuting Hermitian matrices. Due to (1.10) we arrive at

Lemma 3. One has

θ(K) ≤ Γ0(K), where Γ0(K) := sup
−v0≤ω≤v0

Γ(K(iω)).

Furthermore, from [15, Theorem 2.11] it follows that

‖A−1 det (A)‖n ≤ Nn−1
2 (A)

(n− 1)(n−1)/2
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Neutral type vector equations 7

for any invertible n× n-matrix A. Hence, for any regular point z of K(.), one has

‖K−1(z)‖n ≤ Nn−1
2 (K(z))

(n− 1)(n−1)/2|det (K(z))| ,

and thus

(1.11) θ(K) ≤ θd(K) where θd(K) := sup
−v0≤ω≤v0

Nn−1
2 (K(iω))

(n− 1)(n−1)/2|det (K(iω))| .

3.2 Proof of Theorem 3.1.1

Below the meaning of the integral

∫ η

0
w(s)|dr(s)|

for a scalar continuous function w and a real function r of bounded variation is the
following: since r(s) is of bounded variation, we have r(s) = r+(s) − r−(s), where
r+(s) and r−(s) are nondecreasing functions. Then

∫ η

0
w(s)|dr(s)| :=

∫ η

0
w(s)dr+(s) +

∫ η

0
w(s)dr−(s).

In particular, put

vd(r) :=

∫ η

0
s|dr(s)| =

∫ η

0
sdr+(s) +

∫ η

0
sdr−(s)

and

vd (R) := ‖(vd (rjk))
n
j,k=1‖n.

So vd (R) is the spectral norm of the matrix (vd (rjk))
n
j,k=1. Clearly vd(R) ≤ ηV (R).

For a continuous scalar function w(s) denote

V d(R,w) := ‖(
∫ η

0
|w(τ)||drjk|)nj,k=1‖n.

So V d (R,w) is the spectral norm of the matrix whose entries are
∫ η
0 |w(τ)||drjk|

and V d(R,w) = vd(R) for w(s) = s.

Lemma 4. Let w(s) be a continuous scalar function defined on [0, η]. Then
(2.1)
∥

∥

∥

∥

∫ η

0
w(τ)dR(τ)f(t− τ)

∥

∥

∥

∥

L2(0,T )

≤ V d (R,w)‖f‖L2(−η,T ) (T > 0; f ∈ L2(−η, T )).
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8 M. I. Gil’

For the proof see [21, Lemma 1].

Furthermore, for an f ∈ L2([−η, T ],Cn), T ≤ ∞, put

Ef(t) =

∫ η

0
dR(s)f(t− s), Ẽf(t) =

∫ η

0
dR̃(s)f(t− s) (0 ≤ t ≤ T ).

Now the previous lemma implies.

Corollary 5. We have ‖E‖L2(−η,T )→L2(0,T ) ≤ V (R) and

∥

∥

∥

∥

∫ η

0
τdR(τ)f(t− τ)

∥

∥

∥

∥

L2(0,T )

≤ vd (R)‖f‖L2(−η,T ) (T > 0; f ∈ L2(−η, T )).

Note that in [20, Section 3], the inequality

‖Ef‖C(−η,T )→C(0,T ) ≤
√
n V (R) (T > 0)

is proved.

We need also the following result

Lemma 6. The equality sup−∞≤ω≤∞ ‖K−1(iω)‖n = θ(K) is valid.

For the proof see Lemma 2 [20].

Let us consider the non-homogeneous equation

(2.2) ẋ− Ẽẋ = Ex+ f (f ∈ L2(0,∞))

with the zero initial condition

(2.3) x(t) = 0, t ≤ 0.

Applying the Laplace transform to problem (2.2), (2.3), we get x̂(z) = K−1(z)f̂(z),
where x̂(z) and f̂(z) are the Laplace transforms of x(t) and f(t), respectively.
Consequently,

‖x̂(iω)‖L2(−∞,∞) ≤ sup
−∞≤ω≤∞

‖K−1(iω)‖n‖f̂(iω)‖L2(−∞,∞).

Now from Lemma 3.2.3 and the Parseval equality we arrive at

Lemma 7. Let condition (1.3) hold and all the zeros of det K(z) be in C−. Then

(2.4) ‖x‖L2(0,∞) ≤ θ(K)‖f‖L2(0,∞).
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Neutral type vector equations 9

Further, for a constant ν > 0, put Z(t) = G(t)− e−νtI. Substitute this equality
into (1.1). Then we obtain

(2.5) Ż − ẼŻ − EZ = fν ,

where
fν = −νe−νtI − νẼ(Ie−νt) + E(Ie−νt).

Clearly, Z(t) = 0, t ≤ 0. For the brevity in the rest of this section we sometimes put
‖.‖L2(0,∞) = |.|L2 . Due to (2.4) we obtain |Z|L2 ≤ θ(K)|fν |L2 . But |e−νt|2L2 = 1/2ν
and by Corollary 3.2.2,

|Ẽe−νt|L2 ≤ V (R̃)|e−νt|L2 =
V (R̃)√

2ν
and |Ee−νt|L2 ≤ V (R)√

2ν
.

Thus making use (2.4) and (2.5), we obtain

(2.6) |G|L2 ≤ |Z|L2 + |e−νt|L2 ≤ θ(K)|fν |L2 +
1√
2ν

≤ w(ν),

where

w(ν) =
θ(K)(1 + V (R̃))

√
ν√

2
+

1 + θ(K)V (R)√
2ν

.

Put x =
√
ν,

a =
θ(K)(1 + V (R̃))√

2
and b =

1 + θ(K)V (R)√
2

;

then w(ν) = ax+b/x. The minimum of the right-hand part is attained at x0 =
√

b/a.
Besides,

ax0 +
b

x0
= 2

√
ab = 2

√

θ(K)(1 + V (R̃))√
2

(1 + θ(K)V (R))√
2

=W (K).

Now (2.6) yields inequality (1.5).
Furthermore Corollary 3.2.2 and (1.1) imply |Ġ|L2 ≤ V (R̃)|Ġ|L2 + V (R)|G|L2 .

Hence,

(2.7) ‖Ġ‖L2(0,∞) ≤ (1− V (R̃))−1V (R)‖G‖L2(0,∞)

and therefore (1.5) yields inequalities (1.6).
Now we need the following simple result, cf. [23, Lemma 4.4.6].

Lemma 8. Let f ∈ L2(0,∞) and ḟ ∈ L2(0,∞). Then |f |2C(0,∞) ≤ 2|f |L2(0,∞)|ḟ |L2(0,∞).

This result and (2.7) imply

‖G‖2C(0,∞) ≤ 2(1− V (R̃))−1V (R)‖G‖2L2(0,∞).

Consequently, (1.5) proves inequalities (1.7). �
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10 M. I. Gil’

3.3 Lower estimates for quasi-polynomials

In this subsection we present estimates for quasi-polynomials which will be used
below. Consider the function

(3.1) k(z) = z

(

1−
∫ η

0
e−τzdµ̃

)

+

∫ η

0
e−τzdµ (z ∈ C),

where µ = µ(τ) and µ̃ = µ̃(τ) are nondecreasing functions defined on [0, η], with

(3.2) 0 < var(µ̃) < 1 and var(µ) <∞.

Put

v1 =
2 var(µ)

1− var(µ̃)
.

The following two lemmas are proved in [20] (Lemmas 7 and 9).

Lemma 9. The equality inf−∞≤ω≤∞ |k(iω)| = inf−v1≤ω≤v1 |k(iω)| is valid.

Lemma 10. Let the conditions (3.2),

(3.3) ηv1 < π/2

and

(3.4) d0 :=

∫ η

0
cos(v1τ)dµ− v1

∫ η

0
sin(v1τ)dµ̃ > 0

hold. Then all the zeros of k(.) are in C− and

(3.5) inf
−∞≤ω≤∞

|k(iω)| ≥ d0 > 0.

For instance consider the function

k1(z) = z(1− ãe−h̃z) + ae−hz + b

with a, b, h, h̃ = const ≥ 0, and 0 < ã < 1. Then v1 = 2(a+b)(1−ã)−1. Furthermore,
due to Lemma 3.3.2 we arrive at the following result

Corollary 11. Assume that the conditions

(3.6) hv1 < π/2, h̃v1 < π/2

and

(3.7) d1 := a cos(v1h) + b− v1ã sin(v1h̃) > 0.

Then all the zeros of k1(.) are in C− and inf−∞≤ω≤∞ |k(iω)| ≥ d1 > 0.
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Neutral type vector equations 11

3.4 Scalar equations with positive fundamental solutions

Consider the linear equation

(4.1) ẏ(t)− aẏ(t− h̃) + by(t− h) = 0,

where a, b, h, h̃ are positive constants.
The following lemma and corollary are proved in [24].

Lemma 12. Let the equation

(4.2) s = seh̃sa+ ehsb

have a positive root ζ. Then the Green function (the fundamental solution)G1(t)
to (4.1) is nonnegative. Moreover,

(4.3) G1(t) ≥ e−ζt (t ≥ 0),

Ġ1(t) ≤ 0 and

(4.4)

∫ ∞

0
G1(t)dt =

1

b
.

Note that, if (4.2) has a positive root, then necessarily a < 1. Note also that in
[1, p. 26] (see also the references given therein) the positivity of Green’s function was
proved but the relations of the type (4.4), which we use below, were not considered.

Corollary 13. Let (4.2) have a positive root. Then infω∈R |k(iω)| = b.

Remark 14. If there is a positive number λ, such that aeh̃λλ+ behλ ≤ λ, then due
to the well-known Theorem 38.1 [31] equation (4.2) has a positive root ζ ≤ λ.

Substitute s = ωc with a positive c into (4.2). Then

(4.5) ωeh̃cωa+
1

c
echωb = ω.

If

(4.6) eh̃ca+
1

c
echb ≤ 1,

then due to the mentioned Theorem 38.1 [31] (4.5) has a positive root which not
more than one. So (4.2) has a positive root ζ ≤ c. For example, if c = 1/h, then
condition (4.5) takes the form

eh̃/ha+ hbe ≤ 1.

******************************************************************************
Surveys in Mathematics and its Applications 9 (2014), 1 – 54

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v09/v09.html
http://www.utgjiu.ro/math/sma


12 M. I. Gil’

This condition is the direct generalization of the corresponding result for equations
with delay [1].

Minimaze the function

f(c) = eh̃ca+
1

c
echb

with respect to c. It is simple to show that

(4.7) c0 = − bh

2ah̃
+

√

(

bh

2ah̃

)2

+
b

ah̃

is the zero of f ′(c). We thus have proved

Lemma 15. If

(4.8) eh̃c0a+
1

c0
ec0hb ≤ 1,

then (4.2) has a positive root ζ ≤ c0.

3.5 Autonomous systems with discrete delays

Let Ã = (ãjk), A = (ajk) and C = (cjk) be real n × n-matrices. Consider the
equation

(5.1) ẏ(t)− Ãẏ(t− h̃) +Ay(t− h) + Cy(t) = 0 (t ≥ 0),

assuming that ‖Ã‖n < 1. So K(z) = z(I − Ãe−h̃z) + Ae−hz + C. The entries of K
are

kjk(z) = z(1− ãjke
−h̃z) + ajke

−hz + cjk (j, k = 1, ..., n).

As it was shown by Ostrowski [40], for any n× n-matrix M = (mjk) the inequality

(5.2) |det M | ≥
n
∏

j=1

(|mjj | −
n
∑

i=1,i 6=j

|mji|)

is valid, provided

|mjj | >
n
∑

i=1,i 6=j

|mji| (j = 1, ..., n).

Hence,

(5.3) |det K(z)| ≥
n
∏

j=1

(|kjj(z)| −
n
∑

m=1,m 6=j

|kjm(z)|),

provided the right-hand part is positive.
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Neutral type vector equations 13

For equation (5.1) we have V (R̃) = ‖Ã‖n, V (R) = ‖A‖n + ‖C‖n and

v0 = 2(‖A‖n + ‖C‖n)(1− ‖Ã‖n)−1.

In addition,

(5.4) N2(K(iω)) ≤ N0(K) (|ω| ≤ v0),

where N0(K) := v0(
√
n + N2(Ã)) + N2(A) + N2(C). Now according to (1.11) we

obtain an estimate for θ(K). For instance, (5.1) can take the form

(5.5) ẏj(t)− ãjj ẏj(t− h̃) +
n
∑

k=1

(ajkyk(t− h) + cjkyk(t)) = 0,

(j = 1, ..., n; t ≥ 0); suppose that

(5.6) ajj , cjj ≥ 0; 0 < ãjj < 1.

So Ã = diag (ãjj). Put

wj =
2(ajj + cjj)

1− ãjj

and assume that

(5.7) wj max{h, h̃} <
π

2
and dj := ajjcos(wjh) + cjj − wj ãsin(wj h̃) > 0

(j = 1, ..., n). Then by Corollary 3.3.3, all the zeros of kjj(.) are in C− and

inf
−∞≤ω≤∞

|kjj(iω)| ≥ dj > 0.

In addition, let

(5.8) ρj := dj −
n
∑

m=1,m 6=j

(|ajm|+ |cjm|) > 0 (j = 1, ..., n).

According to (5.3) we get

|det K(iω)| ≥
n
∏

j=1

ρj .

Thus by (5.4) and (1.11), we arrive at the following result.

Corollary 16. Let conditions (5.6)-(5.8) be fulfilled. Then system (5.5) is asymptotically
stable and

θ(K) ≤ Nn−1
0 (K)

(n− 1)(n−1)/2
∏n

j=1 ρj
.

Additional estimates for θ(K) are given in Subsection 7.3 below.
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14 M. I. Gil’

3.6 Systems with commuting Hermitian matrices

Let Ã and A be positive definite Hermitian commuting n × n-matrices. Consider
the equation

(6.1) ẏ(t)− Ãẏ(t− h̃) +Ay(t− h) = 0 (t ≥ 0),

assuming that ‖Ã‖n < 1. In this subsection we suggest an L1-norm estimate for
solutions of (6.1).

We have K(z) = z(I − Ãe−h̃z) +Ae−hz. Rewrite (6.1) as the system in the basis
of the eigenvalues of A and Ã, which are coincide since the matrices commute:

(6.2) ẏj(t)− λj(Ã)ẏ(t− h̃) + λj(A)y(t− h) = 0 (t ≥ 0),

Assume that each of the equations

(6.3) s = s(1− λk(Ã))e
sh̃ + λk(A)e

s̃h, k = 1, ..., n

have a positive root ζj . Then due to Lemma 3.4.1 the Green function Gj(t) to each
of equations (6.2) is nonnegative. Moreover,

(6.4)

∫ ∞

0
Gj(t)dt =

1

λj(A)
.

Besides, G(t) is the vector with coordinates Gj(t). Put

xj(t) =

∫ t

0
Gj(t− s)fj(s)ds

for a scalar continuous function fj . Then

sup
t
(

n
∑

k=1

|xk(t)|2)1/2 = sup
t
(

n
∑

k=1

|
∫ t

0
Gj(t− s)fj(s)ds|2)1/2 ≤

√
n sup

t,k
|fk(t)|

∫ ∞

0
Gk(t)dt ≤

√
n‖f‖C(0,∞) sup

k

1

λk(A)
.

Thus we have proved the following

Theorem 17. Let Ã and A be positive definite Hermitian commuting n×n-matrices
and equations (6.3) have positive roots. Then the fundamental solution to (6.1)
satisfies the inequality

‖Ĝ‖C(0,∞) ≤
√
n

mink λk(A)
.

******************************************************************************
Surveys in Mathematics and its Applications 9 (2014), 1 – 54

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v09/v09.html
http://www.utgjiu.ro/math/sma


Neutral type vector equations 15

4 The Generalized Bohl-Perron Principle

4.1 Statement of the result

In the present section we extend the Bohl - Perron principle to a class of neutral
type functional differential equations.

Let Aj(t) (t ≥ 0; j = 1, ...,m1) be continuously differentiable n × n-matrices;
Bk(t) (t ≥ 0; k = 1, ...,m0), continuous n × n-matrices. In addition, η < ∞ is
a positive constant, A(t, τ) (t ≥ 0; τ ∈ [0, η]) is an n × n-matrix continuously
differentiable in t for each τ ; B(t, τ) (t ≥ 0; τ ∈ [0, η]) is an n×n-matrix continuous
in t for each τ ; A(t, τ), A′

t(t, τ) and B(t, τ) are integrable in τ on [0, η].

Define the operators E0, E1 : C(−η,∞) → C(0,∞) by

(E0f)(t) =

m0
∑

k=1

Bk(t)y(t− vk(t)) +

∫ η

0
B(t, s)y(t− s)ds

and

(E1f)(t) =

m1
∑

k=1

Ak(t)y(t− hk) +

∫ η

0
A(t, s)y(t− s)ds (t ≥ 0),

where 0 < h1 < ... < hm1 ≤ η (m1 < ∞) are constants, vj(t) are real continuous
functions, such that 0 ≤ vj(t) ≤ η.

Our main object in this section is the equation

(1.1)
d

dt
[y(t)− (E1y)(t)] = (E0y)(t)

with the initial condition

(1.2) y(t) = φ(t) (−η ≤ t ≤ 0)

for a given φ ∈ C1(−η, 0). We consider also the non-homogeneous equation

(1.3)
d

dt
[x(t)− (E1x)(t)] = (E0x)(t) + f(t) (t ≥ 0)

with a given vector function f ∈ C(0,∞) and the zero initial condition

(1.4) x(t) ≡ 0 (−η ≤ t ≤ 0).

It is assumed that

(1.5a) V1 := sup
t≥0

[

m1
∑

k=1

‖Ak(t)‖n +

∫ η

0
‖A(t, s)‖nds

]

< 1
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16 M. I. Gil’

and
(1.5b)

V0 := sup
t≥0

[

m1
∑

k=1

‖A′
k(t)‖n +

∫ η

0
‖A′

t(t, s)‖nds+
m0
∑

k=1

‖Bk(t)‖n +

∫ η

0
‖B(t, s)‖nds

]

<∞.

A solution of problem (1.1), (1.2) is a continuous function, satisfying the problem

(1.6a) y(t)− (E1y)(t) = φ(0)− (E1φ)(0) +

∫ t

0
(E0y)(t1)dt1 (t ≥ 0),

(1.6b) y(t) = φ(t) (−η ≤ t ≤ 0).

A solution of problem (1.3), (1.4) is defined as a continuous function x(t), which
satisfies the equation

(1.7) x(t)− (E1x)(t) =

∫ t

0
(E0x)(t1)dt1 +

∫ t

0
f(t1)dt1 (t ≥ 0)

and condition (1.4).

The existence and uniqueness of solutions of problems (1.1), (1.2) and (1.3), (1.4)
under conditions (1.5) is due to [27, p. 256, Theorem 9.1.1].

Now we are in a position to formulate the main result of the section.

Theorem 18. Let conditions (1.5) hold. If, in addition, a solution x(t) of problem
(1.3), (1.4) is bounded on [0,∞) (that is, x ∈ C(0,∞)) for any f ∈ C(0,∞), then
equation (1.1) is exponentially stable.

This theorem is proved in the next subsection.

4.2 Proof of Theorem 4.1.1

Rewrite (1.1) as

(2.1) ẏ(t)− (E1ẏ)(t) = (E′
1y)(t) + (E0y)(t) (t ≥ 0),

where

(E′
1y)(t) =

m1
∑

k=1

A′
k(t)y(t− hk) +

∫ η

0
A′

t(t, s)y(t− s)ds.

Lemma 19. For any T > 0 one has ‖E1u‖C(0,T ) ≤ V1‖u‖C(−η,T ) and

‖(E′
1 + E0)u‖C(0,T ) ≤ V0‖u‖C(−η,T ) (u ∈ C(−η, T )).
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Neutral type vector equations 17

Proof. Let u ∈ C(−η, T ). We have

‖(E1u)(t)‖n ≤
m1
∑

k=1

‖Ak(t)u(t− hk)‖n +

∫ η

0
‖A(t, s)u(t− s)‖nds ≤

‖u‖C(−η,T )(

m1
∑

k=1

‖Ak(t)‖n +

∫ η

0
‖A(t, s)‖nds) ≤ V1‖u‖C(−η,T ) (0 ≤ t ≤ T ).

Similarly the second inequality can be proved. This proves the lemma. �

Lemma 20. If for any f ∈ C(0,∞) a solution of problem (1.3), (1.4) is in C(0,∞),
and conditions (1.5) hold, then any solution of problem (1.1), (1.2) is in C(−η,∞).

Proof. Let y(t) be a solution of problem (1.1), (1.2). Put

ζ(t) =

{

φ(0) if t ≥ 0,
φ(t) if −η ≤ t < 0

and x0(t) = y(t)− ζ(t). We can write dζ(t)/dt = 0 (t ≥ 0) and

d

dt
[x0(t)− (E1x0)(t)] = (E0x0)(t) + ψ(t) (t > 0),

where

ψ(t) =
d(E1ζ)(t)

dt
+ (E0ζ)(t) = (E1ζ̇)(t) + (E′

1ζ)(t) + (E0ζ)(t).

Besides, (1.4) holds with x(t) = x0(t). Since ζ ∈ C1(−η,∞), by the previous lemma
we have ψ ∈ C(−η,∞). Due to the hypothesis of this lemma, x0 ∈ C(0,∞). Thus
y = x0 + ζ ∈ C(−η,∞). As claimed. �

Lemma 21. Let conditions (1.5) hold. Then for any solution of problem (1.3),
(1.4) and all T > 0, one has

‖ẋ‖C(0,T ) ≤ (1− V1)
−1(V0‖x‖C(0,T ) + ‖f‖C(0,T )).

Proof. By Lemma 4.2.1, from (2.1) we have

‖ẋ‖C(0,T ) ≤ V1‖ẋ‖C(0,T ) + V0‖x‖C(0,T ) + ‖f‖C(0,T ).

Hence the condition V1 < 1 implies the required result. �

Proof of Theorem 4.1.1: Substituting

(2.2) y(t) = yǫ(t)e
−ǫt
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18 M. I. Gil’

with an ǫ > 0 into (2.1), we obtain the equation

(2.3) ẏǫ − ǫyǫ − Eǫ,1ẏǫ + ǫEǫ,1yǫ = (E′
ǫ,1 + Eǫ,0)yǫ,

where

(Eǫ,1f)(t) =

m1
∑

k=1

ehkǫAk(t)f(t− hk) +

∫ η

0
esǫA(t, s)f(t− s)ds,

(Eǫ,0f)(t) =

m0
∑

k=1

Bk(t)e
vk(t)ǫf(t− vk(t)) +

∫ η

0
B(t, s)esǫf(t− s)ds

and

(E′
ǫ,1f)(t) =

m1
∑

k=1

ehkǫA′
k(t)f(t− hk) +

∫ η

0
esǫA′

t(t, s)f(t− s)ds.

Rewrite (2.3) as

(2.4)
d

dt
[yǫ − Eǫ,1yǫ] = Zǫyǫ,

where

Zǫ := ǫI + ǫEǫ,1 + Eǫ,0.

Furthermore, introduce in C(0,∞) the operator Ĝ : f → x where x(t) is the solution
of problem (1.3), (1.4). That is, Ĝ solves problem (1.3), (1.4).

By the hypothesis of the theorem, we have

x = Ĝf ∈ C(0,∞) for any f ∈ C(0,∞).

So Ĝ is defined on the whole space C(0,∞). It is closed, since problem (1.3), (1.4)
under conditions (1.5) has a unique solution. Therefore Ĝ : C(0,∞) → C(0,∞) is
bounded according to the Closed Graph Theorem [8, p. 57]. So the norm ‖Ĝ‖C(0,∞)

is finite. Consider now the equation

(2.5)
d

dt
[xǫ − Eǫ,1xǫ] = Zǫxǫ + f

with the zero initial conditions. Subtract (1.3) from (2.5), with w(t) = xǫ(t)− x(t),
where x and xǫ are solutions of problems (1.3), (1.4) and (2.5), (1.4), respectively.
Then

(2.6)
d

dt
[w − E1w] = Fǫ

where

Fǫ = (Zǫ − E0)xǫ +
d

dt
(Eǫ,1 − E1)xǫ.
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Neutral type vector equations 19

It is simple to check that Zǫ → E0, E
′
ǫ,1 → E′

1 and Eǫ,1 → E1 in the operator norm
of C(0,∞) as ǫ→ 0.

For the brevity in this proof put ‖.‖C(0,T ) = |.|T for a finite T > 0. In addition,

d

dt
(Eǫ,1 − E1)xǫ = (Eǫ,1 − E1)ẋǫ + (E′

ǫ,1 − E′
1)xǫ.

But according to Lemma 4.2.1, for a sufficiently small ǫ, we have

|Eǫ,1xǫ|T ≤ eǫηV1|xǫ|T with eǫηV1 < 1.

Due Lemma 4.2.3, from (2.5), the inequality

|ẋǫ|T ≤ (1− eǫηV1)
−1(|E′

ǫ,1 + Zǫ|T |xǫ|T + |f |T )

follows. Since Zǫ → E0, E
′
ǫ,1 → E′

1, |E′
ǫ,1 + Zǫ|T is bounded uniformly with respect

to ǫ and T > 0. So for a sufficiently small ǫ0 > 0, there is a constant c1, such that

|ẋǫ|T ≤ c1(|xǫ|T + |f |T ) (ǫ < ǫ0; T > 0).

Therefore

|Fǫ|T ≤ a(ǫ)(|xǫ|T + |f |T ),

where a(ǫ) → 0 as ǫ→ 0 uniformly in T > 0. By (2.6) xǫ − x = ĜFǫ. So

|xǫ − x|T ≤ ‖Ĝ‖C(0,∞)a(ǫ)(|xǫ|T + |f |T ).

For a sufficiently small ǫ, we have q(ǫ) := ‖Ĝ‖C(0,∞)a(ǫ) < 1. Thus

|xǫ|T ≤ (1− q(ǫ))−1(|x|T + ‖Ĝ‖C(0,∞)a(ǫ)|f |T ).

By the hypothesis of the present theorem, x(t) is bounded on [0,∞). This gives us
the inequality

|xǫ|T ≤ (1− q(ǫ))−1(‖x‖C(0,∞) + a(ǫ)‖Ĝ‖C(0,∞)‖f‖C(0,∞)).

So, letting T → ∞, we get xǫ ∈ C(0,∞), since the right-hand part of the latter
inequality does not depend on T .

Hence, by Lemma 4.2.2, a solution yǫ of (2.4) is bounded. Now (2.2) proves the
exponential stability. As claimed. �
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5 Nonautonomous systems with discrete delays

5.1 Statement of the result

In this section we present stability conditions which are based on Theorem 4.1.1. To
this end consider the system

(1.1) ẏj(t)− ãj ẏj(t− h̃j) + ajyj(t− hj) +
n
∑

k=1

cjk(t)yk(t− vjk(t)) = 0 (j = 1, ..., n),

where h̃j , hj , aj and ãj are positive constants; cjk(t) (j, k = 1, ..., n) are continuous
functions bounded on [0,∞) and vjk(t) are positive continuous functions, satisfying
vjk(t) ≤ η (t ≥ 0), where

η = max{max
j
hj ,max

j
h̃j}.

Introduce the matrices

A = diag (aj)
n
j=1, Ã = diag (ãj)

n
j=1 and C(t) = (cjk(t))

n
j,k=1.

In the considered case we have

V (R̃) = max
j=1,...,n

ãj and V (R) = max
j=1,...,n

aj + sup
t≥0

‖C(t)‖n.

Theorem 22. Let each of the scalar equations

(1.2) s = seh̃jsãj + ehjsaj (j = 1, ..., n)

have a positive root. In addition, let

(1.3)
n
∑

k=1

sup
t≥0

|cjk(t)| < aj (j = 1, ..., n).

Then system (1.1) is exponentially stable.

This theorem is proved in [22, Theorem 3.1]. Its proof is based on Theorem
4.1.1.

Note that from (1.2) it follows V (R̃) = maxj=1,...,n ãj < 1.
As it was noted in Subsection 3.5, if there are positive numbers λj , such that

(1.4) ãje
h̃jλjλj + aje

hjλj ≤ λj ,

then due to the well-known Theorem 38.1 [31] equation (1.2) has a positive root
ζj ≤ λj . In particular, if

(1.5) eh̃j ãj + ehjaj ≤ 1,

then (1.2) has a positive root ζj ≤ 1.
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Neutral type vector equations 21

5.2 Sharpness of the result

To investigate the level of conservatism of the sufficient condition of stability given
in Theorem 5.1.1, consider the equation

ẏ(t)− aẏ(t− h̃) + by(t− h) = by(t− ĥ),

where h, h̃, ĥ, a, b are positive constants. This equation is not exponentially stable

since its characteristic function z−zeh̃za+(ehz−eĥz)b has a root at z = 0. Similarly,
considering the system

ẏj(t)− ãj ẏj(t− h̃j) + ajy(t− hj) = cjy(t− ĥj) (j = 1, ..., n),

with positive constants ĥj and cj , we can assert that its characteristic (diagonal)
matrix has a characteristic value at z = 0, provided cj = aj for at least one index j.

These examples show that condition (1.3) is sharp.

6 Lyapunov’s stability of equations with nonlinear causal

mappings

6.1 Solution estimates

Again use the operators Ẽ and E defined on C(0,∞) by

Ef(t) =

∫ η

0
dR(s)f(t− s), Ẽf(t) =

∫ η

0
dR̃(s)f(t− s) (t ≥ 0).

For a positive ̺ ≤ ∞ and an arbitrary T > 0 denote Ω(̺, T ) = {w ∈ C(−η, T ) :
‖w‖C(−η,T ) ≤ ̺}, and Ω(̺) = Ω(̺,∞). Consider the equation

(1.1) ẋ− Ẽẋ− Ex = Fx+ f (f ∈ C(0,∞); t ≥ 0),

where F is a continuous mapping of Ω(̺, T ) into C(−η, T ) for each T > 0 and
satisfying the condition

(1.2) ‖Fw‖C(0,T ) ≤ q‖w‖C(−η,T ) (w ∈ Ω(̺, T )),

where constant q ≥ 0 does not depend on T . A (mild) solution of problem (1.1),
(1.2) is a continuous function x(t) defined on [−η,∞), such that

(1.3a) x(t) = z(t) +

∫ t

0
G(t− t1)(Fx(t1) + f(t1))dt1 (t ≥ 0),

(1.3b) x(t) = φ(t) ∈ C1(−η, 0) (−η ≤ t ≤ 0),
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22 M. I. Gil’

where G(t) is the fundamental solution of the linear equation

(1.4) ż − Ẽż − Ez = 0,

and z(t) is a solution of the problem (1.4), (1.3b). It is assumed that the linear
equation (1.4) is asymptotically stable. Again use the Cauchy operator

Ĝw(t) =

∫ t

0
G(t− t1)w(t1)dt1 (w ∈ C(0,∞)),

and suppose that

(1.5) ‖Ĝ‖C(0,∞) <
1

q

and

(1.6)
‖z‖C(−η,∞) + ‖Ĝf‖C(0,∞)

1− q‖Ĝ‖C(0,∞)

< ̺.

If ̺ = ∞, then (1.6) is automatically fulfilled.

Theorem 23. Let conditions (1.2), (1.5) and (1.6) hold. Then problem (1.1), (1.2)
has at least one solution x(t), which satisfies the inequality

‖x‖C(−η,∞) ≤
‖z‖C(−η,∞) + ‖Ĝf‖C(0,∞)

1− q‖Ĝ‖C(0,∞)

.

The proof of this lemma is a simple application of the Schauder Fixed Point
Principle. About the existence results see for instance the very interesting paper
[34] and references therein. That paper deals with the existence of solutions for a
nonconvex functional differential inclusion with a compact-valued and upper semicontinuous
set-valued mapping.

About estimates for ‖Ĝ‖C(0,∞) see Subsection 3.6.

6.2 Stability conditions

Let X(a,∞) = X([a,∞);Y ) (−∞ < a ≤ 0) be a normed space of functions defined
on [a,∞) with values in a normed space Y and the unit operator I. For example
X(a,∞) = C([a,∞),Cn) or X(a,∞) = Lp([a,∞),Cn). For any τ > 0 and a
w ∈ X(−η,∞) (η ≥ 0) put

wτ (t) =

{

w(t) if −η ≤ t ≤ τ,
0 if t > τ

.
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Neutral type vector equations 23

Let ΩX be a domain of X(−η,∞) containing zero. Consider a continuous mapping
F : ΩX → X(0,∞) and put

[Fτw](t) =

{

[Fw](t) if 0 ≤ t ≤ τ,
0 if t > τ

.

for all τ > 0 and w ∈ ΩX .

Definition 24. Let F be a continuous mapping F : ΩX into X(0,∞), having the
following properties:

(2.1) F0 ≡ 0,

and

(2.2) Fτw = Fτwτ for all τ > 0 (w ∈ ΩX).

Then F will be called a causal mapping (operator).

For all τ > 0 introduce the projections

[P (−η, τ)w](t) =
{

w(t) if −η ≤ t ≤ τ,
0 if t > τ

(w ∈ X(−η,∞))

and

[P (0, τ)w](t) =

{

w(t) if 0 ≤ t ≤ τ,
0 if t > τ

(w ∈ X(0,∞)).

Then for the causal operator F we can write

P (0, τ)F = P (0, τ)FP (−η, τ) (τ > 0).

Introduce also the subspace X(a, τ) (a ≤ 0) by

X(a, τ) := {f ∈ X(a,∞) : f(t) ≡ 0, t > τ}.

Besides, we put
‖f‖X(a,τ) = ‖f‖X(a,∞)

for all f ∈ X(a, τ).
We need the following result

Lemma 25. Let F be a continuous causal mapping acting from ΩX into X(0,∞),
and

‖Fw‖X(0,∞) ≤ q‖w‖X(−η,∞) (w ∈ ΩX).

Then for all T > 0, one has

‖Fw‖X(0,T ) ≤ q‖w‖X(−η,T )

and F is a continuous mapping in X(−η, T ).
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Proof. Put

wT (t) =

{

w(t) if −η ≤ t ≤ T,
0 if t > T

and

FTw(t) =

{

(Fw)(t) if 0 ≤ t ≤ T,
0 if t > T.

Since F is causal, one has FTw = FTwT . Consequently,

‖Fw‖X(0,T ) = ‖FTw‖X(0,∞) = ‖FTwT ‖X(0,∞) ≤

‖FwT ‖X(0,∞) ≤ q‖wT ‖X(−η,∞) = q‖w‖X(−η,T ).

Since F is continuous on X(−η,∞), the continuity of F on X(−η, T ) is obvious.
This proves the result. �

Our definition of causal operators is somewhat different from the definition of
the causal operator suggested in [6, 33], see also [23, Chapter 10]. In the paper
[35] a deep investigation of a Cauchy problem with a causal operator in a separable
Banach space is presented. Besides, sufficient conditions are given for the existence
and uniqueness of solutions and some properties of set solutions are investigated.
An example is given to illustrate the application of the main result to a Volterra
integro-differential equation with delay.

Now let X(a,∞) = C(a,∞) and

Ω(̺) = ΩC(̺) = {w ∈ C(−η,∞) : ‖w‖C(−η,∞) ≤ ̺}

for a positive ̺ ≤ ∞. The following condition often used below:

(2.2) ‖Fw‖C(0,∞) ≤ q‖w‖C(−η,∞) (w ∈ Ω(̺)).

In the rest of the paper the uniqueness of the considered solutions is assumed.

Definition 26. Let F : C(−η,∞) → C(0,∞) be a continuous mapping. Then the
zero solution of (1.1) is said to be stable (in the Lyapunov sense), if for any ǫ > 0,
there exists a δ > 0, such that the inequality ‖φ‖C1(−η,0) ≤ δ implies ‖x‖C(0,∞) ≤ ǫ
for any solution x(t) of problem (1.1), (1.2).

According to Lemma 6.2.2 and (2.2), F satisfies the hypothesis of Theorem 6.1.1.
Hence, we get

Theorem 27. Let F : C(−η,∞) → C(0,∞) be a continuous causal mapping
satisfying conditions (2.2) and (1.5). Then the zero solution of (1.1) is stable.
Moreover, a solution x(t) of problem (1.1), (1.2) satisfies the inequality

(2.3) ‖x‖C(−η,∞) ≤ ‖z‖C(−η,∞)(1− q‖Ĝ‖C(0,∞))
−1
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Neutral type vector equations 25

provided

(2.4) ‖z‖C(−η,∞) < (1− q‖Ĝ‖C(0,∞))̺.

Since the linear equation (1.4) is assumed to be stable, there is a constant c0,
such that

(2.5) ‖z‖C(−η,∞) ≤ c0‖φ‖C(−η,0).

Due to (2.4), the inequality

c0‖φ‖C(−η,0) ≤ ̺(1− q‖Ĝ‖C(0,∞))

gives us a bound for the region of attraction.
Furthermore, if : C(−η,∞) → C(0,∞) is causal and the condition

(2.6) lim
‖w‖C(−η,∞)→0

‖Fw‖C(0,∞)

‖w‖C(−η,∞)
= 0

holds, then equation (1.1) will be called a quasilinear causal equation.

Theorem 28. Let (1.1) be a quasilinear causal equation and the linear equation
(1.4) be asymptotically stable. Then the zero solution to equation (1.1) is stable.

Proof. From (2.6) it follows that for any ̺ > 0, there is a q > 0, such that (2.1) holds,
and q = q(̺) → 0 as ̺→ 0. Take ̺ in such a way that the condition q‖Ĝ‖C(0,∞) < 1
is fulfilled. Now the required result is due the to the previous theorem. �

For instance, if

(2.7) ‖Fw(t)‖n ≤
m
∑

k=1

∫ η

0
‖w(t− s)‖pkn dµk(s) (t ≥ 0; w ∈ C(−η,∞)),

where µk(s) are nondecreasing functions, and pk = const ≥ 1. Then (2.1) holds.
Indeed, we have

‖Fw‖C(0,T ) ≤
m
∑

k=1

var (µk)‖w‖pkC(−η,T ).

So for any finite ̺ we obtain (2.2) with

q = q(̺) =
m
∑

k=1

̺pk−1var (µk).

Recall that that estimates for ‖Ĝ‖C(0,∞) can be found in Section 3 (see also inequality
(1.7)).

Note that differential delay equations with causal mappings were considered in
[16, 17].
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7 L
2-absolute Stability of Nonlinear Equations

7.1 Preliminaries

In this section, explicit conditions are established for the absolute stability of the
considered systems in the terms of the L2-norm of solutions.

First, consider the linear problem

(1.1) ẏ(t)−
∫ η

0
dR̃(τ)ẏ(t− τ) =

∫ η

0
dR(τ)y(t− τ) ( t ≥ 0),

(1.2) y(t) = φ(t) for − η ≤ t ≤ 0,

where φ(t) ∈ C1(−η, 0) is given; R(τ) and R̃(τ) are n × n-matrix-valued functions
defined as above and satisfying

(1.3) V (R) <∞, and V (R̃) < 1.

(see Section 3). Recall that

K(z) = Iz − z

∫ η

0
exp(−zs)dR̃(s)−

∫ η

0
exp(−zs)dR(s) (z ∈ C)

and G(t) is the fundamental solution to (1.1).
For instance, (1.1) can take the form

(1.4)

ẏ(t)−
∫ η

0
Ã(τ)ẏ(t− s)dτ −

m̃
∑

k=1

Ãky(t− h̃k) =

∫ η

0
A(s)y(t− s)ds+

m
∑

k=0

Aky(t− hk),

where m, m̃ are finite integers; 0 = h0 < h1 < ... < hm ≤ η and 0 < h1 < ... < hm ≤
η are constants, Ak, Ãk are constant matrices and A(s), Ã(s) are integrable on [0, η].
Besides,
(1.5)

V (R) ≤
(

∫ η

0
‖A(s)‖nds+

m
∑

k=0

‖Ak‖n
)

, V (R̃) ≤
(

∫ η

0
‖Ã(s)‖nds+

m̃
∑

k=0

‖Ãk‖n
)

.

As it was mentioned, under condition (1.3), equation (1.1) is asymptotically
stable and L2-stable, if all the characteristic values of K(.) are in the open left
half-plane C−.

Let F : L2(−η,∞) → L2(0,∞) be a continuous causal mapping. It is assumed
that there is a constant q, such that

(1.6) ‖Fw‖L2(0,∞) ≤ q‖w‖L2(−η,∞) (w ∈ L2(−η,∞)).
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Neutral type vector equations 27

Consider the equation

(1.7) ẋ(t)−
∫ η

0
dR̃(s)ẋ(t− s)−

∫ η

0
dR(s)x(t− s) = [Fx](t) (t ≥ 0),

A solution of problem (1.7), (1.2) is a continuous function x(t) defined on [−η,∞),
such that

(1.8a) x(t) = z(t) +

∫ t

0
G(t− t1)[Fx](t1)dt1 (t ≥ 0),

(1.8b) x(t) = φ(t) (−η ≤ t ≤ 0),

where z(t) is a solution of the problem (1.1), (1.2).

Let Ĝ be the operator defined on L2(0,∞) by

Ĝf(t) =

∫ t

0
G(t− t1)f(t1)dt1 (f ∈ L2(0,∞)).

Furthermore, recall that due to Lemma 3.2.4

(1.9) ‖Ĝ‖L2(0,∞) ≤ θ(K)

and assume that

(1.10) θ(K) <
1

q
.

7.2 Stability conditions

We will say that equation (1.7) is absolutely L2-stable in the class of the nonlinearities
satisfying (1.6) if it has at least one solution and there is a positive constant m̂
independent of the specific form of functions F (but dependent on q), such that

‖x‖L2(0,∞) ≤ m̂‖φ‖C1(−η,0)

for any solution x(t) of problem (1.7), (1.2).

Lemma 29. Let conditions (1.3) and (1.10) hold. Then equation (1.7) is absolutely
L2-stable in the class of the nonlinearities satisfying (1.6). Moreover, any solution
x(t) of problem (1.7), (1.2) satisfies the inequality

‖x‖L2(−η,∞) ≤ (1− qθ(K)‖L2(0,∞))
−1‖z‖L2(−η,∞).
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28 M. I. Gil’

Proof. Take a finite T > 0 and define the mapping Φ by

Φw(t) = z(t) +

∫ t

0
G(t− t1)[Fw](t1)dt1 (0 ≤ t ≤ T ;w ∈ L2(0, T )),

and Φw(t) = φ(t) for −η ≤ t ≤ 0. Then by (1.6) and (1.10),

‖Φw‖L2(−η,T ) ≤ ‖φ‖L2(−η,0) + ‖z‖L2(0,T ) + θ(K)q‖w‖L2(−η,T ).

So Φ maps L2(−η, T ) into itself. Taking into account that Φ is compact we prove
the existence of solutions. Furthermore,

‖x‖L2(−η,T ) = ‖Φx‖L2(−η,T ) ≤ ‖z‖L2(−η,T ) + θ(K)q‖x‖L2(−η,T ).

Hence we easily we obtain (1.10). Since (1.1) is stable, there is a constant m1, such
that

‖z‖L2(0,∞) ≤ m1‖φ‖C1(−η,0).

This and (1.5), complete the proof. �

Recall that

g(A) = (N2
2 (A)−

n
∑

k=1

|λk(A)|2)1/2.

It is not hard to check that g2(A) ≤ N2(A)− |Trace A2|. Besides,

(2.1) g2(A) ≤ 2N2
2 (AI) and g(e

iτA+ zI) = g(A)

for all τ ∈ R and z ∈ C (see Section 2). Remind also that

B(z) = z

∫ η

0
z exp(−zs)dR̃(s) +

∫ η

0
exp(−zs)dR(s).

and for any regular value z of K(.), the inequality

(2.2) ‖[K(z)]−1‖n ≤ Γ(K(z)) (z ∈ C)

is valid, where

Γ(K(z)) =
n−1
∑

k=0

gk(B(z))√
k!ρk+1(K(z))

and ρ(K(z)) is the smallest absolute value of the eigenvalues of K(z):

ρ(K(z)) = min
k=1,...,n

|λk(K(z))|.
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Neutral type vector equations 29

If B(z) is a normal matrix, then g(B(z)) = 0, and ‖[K(z)]−1‖n ≤ ρ−1(K(z)). For
example, that inequality holds, if K(z) = zI − Ãze−zη −Ae−zη, where A and Ã are
commuting Hermitian matrices.

Furthermore, from (2.2) the inequality

(2.3) θ(K) ≤ Γ0(K), where Γ0(K) = sup
−v0≤ω≤v0

Γ(K(iω))

follows. Thus due to Lemma 7.2.1 we arrive at the following result.

Theorem 30. Let all the zeros of K be in C− and the conditions (1.3), and

(2.4) qΓ0(K) < 1

hold. Then equation (1.7) is absolutely L2-stable in the class of the nonlinearities
satisfying (1.6).

Denote

ĝ(B) := sup
ω∈[−v0,v0]

g(B(iω)) and ρ̂(K) := inf
ω∈[−v0,v0]

ρ(K(iω)).

Then we have

Γ0(K) ≤ Γ̂(K), where Γ̂(K) :=

n−1
∑

k=0

ĝk(B)√
k!ρ̂k+1(K)

.

Now Theorem 7.2.1 implies

Corollary 31. Let all the zeros of K be in C− and the conditions (1.3), and
qΓ̂(K) < 1 hold. Then equation (1.7) is absolutely L2-stable in the class of the
nonlinearities satisfying (1.6).

Thanks to the definition of g(A), for all ω ∈ R one can write

(2.8) g(B(iω)) ≤ N2(B(iω)) ≤
√
n‖B(iω)‖n ≤

√
n(|ω|V (R̃) + V (R)).

The sharper estimates for g(B(iω)) under additional conditions are given below.

7.3 Nonlinear systems with discrete delays

Let Ã = (ãjk), A = (ajk) and C = (cjk) be n× n− matrices. Consider the equation

(3.1) ẏ(t)− Ãẏ(t− h̃) +Ay(t− h) + Cy(t) = [Fy](t) (t ≥ 0),

assuming that ‖Ã‖n < 1. So K(z) = z(I − Ãe−h̃z) + Ae−hz + C. The entries of K
are

kjk(z) = z(1− ãjke
−h̃z) + ajke

−hz + cjk.
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Thanks to the Hadamard criterion [36], any characteristic value λ of K(z) satisfies
the inequality

|kjj(z)− λ| ≤
n
∑

m=1,m 6=j

|kjm(z)| (j = 1, ..., n).

Hence we have

(3.2) ρ(K(z)) ≥ min
j=1,...,n

(|kjj(z)| −
n
∑

m=1,m 6=j

|kjm(z)| ),

provided the right-hand part is positive. Furthermore, in the case (3.1) we have
V (R̃) = ‖Ã‖n, V (R) = ‖A‖n + ‖C‖n, v0 = 2(‖A‖+ ‖C‖)(1− ‖Ã‖)−1. In addition,

g(K(z)) = g(B(z)) = g(−zÃe−h̃z +Ae−hz + C).

Hence, by (2.1)

g(B(iω)) ≤ 1√
2
N2(B(iω)−B∗(iω)) ≤

1√
2
[|ω|N2(e

−ih̃ωÃ+ eih̃ωÃ∗) +N2(e
−ihωA− eih̃ωA∗) +N2(C − C∗)].

One can use also relation g(B(iω)) = g(eisB(iω)) for all real s and ω. In particular,
taking s = h̃+ π/2, we have by (2.1)

g(B(iω)) ≤ 1√
2
[|ω|N2(Ã−Ã∗)+N2(e

−i(h−h̃)ωA+ei(h−h̃)ωA∗)+N2(Ce
ih̃ω+e−ih̃ωC∗)].

If Ã is self-adjoint, then

g(B(iω)) ≤ 1√
2
[N2(e

−i(h−h̃)ωA+ ei(h−h̃)ωA∗) +N2(Ce
ih̃ω + e−ih̃ωC∗)].

Hence,

(3.3) g(B(iω)) ≤
√
2[N2(A) +N2(C)] (ω ∈ R).

For example, consider the system

(3.4) ẏj(t)− ãjj ẏj(t− h̃) +

n
∑

k=1

(ajkyk(t− h) + cjkyk(t)) = [Fjy](t),

(j = 1, ..., n; t ≥ 0), where [Fjy](t) are coordinates of [Fy](t), and suppose that

(3.5) 0 ≤ ãjj < 1, ajj , cjj ≥ 0 (j = 1, ..., n).
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So Ã = diag (ãjj). Then (3.2) implies

(3.6) ρ(K(iω)) ≥ min
j=1,...,n

(|kjj(iω)| −
n
∑

m=1,m 6=j

(|ajm|+ |cjm|)).

Taking into account that |ãjj | ≤ ‖Ã‖n < 1, put

vj =
2(ajj + cjj)

1− ãjj

and assume that

(3.7) vjmax{hj , h̃j} < π/2 and dj := ajjcos(vjh) + cjj − vj ãsin(vj h̃) > 0

(j = 1, ..., n). Then by Corollary 3.4.3 all the zeros of kjj(.) are in C− and

inf
−∞≤ω≤∞

|kjj(iω)| ≥ dj > 0.

In addition, let

(3.8) ρ̂d := min
j=1,...,n

(dj −
n
∑

m=1,m 6=j

(|ajm|+ |cjm|)) > 0,

then according to (3.3) we get

Γ0(K) ≤ Γd :=
n−1
∑

k=0

(
√
2(N2(A) +N2(C)))

k

√
k!ρ̂k+1

d

.

Now Theorem 7.2.2 yields our next result.

Corollary 32. Let conditions (3.5), (3.7) and (3.8) be fulfilled. Then system (3.4)
is absolutely L2-stable in the class of the nonlinearities satisfying (1.6), provided
qΓd < 1.

7.4 Nonlinear systems with distributed delays

Let us consider the equation

(4.1) ẏ(t)− Ã

∫ η

0
ẏ(t− s)dµ̃(s) +A

∫ η

0
y(t− s)dµ(s) = [Fy](t) (t ≥ 0),

where Ã and A are n×n− matrices with ‖Ã‖ < 1, and µ, µ̃ are scalar nondecreasing
functions with finite numbers of jumps, again, and µ̃ does not have a jump at zero.
Without loss of generality suppose that

(4.2) var(µ) = var(µ̃) = 1.
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So in the considered case R(s) = µ(s)A, R̃(s) = µ̃(s)Ã, K(z) = zI −B(z) with

B(z) = zÃ

∫ η

0
e−zsdµ̃(s)−A

∫ η

0
e−zsdµ(s),

V (R) = ‖A‖n, V (R̃) = ‖Ã‖n and v0 = 2‖A‖n(1− ‖Ã‖n)−1. Moreover,

ĝ(K) = sup
|ω|<v0

g(B(iω)) ≤ N2(A) + v0N2(Ã).

If

(4.3) K(z) = zI − zÃe−zh̃ +A

∫ η

0
e−zsdµ(s),

then by (2.1) g(B(iω)) = g(ieiωh̃B(iω)) ≤

1√
2
[ |ω|N2(Ã− Ã∗) +N2(

∫ η

0
e−iω(s−h̃)dµ(s)A+

∫ η

0
eiω(s−h̃)dµ(s)A∗)].

Consequently, in the case (4.3) we get

ĝ(K) ≤ v0√
2
N2(Ã− Ã∗) +

√
2N2(A).

Now we can directly can apply Corollary 7.3.1.
In the rest of this subsection we suppose that Ã and A commute, then the

eigenvalues of K are

λj(K(z)) = z − z

∫ η

0
e−zsdµ̃(s)λj(Ã) +

∫ η

0
e−zsdµ(s)λj(A),

and, in addition, according to (2.2), g(B(iω)) ≤ |ω|g(Ã) + g(A). So

g(B(iω)) ≤ g(A, Ã) := v0g(Ã) + g(A) (ω ∈ [−v0, v0]).

Furthermore, suppose λk(A) and λk(Ã) (k = 1, ..., n) are positive and put

vk =
2λk(A)

1− λk(Ã)
.

If
(4.4)

ηvk < π/2 and dk(µ, µ̃) := λk(A)

∫ η

0
cos (τvk)dµ− vkλk(Ã)

∫ η

0
sin (τvk)dµ̃ > 0,

(k = 1, ..., n), then by Corollary 3.4.3 all the characteristic values of K are in C−

and
inf
ω∈R

|λj(K(iω))| ≥ d̃com := min
k
dk(µ, µ̃) (j = 1, ... , n).
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Neutral type vector equations 33

So

Γ̂(K) ≤ Γcom(K) :=
n−1
∑

k=0

ĝk(A, Ã)√
k!d̃k+1

com

.

Now Corollary 7.2.3 implies

Corollary 33. Let Ã and A be commuting matrices with positive eigenvalues. Let
the conditions (4.2), (4.4) and qΓcom(K) < 1 be fulfilled. Then equation (4.1) is
absolutely L2-stable in the class of the nonlinearities satisfying (1.6).

7.5 Example

Consider the system

(5.1) ẏj(t)− aẏj(t− h) +
2
∑

k=1

cjkyk(t) =

∫ t

0
Wj(t, s)fj(y1(s− h), y2(s− h))ds

(t ≥ 0), where 0 ≤ a < 1, cjk (j = 1, 2) are real, Wj(t, s) are real functions defined
on [0,∞)2 with the property

∫ ∞

0

∫ t

0
|Wj(t, s)|2dsdt ≤ b2j <∞ (bj = const ≥ 0)

and fj(z1, z2) are functions defined on C
2 with the property

|fj(z1, z2)| ≤ q̃j1|z1|+ q̃j2|z2| (q̃jk = const; zj ∈ C; j, k = 1, 2).

So (5.1) has the form (3.4). Besides,

∫ ∞

0
(

∫ t

0
Wj(t, s)fj(y1(s− h), y2(s− h))ds)2dt ≤

∫ ∞

0

∫ t

0
|Wj(t, s)|2dsdt

∫ ∞

0
|fj(y1(s− h), y2(s− h))|2ds ≤

b2j

∫ ∞

0
(q̃j1|y1(s− h)|+ q̃j2y2(s− h)|)2ds.

Then condition (1.6) holds with

(5.2) q2 = 2

2
∑

k=1

b2j

2
∑

k=1

q̃2jk.

Furthermore, we have K(z) = z(1 − ae−zh)I + C with C = (cjk); Ã = aI, B(z) =
−ae−zhI + C and by (2.1), Since Ã and C commute, g(B(z)) = g(C) ≤ gC =
|c12 − c21| and the eigenvalues of K are

λj(K(z)) = z − z ae−zh + λj(C).
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34 M. I. Gil’

Suppose λk(C) (k = 1, 2) are positive and put

vk =
2λk(C)

1− a
.

If

(5.3) hvk < π/2 and dk := λk(C)− vka sin (hvk) > 0 (k = 1, 2),

then by Corollary 3.4.3, the characteristic values of K are in C−, and

inf
ω∈R

|λj(K(iω))| ≥ d̂ := min
k=1,2

dk (j = 1, 2).

So

Γ̂(K) ≤ Γ̃ :=
1

d̂
(1 +

gC

d̂
).

Thanks to Corollary 7.2.3 we can assert that system (5.1) is absolutely L2-stable
provided the conditions (5.3) and qΓ̃ < 1 hold, where q is defined by (5.2).

8 Exponential Stability of Nonlinear Systems

8.1 Stability conditions

Recall that Ω(̺) = {f ∈ C(−η,∞) : ‖f‖C(−η,∞) ≤ ̺} for a given number 0 < ̺ ≤ ∞.
Consider the equation

(1.1) ẋ(t)−
∫ η

0
dR̃(s)ẋ(t− s)−

∫ η

0
dR(t, s)x(t− s) = [Fx](t) (t ≥ 0),

where F :is a continuous mapping Ω(̺) → C(0,∞), satisfying the following condition:
there is a nondecreasing function ν(t) defined on [0, η], such that

(1.2) ‖[Ff ](t)‖n ≤
∫ η

0
‖f(t− s)‖ndν(s) (t ≥ 0; f ∈ Ω(̺)).

A (mild) solution of equation (1.1) with an initial function φ ∈ C1(−η, 0) again is
defined as a continuous function x(t) defined on [−η,∞), such that

(1.3) x(t) = z(t) +

∫ t

0
G(t− t1)[Fx](t1)dt1 (t ≥ 0),

(1.4) x(t) = φ(t) (−η ≤ t ≤ 0),

where z(t) and G are defined as in Section 6. Recall that the uniqueness of solutions
is assumed.
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Neutral type vector equations 35

We will say that the zero solution to equation (3.1) is exponentially stable, if
there are positive constants r0 ≤ ̺, m̂ and ǫ, such that for any φ with

(1.5) ‖φ‖C1(−η,0) ≤ r0,

problem (1.1), (1.4) has a solution x(t) and

‖x(t)‖n ≤ m̂e−ǫt‖φ‖C1(−η,0) (t ≥ 0).

Recall that θ(K) is defined in Section 3.

Theorem 34. Let all the characteristic values of K(.) be in C− and the conditions
(1.2),

(1.6) var(ν)θ(K) < 1

and

(1.7) V (R̃) < 1

hold. Then the zero solution to (1.1) is exponentially stable.

This theorem is proved in the next subsection. About estimates for θ(K) see
Section 3.

8.2 Proof of Theorem 8.1.1

Recall that for all T > 0, the inequalities

(2.1) ‖Ef‖C(−η,T )→C(0,T ) ≤
√
n V (R)

and

(2.2) ‖Ef‖L2(−η,T )→L2(0,T ) ≤ V (R)

are valid (see Section 3).
The proof of Theorem 8.1.1 is based on the following lemmas which are proved

in [20, Section 3].

Lemma 35. Let condition (1.2) hold with r = ∞. Then ‖Fw‖L2(−η,T ) ≤ var(ν)‖w‖L2(−η,T )

(w ∈ L2(−η, T )) for any T > 0.

Furthermore, use the operator Ĝ defined on L2(0,∞) by

Ĝf(t) =

∫ t

0
G(t− t1)f(t1)dt1 (f ∈ L2(0,∞)),

and assume that

(2.3) var (ν) ‖Ĝ‖L2(0,∞) < 1.
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36 M. I. Gil’

Lemma 36. Let conditions (1.7), (2.3) and (1.2) with ̺ = ∞ hold. Then problem
(1.1), (1.4) has a solution x(t). Moreover,

(2.4) ‖x‖L2(−η,∞) ≤ (1− var(ν)‖Ĝ‖L2(0,∞))
−1‖z‖L2(−η,∞).

According to Lemma 3.2.4

(2.5) ‖Ĝ‖L2(0,∞) ≤ θ(K)

Now the previous lemma implies the inequality

‖x‖L2(−η,∞) ≤ (1− var(ν)θ(K))−1‖z‖L2(−η,∞).

Since the all the zeros of det K(.) are in C−, and (1.7) holds, we obtain

(2.6) ‖x‖L2(−η,∞) ≤ c2‖φ‖C1(−η,0) (c2 = const).

From (1.1), (2.2) and Lemma 8.2.1 it follows that

‖ẋ‖L2(0,∞) ≤ V (R̃)‖ẋ‖L2(−η,∞) + (V (R) + var(ν))‖x‖L2(−η,∞).

Or

‖ẋ‖L2(0,∞) ≤ V (R̃)(‖ẋ‖L2(0,∞) + ‖ẋ‖L2(−η,0)) + (V (R) + var(ν))‖x‖L2(−η,∞).

So due to (1.7) we obtain

Corollary 37. Under the hypothesis of Lemma 8.2.2 we have

‖ẋ‖L2(0,∞) ≤ (1− V (R̃))−1[(V (R) + var(ν))‖x‖L2(0,∞) + V (R̃)‖φ̇‖L2(−η,0)].

The previous lemma and (2.6) imply the inequality

(2.7) ‖ẋ‖L2(0,∞) ≤ c3‖φ‖C1(−η,0) (c3 = const).

Due to Lemma 3.2.5, if f ∈ L2(0,∞) and ḟ ∈ L2(0,∞), then ‖f‖2C(0,∞) ≤
2‖f‖L2(0,∞)‖ḟ‖L2(0,∞). This inequality and (2.7) imply the next result.

Lemma 38. Under the hypothesis of Lemma 8.2.2, the inequality

(2.8) ‖x‖C(0,∞) ≤ c4‖φ‖C1(−η,0) (c4 = const)

is valid and therefore the zero solution of (1.1) is globally stable in the Lyapunov
sense.

******************************************************************************
Surveys in Mathematics and its Applications 9 (2014), 1 – 54

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v09/v09.html
http://www.utgjiu.ro/math/sma


Neutral type vector equations 37

Proof of Theorem 8.1.1: Substituting

(2.9) x(t) = yǫ(t)e
−ǫt

with an ǫ > 0 into (1.1), we obtain the equation

(2.10) ẏǫ − ǫyǫ − Eǫ,R̃ẏǫ + ǫEǫ,R̃yǫ = Eǫ,Ryǫ + Fǫyǫ,

where

(Eǫ,R̃f)(t) =

∫ η

0
eǫτdτ R̃(t, τ)f(t− τ), (Eǫ,Rf)(t) =

∫ η

0
eǫτdτR(t, τ)f(t− τ)

and [Fǫf ](t) = eǫt[F (e−ǫtf)](t). By (1.2) with r = ∞ we have

‖[Fǫf ](t)‖n ≤ eǫt
∫ η

0
e−ǫ(t−s)‖f(t− s)‖ndν ≤ eǫη

∫ η

0
‖f(t− s)‖ndν.

Taking ǫ sufficiently small and applying our above arguments to equation (2.10),
according to (2.8), we obtain

(2.11) ‖yǫ‖C(0,∞) ≤ cǫ‖φ‖C1(−η,0) (cǫ = const).

Now (2.9) implies

(2.12) ‖x(t)‖C(0,∞) ≤ cǫ‖φ‖C1(−η,0)e
−ǫt (t ≥ 0).

So in the case ̺ = ∞, the theorem is proved.

Now let ̺ < ∞. By the Urysohn theorem [8, p. 15], there is a continuous
scalar-valued function ψ̺ defined on C(0,∞), such that

ψ̺(f) = 1 (‖f‖C(0,∞) < ̺) and ψ̺(f) = 0 (‖f‖C(0,∞) ≥ ̺).

Put [F̺f ](t) = ψ̺(f)[Ff ](t). Clearly, F̺ satisfies (2.2) for all f ∈ C(−η,∞).
Consider the equation

(2.13) ẋ− Ẽẋ = Ex+ F̺x.

The solution of (2.13) denote by x̺. For a sufficiently small ǫ, according to (2.12), we
have ‖x̺(t)‖C(0,∞) ≤ cǫ‖φ‖C1(−η,0). If we take ‖φ‖C1(−η,0) ≤ ̺/cǫ, then F̺x̺ = Fx
and equations (1.1) and (2.13) coincide. This and (2.12) prove the theorem. �
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38 M. I. Gil’

9 Aizerman’s type problem

9.1 Statement of the result

Recall that C− = {z ∈ C : Re z < 0}. In this section C(Ω) is the space of continuous
scalar-valued functions defined on a segment Ω ⊂ R and equipped with the sup-norm.
L2(Ω) is the space of scalar-valued functions defined on Ω and equipped with the
norm

‖v‖L2(Ω) = [

∫

Ω
|v(t)|2dt]1/2 (v ∈ L2(Ω)).

Consider the scalar neutral type functional differential equation

(1.1)
n
∑

k=0

m
∑

j=0

akjx
(k)(t− hj) = f(t, x(t), x(t− h1), x(t− h2), ..., x(t− hm)) ( t > 0),

where 0 = h0 < h1 < ... < hm are delays; akj are constant real coefficients with
an0 = 1 and anj 6= 0 for at least one j ≥ 1. The function f : [0,∞)× R

m+1 → R is
continuously differentiable and

(1.2) |f(t, z0, z1, ..., zm)| ≤
m
∑

k=0

qk|zk| (qk = const ≥ 0; zk ∈ R; k = 0, ...,m; t ≥ 0).

Put η = hm = maxk=1,...,m hk. With a given function φ having continuous derivatives
up to n-th order take the initial conditions

(1.3) x(t) = φ(t) (k = 0, ..., n; −η ≤ t ≤ 0).

Consider the linear equation

(1.4)
n
∑

k=0

m
∑

j=0

akjψ
(k)(t− hj) = 0 (t ≥ 0).

A solution of problem (1.4), (1.3) is n-times continuously differentiable function
satisfying (1.4) and (1.3) for all t > 0.

Throughout this paper it is assumed that (1.4) is L2-stable. Namely, all the
zeros of the characteristic (transfer) function

(1.5) K(λ) =

n
∑

k=0

m
∑

j=0

akjλ
ke−λhj

are in C−, and solutions of (1.4) are in L2(0,∞), cf. [29, p. 114]. Introduce the
Green function (fundamental solution, impulse response) of (1.4)

G(t) :=
1

2π

∫ ∞

−∞
etiωK−1(iω)dω.
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Neutral type vector equations 39

By the variation of constants formula [27, 29], equation (1.1) is equivalent to the
following one:

(1.6) x(t) = ψ(t) +

∫ t

0
G(t− s)f(s, x(s), x(s− h1), ..., x(s− hm))ds (t ≥ 0),

where ψ(t) is a solution of problem (1.4), (1.3).
A (mild) solution of problem (1.1), (1.3) is a function x(t) defined on [−η,∞),

which is continuous on [0,∞), satisfies (1.6) for t ≥ 0, and satisfies (1.3) for t ∈
[−η ≤ t ≤ 0]. The existence of solutions is assumed (see the previous section).

Definition 39. Equation (1.1) is said to be L2-absolutely stable (L2-a.s.) in the
class of nonlinearities (1.2), if there is a positive constant c0 independent of the
specific form of function f (but dependent on qj , j = 0, ...,m), such that

‖x‖L2(0,∞) ≤ c0

n
∑

k=0

‖φ(k)‖C(−η,0)

for any solution x(t) of (1.1) with initial conditions (1.3).

Let A, b, c be an n×n-matrix, a column-matrix and a row-matrix, respectively. In
1949 M. A. Aizerman conjectured the following hypothesis: for the absolute stability
of the zero solution of the equation ẋ = Ax + bf(cx) in the class of nonlinearities
f : R → R, satisfying 0 ≤ f(s)/s ≤ q (q = const > 0, s ∈ R, s 6= 0) it is
necessary and sufficient that the linear equation ẋ = Ax+ q1bcx be asymptotically
stable for any q1 ∈ [0, q] [2]. This hypothesis caused the great interest among
the specialists. Counterexamples were set up that demonstrated it was not, in
general, true, (see [44] and references therein). In connection with these results,
A. A. Voronov [44] investigated the following problem: to find the class of systems
that satisfy Aizerman’s hypothesis. He also received the first important results in
that direction. The author has showed that any system satisfies the Aizerman
hypothesis, if its impulse function is non-negative [10]. The similar result was
proved for multivariable systems and distributed ones, [11]). On the other hand,
A.D. Myshkis, [38, Section 10] pointed out at the importance of consideration of
the generalized Aizerman problem for retarded systems. That problem, called the
Aizerman-Myshkis problem, was investigated under various assumptions, by the
author in the papers [12, 14] and [17]. The very interesting results on the Aizerman-
Myshkis problem can be found in the papers [41, 43]. For the classical results on
absolute stability of retarded systems we refer the reader to the excellent book [42].
In that paper, absolute stability conditions for a wide class of functional and integro-
differential equations have been established. These conditions are connected with
the generalized Aizerman problem, which means the following: to separate a class
of linear parts of nonlinear systems, such that there is a linear equations, whose
stability provides the absolute stability of the considered nonlinear systems.
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In the present paper we consider the following generalization of the Aizerman
problem.

Problem 9.1: To separate a class of systems (1.1), such that the L2-stability of
the linear system

(1.7) x(n) +
n
∑

k=0

m
∑

j=1

akjx
(k)(t− hj) =

m
∑

k=0

q̃kx(t− hk)

for some q̃k ∈ [0, qk] (k = 0, ...,m) provides the L2-a.s. stability of system (1.1) in
the class of nonlinearities (1.2).

It should be noted that Problem 1 is considerably more complicated than the
Aizerman-Myshkis problem, since in the case of neutral type equations, the location
of all the zeros of the characteristic function in C− does not guarantee the exponential
stability [28, 29].

Now we are in a position to formulate the main result of the paper.

Theorem 40. Let Green’s function of (1.4) be positive:

(1.8) G(t) ≥ 0 (t ≥ 0),

and the linear equation (1.7) be L2-stable with q̃k = qk (k = 0, ...,m). Then (1.1) is
L2-a.s. in the class of nonlinearities (1.2).

So Theorem 9.1.2 separates a class of systems satisfying Problem 9.1. It is proved
in the next section.

Remark 41. Note that the notion of the L2-stability (L2-absolute stability) is stronger
that the notion of the asymptotic stability (asymptotic absolute stability) at least
under the natural condition

(1.9) dn =
m
∑

j=1

|anj | < 1.

Indeed, assume that a solution x of (1.1) is in L2(0,∞) and note that from (1.1)
and (1.2), for any finite T > 0, it follows that

‖x(n)‖L2(0,T ) ≤
n
∑

k=0

dk‖x(k)‖L2(−η,T ),

where

dk =
m
∑

j=1

|akj | (0 < k < n) and d0 =
m
∑

k=0

q̃k +
m
∑

j=1

|a0j |.
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Hence,

‖x(n)‖L2(0,T ) ≤
n
∑

k=0

dk‖x(k)‖L2(0,T ) + c0 where c0 =
n
∑

k=0

dk‖x(k)‖L2(−η,0)

and therefore

‖x(n)‖L2(0,T ) ≤ (1− dn)
−1

n−1
∑

k=0

dk‖x(k)‖L2(0,T ) + (1− dn)
−1c0.

Put wk = ‖x(k)‖1/n
L2(0,T )

, k = 1, ..., n. By the moment inequality, cf. formula (5.41)

from Section 5.9, Chapter I of the book [32], we have wn
k ≤ wk

nw
n−k
0 . Thus,

wn
n ≤

n−1
∑

k=0

d̃kw
k
nw

n−k
0 + c̃0,

where c̃0 = (1 − dn)
−1c0 and d̃k = (1 − dn)

−1dk. By the well known estimates for
the polynomial roots, we obtain

wn ≤ 1 + max{max
k>0

d̃kw
n−k
0 , d̃0w

n
0 + c0}.

Hence,

wn ≤ 1 + max{max
k>0

d̃k‖x‖(n−k)/n
L2(0,∞)

, d̃0‖x‖L2(0,∞) + c̃0}.

The right-hand part of this inequality does not depend on T . This implies x(n) ∈
L2(0,∞) and therefore, ẋ ∈ L2(0,∞). Thus

|x(t)|2 = −
∫ ∞

t

d

ds
|x(s)|2ds = −2

∫ ∞

t
|x(s)| d

ds
|x(s)|ds ≤

2(

∫ ∞

t
|x(s)|2ds)1/2(

∫ ∞

t
|ẋ(s)|2ds)1/2 → 0

as t→ ∞. As claimed.

9.2 Proof of Theorem 9.1.2

For an arbitrary n-times continuously differentiable function w defined on [−η,∞),
let us introduce the operator K̂ by

(K̂w)(t) :=
n
∑

k=0

m
∑

j=0

akjw
(k)(t− hj).

******************************************************************************
Surveys in Mathematics and its Applications 9 (2014), 1 – 54

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v09/v09.html
http://www.utgjiu.ro/math/sma


42 M. I. Gil’

Put in (1.6) y(t) = x(t)− ψ(t) where ψ(t) is a solution of (1.4), (1.3). Then
(2.1)

y(t) =

∫ t

0
G(t−s)f(s, y(s)+ψ(s), y(s−h1)+ψ(s−h1), ..., y(s−hm)+ψ(s−hm))ds.

Besides,

(2.2) y(k)(t) = 0 (k = 0, ..., n; −η ≤ t ≤ 0).

Due to the positivity of G(t) and condition (1.2), we get

|y(t)| ≤
∫ t

0
G(t− s)(F (s) + q0|y(s)|+ q1|y(s− h1)|+ ...+ qm|y(s− hm)|)ds.

where
F (s) = q0|ψ(s)|+ q1|ψ(s− h1)|+ ...+ qm|ψ(s− hm)|.

By the well-known Lemma 3.2.1 [7] (the comparison principle), we have

(2.3) |y(t)| ≤ z(t) (t ≥ 0),

where z(t) is a solution of the equation

(2.4) z(t) =

∫ t

0
G(t− s)(F (s) + q0z(s) + ...+ qmz(s− hm))ds

with the conditions

(2.5) z(k)(t) = 0 (k = 0, ..., n; −η ≤ t ≤ 0).

But equation (2.4) is equivalent to the following one:

(2.6) (K̃z)(t) = F (t) + q0z(t) + q1z(t− h1) + ...+ qmz(t− hm).

Denote by W (t) the Green function to (2.6). By the variation of constants formula,
the latter equation with conditions (2.5) can be written as

z(t) =

∫ t

0
W (t− s)F (s)ds (t ≥ 0).

Since (1.7) is L2-stable, by the Schwarz inequality, we obtain the inequality

(2.7) ‖z‖L2(0,∞) ≤ ‖W‖L2(0,∞)‖F‖L2(0,∞).

Let us check that ‖F‖L2(0,∞) < ∞. Indeed, since (1.4) is L2-stable, we have
‖ψ‖L2(0,∞) ≤ c1‖φ‖C,n, where

‖φ‖C,n :=
n
∑

k=0

‖φ(k)‖C(−η,0).
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Neutral type vector equations 43

But

‖F‖L2(0,∞) ≤ q0‖ψ‖L2(0,∞) + q1‖ψ‖L2(−h1,∞) + ...+ qm‖ψ‖L2(−hm,∞).

Therefore, ‖F‖L2(0,∞) ≤ c2‖ψ‖L2(−η,∞) ≤ c3‖φ‖C,n.
Taking into account (2.3), (2.7) and that x(t) = y(t) + ψ(t), we arrive at the

required result. �

9.3 Auxiliary results

In this section we prove some results, which will be used in the sequel. Consider the
equation

(3.1) u(t)−
∫ η

d
u(t− s)dµ(s) = (V u)(t) + f(t) (t ≥ 0)

where µ is a non-decreasing function, d ∈ (0, η) is a constant, f(t) is a continuous
function such that f(t) ≥ 0 (t > 0) and f(0) > 0, V is a positive Volterra operator:
V u(t) =

∫ t
0 K(t, s)u(s)ds where K(t, s) is positive, continuous in t and integrable in

s on any finite segment.
Consider the linear equation

(3.2) ẏ(t)− aẏ(t− h̃) + by(t− h) = 0,

where a, b, h, h̃ are positive constants. Due to Lemma 3.5.1, if the equation

(3.3) s = seh̃sa+ ehsb

has a positive root ζ, then the Green functionG1(t) to (3.2) is nonnegative. Moreover,

(3.4) G1(t) ≥ e−ζt ≥ 0 (t ≥ 0),

Ġ1(t) ≤ 0 and

(3.5)

∫ ∞

0
G1(t)dt =

1

b
.

In addition, Corollary 3.5.2 implies.

(3.6) inf
ω∈R

|k(iω)| = b,

provided (3.3) has a positive root.
As it was mentioned in Subsection 3.5, if there is a positive number λ, such that

aeh̃λλ+ behλ ≤ λ, then due to the well-known Theorem 38.1 [31] equation (3.3) has
a positive root ζ ≤ λ. In particular, if

(3.7) eh̃ca+
1

c
echb ≤ 1,
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44 M. I. Gil’

then equation (3.3) has a positive root ζ ≤ c. Moreover, denote

c0 = − bh

2ah̃
+

√

(

bh

2ah̃

)2

+
b

ah̃

and suppose

(3.8) eh̃c0a+
1

c0
ec0hb ≤ 1,

then as it is shown i (3.3) has a positive root ζ ≤ c0.

9.4 Particular cases

Consider the first order equation

(4.1) ẋ(t)− aẋ(t− h̃) + bx(t− h) = f(x(t), x(t− h̃), x(t− h)),

where b, h, h̃ are positive constants and 0 < a = const < 1. The function f : R3 → R

is continuously differentiable and

(4.2) |f(t, z0, z1, z2)| ≤
2
∑

k=0

qk|zk| (qk = const ≥ 0; zk ∈ R; k = 0, 1, 2; t ≥ 0).

Let equation (3.3) have a positive root. Then by (3.4) G1(t) ≥ 0 and due to Theorem
9.1.2, equation (4.1) is L2-a.s. provided the linear equation

(4.3) ẋ(t)− aẋ(t− h̃) + bx(t− h) = q0x(t) + q1x(t− h̃) + q2x(t− h)

is L2-stable. Since a < 1, due to [29], equation (4.3) is L2-stable, provided all the
zeros of the characteristic function

k2(z) := z − ze−h̃za+ e−hzb− (q0 + q1e
−h̃za+ q2e

−hz)

of (4.3) are in C−. There are numerous criteria of the stability of linear first order
neutral type equations, cf. [28] and references therein. Let us suggest a new one.
Assume that

(4.4) q0 + q1 + q2 < b.

Then due to (3.6) we have

|q0 + q1e
−h̃iωa+ q2e

−hiω| ≤ q0 + q1 + q2 < |k(iω)| (ω ∈ R).

Hence due to the theorem of Rouché, all the zeros of k2(z) are in C−. We thus arrive
at our next result.
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Neutral type vector equations 45

Corollary 42. Let equation (3.3) have a positive root and condition (4.4) hold.
Then equation (4.1) is L2-a.s. in the class of nonlinearities (4.2).

Now consider a higher order equations with the characteristic function

(4.5) K(λ) =

n
∏

j=1

(λ− λaje
−h̃jλ + bje

−hjλ) (hj , h̃j , aj , bj = const ≥ 0; j = 1, ..., n).

Let each of the equations

(4.6) s = seh̃jsaj + ehsbj ( j = 1, 2, ..., n)

have at last one positive root. Then necessarily aj < 1 (j = 1, 2, ..., n). Taking into
account that a product of the Laplace transforms of several functions corresponds to
the convolution of these functions, we have due to Lemma 9.3.2 the following result:

Lemma 43. Let each of equations (4.6) have a positive root. Then the Green
function corresponding to the function K(λ) defined by (4.5) is nonnegative.

Now we can directly apply Theorem 9.1.2.

Example 44. Consider equation (4.1) with a = 0.3, b = 0.5, h̃ = 0.1, h = 0.2. So
equation (3.3) has the form

(4.7) s = 0.3se0.1s + 0.5e0.2s.

Since
0.1e0.1 + 0.2e0.2 < 1,

due to (3.7), equation (4.7) has a positive root. Hence, by Corollary 9.4.1 equation
(4.1) is L2-a.s. in the class of nonlinearities (4.2), provided q0 + q1 + q2 < 0.5.

Example 45. Consider the equation

(4.8)
d

dt
[u(t)− ϑ1u(t−

2

s
)] = −ϑ2u(t) + f(u(t), u(t− 2

s
)) (t ≥ 0),

with positive parameters ϑ1, ϑ2 and s, and the continuous function f : R
2 → R

assuming that

(4.9) |f(w1, w2)| ≤ q1|w1|+ q2|w2| (w1, w2 ∈ R),

where q1 and q2 are positive constants.
This equation is considered in the previous section, but now we investigate it

under new conditions.
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To apply Theorem 9.1.2 to (4.8) note that in the considered case

a = ϑ1, b = ϑ2, h̃ = 2/s, h = 0.

Condition (3.7) with c = 1 takes the form

(4.10) ϑ1e
2/s + ϑ2 < 1.

Condition (4.4) takes the form

(4.11) q1 + q2 < ϑ2.

Hence, by Corollary 9.4.1 equation (4.8) is L2-a.s. in the class of nonlinearities (4.9),
provided inequalities (4.10) and (4.11) hold.

10 Stability conditions via generalized norms

10.1 Preliminaries

In this section, the inequalities for real vectors or vector functions are understood
in the coordinate-wise sense.

Furthermore, let ρ̂ := (ρ1, ..., ρn) be a vector with positive coordinates ρj < ∞.
We need the following set:

Ω̃(ρ̂) := {v(t) = (vj(t)) ∈ C([−η,∞),Cn) : ‖vj‖C([−η,∞),C) ≤ ρj ; j = 1, ..., n}.

If we introduce in C([a, b],Cn) the generalized norm as the vector

M[a,b](v) := (‖vj‖C([a,b],C)
n
j=1 (v(t) = (vj(t)) ∈ C([a, b],Cn))

(see [23, Section 1.7] and references therein), then we can write down

Ω̃(ρ̂) := {v ∈ C([−η,∞),Cn) :M[−η,∞)(v) ≤ ρ̂}.

Recall that R(τ) = (r̃jk(τ))
n
j,k=1 and R(τ) = (rjk(τ))

n
j,k=1 are an n × n-matrix-

valued functions defined on [0, η], whose entries are real and have bounded variations.
Again consider in C

n the problem

(1.1) ẋ− Ẽẋ = Ex+ Fx (t ≥ 0),

(1.2) x(t) = φ(t) ∈ C1(−η, 0) (−η ≤ t ≤ 0),

where F is a continuous causal mapping in C(−η,∞), E and Ẽ are defined as in
Subsection 3.2. A (mild) solution of problem (1.1), (1.2) is again is defined as a
continuous function x(t), such that

(1.3) x(t) = z(t) +

∫ t

0
G(t− t1)Fx(t1)dt1 (t ≥ 0),
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Neutral type vector equations 47

and (1.2) holds. Here G(t) is the fundamental solution of the linear equation

(1.4) ż − Ẽż = Ez

and z(t) is a solution of the problem (1.5), (1.2). Again use the operator

Ĝf(t) =

∫ t

0
G(t− t1)f(t1)dt1 (f ∈ C(0,∞)).

10.2 Stability conditions

Rewrite (1.1) in the form
(2.1)

ẋj(t)−
n
∑

k=1

∫ η

0
ẋj(t−s)dr̃jk(s) =

n
∑

k=1

∫ η

0
xj(t−s)drjk(s)+[Fx]j(t) (t ≥ 0; j = 1, ..., n),

where x(t) = (xk(t))
n
k=1, [Fw]j(t) mean the coordinates of the vector function Fw(t)

with a w ∈ C([−η,∞),Cn). In addition,

(2.2) sup
j

n
∑

k=1

var (r̃jk) < 1.

It is assumed that F satisfies the following condition: there are nonnegative constants
νjk (j, k = 1, ..., n), such that for any

w(t) = (wj(t))
n
j=1 ∈ Ω̃(ρ̂),

the inequalities

(2.3) ‖[Fw]j‖C([0,∞),C) ≤
n
∑

k=1

νjk‖wk‖C([−η,∞),C) (j = 1, ..., n)

hold. In other words,

(2.4) M[0,∞)(Fw) ≤ Λ(F )M[−η,∞)(w) (w ∈ Ω̃(ρ̂)),

where Λ(F ) is the matrix whose entries are νjk:

(2.5) Λ(F ) = (νjk)
n
j,k=1.

Lemma 46. Let F be a continuous causal mapping in C(−η,∞) satisfying condition
(2.6). Then

M[0,T ](Fw) ≤ Λ(F )M[−η,T ](w) (w ∈ Ω̃(ρ̂) ∩ C([−η, T ]),Cn))

for all T > 0.
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48 M. I. Gil’

For the proof see [23, Lemma 10.7.1].

It is also assumed that the entries Gjk(t, s) of the fundamental solution G(t) of
equation (1.5) satisfy the conditions

(2.6) γjk := sup
t≥0

∫ ∞

0
|Gjk(t, s)|ds <∞.

Denote by γ̂ the matrix with the entries γjk:

γ̂ = (γjk)
n
j,k=1.

Theorem 47. Let the conditions (2.3) and (2.6) hold. If, in addition, the spectral
radius rs(Q) of the matrix Q = γ̂Λ(F ) is less than one, then the zero solution of
system (2.1) is stable. Moreover, if a solution z of the linear problem (1.4), (1.2)
satisfies the condition

(2.7) M[−η,∞)(z) +Qρ̂ ≤ ρ̂ ,

then the solution x(t) of problem (2.1), (1.2) satisfies the inequality

(2.8) M[−η,∞)(x) ≤ (I −Q)−1M[−η,∞)(z).

Proof. Take a finite T > 0 and define on ΩT (ρ̂) = Ω̃(ρ̂) ∩ C(−η, T ) the mapping Φ
by

Φw(t) = z(t) +

∫ t

0
G(t− t1)[Fw](t1)dt1 (0 ≤ t ≤ T ;w ∈ ΩT (ρ̂)),

and

Φw(t) = φ(t) for − η ≤ t ≤ 0.

Then by (2.4),

M[−η,T ](Φw) ≤M[−η,T ](z) + γ̂Λ(F )M[−η,T ](w).

According to (2.7) Φ maps ΩT (ρ̂) into itself. Taking into account that Φ is compact
we prove the existence of solutions. Furthermore,

M[−η,T ](x) =M[−η,T ](Φx) ≤M[−η,T ](z) +QM[−η,T ](x).

So

M[−η,T ](x) ≤ (I −Q)−1M[−η,T ](z).

Hence letting T → ∞, we obtain (2.8), completing the proof. �

Note that since Q ≥ 0, ρ̂ ≥ 0 and rs(Q) < 1, we have Qρ̂ ≤ ρ̂.
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Neutral type vector equations 49

The Lipschitz condition

(2.9) M[0,∞)(Fw − Fw1) ≤ Λ(F )M[−η,∞)(w − w1) (w1, w ∈ Ω̃(ρ̂))

together with the Generalized Contraction Mapping theorem also allows us to prove
the existence and uniqueness of solutions.

Note that one can use the well-known inequality

(2.10) rs(Q) ≤ max
j

n
∑

k=1

Q̂jk,

where Q̂jk are the entries of Q. About this inequality, as well as about other
estimates for the matrix spectral radius see [30, Section 16].

10.3 Systems with diagonal linear parts

Consider the system

(3.1) ẋj − aj ẋ(t− h̃j) + bjx(t− hj) = Fj(x)

where bj , hj , h̃j are positive constants and 0 < aj = const < 1. Let each of the
equations

(3.2) s = seh̃jsaj + ehjsbj

have a positive root. Then as it is shown in Subsection 3.5 the fundamental solution
Gj(t) of the equation

(3.3) żj − aj ż(t− h̃j) + bjz(t− hj) = 0,

is positive

(3.4)

∫ ∞

0
Gj(t)dt =

1

b j
.

In the considered case Gjj(t) = Gj(t), Gjk = 0, j 6= k, γjj = 1/bj . Thus under
condition (2.3), we have Q = (νjk/bj)

n
j,k=1. So (2.10) takes the form

(3.5) rs(Q) ≤ max
j

1

bj

n
∑

k=1

νjk.

For instance, let

(Fjx)(t) = fj(x1(t), x1(t− h̃), x1(t− h), ..., xn(t), xn(t− h̃), xn(t− h))
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50 M. I. Gil’

where the functions fj : R
3n → R are scalar continuous and

(3.6) |fj(z01, z11, z21, ..., z0n, z1n, z2n)| ≤
2
∑

m=0

n
∑

k=1

qjmk|zmk|

(qjmk = const ≥ 0; zmk ∈ R;m = 0, 1, 2; j, k = 1, ...,m; t ≥ 0).

Hence condition (2.3) follows with

νjk =
2
∑

m=0

qjmk.

11 Input-to-state Stability

In this section we establish explicit conditions that provide the input-to-state stability
for the considered systems. systems is rather rich. The input-to-state and input-
output stability of nonlinear retarded systems with causal mappings was investigated
considerably less than the one for systems without delay. In papers [13] and [16],
bounded input-to-bounded output stability conditions for multivariable retarded
systems was derived via the Karlson inequality. In the paper [17], the author has
derived a criterion for the L2-input-to-state stability of one-contour retarded systems
with causal mappings, that is, for systems governed by scalar functional differential
equations. At the same time, to the best of our knowledge the input-to-state stability
of nonlinear neutral type delay systems especially with causal mappings was not
investigated in the available literature. In this paper we improve and generalize the
main result from [17].

For a positive η < ∞, and an input u ∈ L2(0,∞) = L2([0,∞),Cn), consider in
C
n the problem

(1.1) ẋ(t)−
∫ η

0
dR̃(τ)ẋ(t− τ) =

∫ η

0
dR(τ)x(t− τ) + [F (x)](t) + u(t),

(1.2) x(t) = 0 for − η ≤ t ≤ 0,

where x(t) is the state, R(s) = (rij(s))
n
i,j=1 and R̃(s) = (r̃ij(s))

n
i,j=1 are real n× n-

matrix-valued functions defined on [0, η], whose entries have bounded variations
var(rij) and var(r̃ij). Recall that V ar(R) = (var(rij))

n
i,j=1 and V (R) = ‖V ar(R)‖n.

It is assumed that

(1.3) V (R̃) < 1.

Let F be a continuous causal mapping in L2(−η,∞) satisfying the following condition:
there is a constant q, such that

(1.4) ‖Fw‖L2(0,∞) ≤ q‖w‖L2(−η,∞) (w ∈ L2(−η,∞)).
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A (mild) solution of problem (1.1), (1.2) is a continuous function x(t) defined on
[0,∞), such that

x(t) =

∫ t

0
G(t− t1)([Fx](t1) + u(t1))dt1 (t ≥ 0),

with the zero initial condition. As above G(t) is the fundamental solution of the
linear equation

ẋ(t)−
∫ η

0
dR̃(s)ẋ(t− s)−

∫ η

0
dR(s)x(t− s) = 0 (t ≥ 0).

The solution existence is proved in [25]. The uniqueness of solutions is assumed.

We will say that equation (1.1) is input-to-state L2-stable, if for any ǫ > 0, there
is a δ > 0, such that ‖u‖L2(0,∞) ≤ δ implies ‖x‖L2(R+) ≤ ǫ for any solution of
problem (1.1), (1.2).

Recall that θd(K) is defined in Subsection 3.1. The following result has been
proved in [25]:

Let all the characteristic values of K(.) be in C−. Let the conditions (1.3), (1.4)
and qθd(K) < 1 hold. Then (1.1) is input-to-state L2-stable.
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