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EXISTENCE RESULTS FOR NONLINEAR
IMPLICIT FRACTIONAL DIFFERENTIAL

EQUATIONS

Mouffak Benchohra and Jamal Eddine Lazreg

Abstract. In this paper, we establish the existence and uniqueness of solution for a class of

initial value problem for implicit fractional differential equations with Caputo fractional derivative.

The arguments are based upon the Banach contraction principle, Schauder’ fixed point theorem

and the nonlinear alternative of Leray-Schauder type. As applications, two examples are included

to show the applicability of our results.

1 Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to
arbitrary order (non-integer). Fractional differential equations has been studied by
many researchers because they appear in various fields: physics, mechanics, engi-
neering, control theory, rheology, electrochemistry, viscoelasticity, chaos and fractals,
economics, etc. see for example [8, 17, 24, 25, 27], and references therein.

Several approaches to fractional derivatives exist: Riemann-Liouville, Hadamard,
Grunwald-Letnikov, Weyl and Caputo etc... The Caputo fractional derivative is well
suitable to the physical interpretation of initial conditions and boundary conditions.
For more details of some recent theoretical results on fractional differential equa-
tions and their various applications, we refer the reader to books by Abbas et al.
[3], Baleanu et al. [7], Kilbas et al. [20], Lakshmikantham et al. [21], and the papers
by Abbas et al. [4], Agarwal et al. [1, 2], Babakhani and Daftardar-Gejji [5, 6],
Belmekki and Benchohra [9], Benchohra et al. [11, 12, 13], Kilbas and Marzan [19],
the references therein. More recently, some mathematicians have considered bound-
ary value problems for fractional differential equations depending on the fractional
derivative.
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In [26], by means of Schauder fixed-point theorem, Su and Liu studied the exis-
tence of nonlinear fractional boundary value problem involving Caputo’s derivative:

cDαu(t) = f(t, u(t),cDβu(t)), for each, t ∈ (0, 1), 1 < α ≤ 2, 0 < β ≤ 1,

u(0) = u
′

(1) = 0, or u
′

(1) = u(1) = 0, or u(0) = u(1) = 0,

where f : [0, 1] × R × R → R is a continuous function. In [18], Hu and Wang
investigated the existence of solution of the nonlinear fractional differential equation
with integral boundary condition:

Dαu(t) = f(t, u(t), Dβu(t)), t ∈ (0, 1), 1 < α ≤ 2, 0 < β < 1,

u(0) = u0, u(1) =

∫ 1

0
g(s)u(s)ds,

where Dα is the Riemann-Liouville fractional derivative, f : [0, 1]×R×R → R , are
continuous function and g be an integrable function. In [23], S. Murad and S. Hadid,
by means of Schauder fixed-point theorem and the Banach contraction principle,
considered the boundary value problem of the fractional differential equation:

Dαy(t) = f(t, y(t), Dβy(t)), t ∈ (0, 1), 1 < α ≤ 2, 0 < β < 1, 0 < γ ≤ 1,

y(0) = 0, y(1) = I
γ
0 y(s),

where Dα is the Riemann-Liouville fractional derivative, f : [0, 1] × R × R → R, is
a continuous function. In [15], A. G-Lakoud and R. Khaldi, studied the following
boundary value problem of the fractional integral boundary conditions:

cDqy(t) = f(t, y(t),cDpy(t)), t ∈ (0, 1), 1 < q ≤ 2, 0 < p < 1,

y(0) = 0, y′(1) = αI
p
0y(1),

where cDα is the Caputo fractional derivative, f : [0, 1] × R × R → R, is a contin-
uous function. In [10], Benchohra et al. studied the problem involving Caputo’s
derivative:

cDαu(t) = f(t, u(t),cDα−1u(t)), for each, t ∈ J := [0,∞), 1 < α ≤ 2,

u(0) = u0, u is bounded on J.

Motivated by the above cited works, the purpose of this paper, is to establish ex-
istence and uniqueness results to the following implicit fractional-order differential
equation:

cDαy(t) = f(t, y(t),cDαy(t)), for each, t ∈ J = [0, T ], T > 0, 0 < α ≤ 1, (1.1)
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Nonlinear Implicit Fractional Differential Equations 81

y(0) = y0, (1.2)

where cDα is the Caputo fractional derivative, f : J×R×R → R is a given function
and y0 ∈ R.

In this paper we present three results for the problem (1.1)-(1.2). The first one is
based on the Banach contraction principle, the second one on Schauder’s fixed point
theorem, and the last one on the nonlinear alternative of Leray-Schauder type.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper. By C(J,R) we denote the Banach space of all continuous
functions from J into R with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J}.

Definition 1. ([20, 25]). The fractional (arbitrary) order integral of the function
h ∈ L1([0, T ],R+) of order α ∈ R+ is defined by

Iαh(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds,

where Γ is the gamma function.

Definition 2. ([19]). For a function h given on the interval [0, T ], the Caputo
fractional-order derivative of order α of h, is defined by

(cDαh)(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1h(n)(s)ds,

where n = [α] + 1.

Lemma 3. ([22]) Let α ≥ 0 and n = [α] + 1. Then

Iα(cDαf(t)) = f(t)− Σn−1
k=0

fk(0)

k!
tk.

We state the following generalization of Gronwall’s lemma for singular kernels.

Lemma 4. ([16, 28]) Let v : [0, T ] → [0,+∞) be a real function and w(.) is a
nonnegative, locally integrable function on [0, T ] and there are constants a > 0 and
0 < α < 1 such that

v(t) ≤ w(t) + a

∫ t

0
(t− s)−αv(s)ds.

Then, there exists a constant K = K(α) such that

v(t) ≤ w(t) +Ka

∫ t

0
(t− s)−αw(s)ds, for every t ∈ [0, T ].
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Theorem 5. ([14]) (Banach’s fixed point theorem). Let C be a non-empty closed
subset of a Banach space X, then any contraction mapping T of C into itself has a
unique fixed point.

Theorem 6. ([14]) (Schauder’s fixed point theorem). Let X be a Banach space. and
C be a closed, convex and nonempty subset of X. Let N : C → C be a continuous
mapping such that N(C) is a relatively compact subset of X. Then N has at least
one fixed point in C.

Theorem 7. ([14]) ([Nonlinear Alternative of Leray-Schauder type). Let X be a
Banach space with C ⊂ X closed and convex. Assume U is a relatively open subset
of C with 0 ∈ U and N : U → C is a compact map. Then either,

(i) N has a fixed point in U ; or

(ii) there is a point u ∈ ∂U and λ ∈ (0, 1) with u = λN(u).

3 Existence of Solutions

Let us defining what we mean by a solution of problem (1.1)-(1.2).

Definition 8. A function u ∈ C1(J,R) is said to be a solution of the problem
(1.1)–(1.2) is u satisfied equation (1.1) and conditions (1.2) on J .

For the existence of solutions for the problem (1.1)–(1.2), we need the following
auxiliary lemmas:

Lemma 9. Let a function f(t, u, v) : J × R × R → R be continuous. Then the
problem (1.1)–(1.2) is equivalent to the problem:

y(t) = y0 + Iαg(t) (3.1)

where g ∈ C(J,R) satisfies the functional equation:

g(t) = f(t, y0 + Iαg(t), g(t)).

Proof. If cDαy(t) = g(t) then Iα cDαy(t) = Iαg(t). So we obtain y(t) =
y0 + Iαg(t).

We are now in a position to state and prove our existence result for the problem
(1.1)-(1.2) based on Banach’s fixed point. First we list the following hypotheses:

Theorem 10. Assume

(H1) The function f : J × R× R → R is continuous.
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Nonlinear Implicit Fractional Differential Equations 83

(H2) There exist constants K > 0 and 0 < L < 1 such that

|f(t, u, v)− f(t, ū, v̄)| ≤ K|u− ū|+ L|v − v̄|

for any u, v, ū, v̄ ∈ R and t ∈ J .

If
KTα

(1− L)Γ(α+ 1)
< 1, (3.2)

then there exists a unique solution for IVP (1.1)-(1.2) on J .

Proof. The proof will be given in several steps. Transform the problem (1.1)-
(1.2) into a fixed point problem. Define the operator N : C(J,R) → C(J,R) by:

N(y)(t) = y0 + Iαg(t), (3.3)

where g ∈ C(J,R) satisfies the functional equation

g(t) = f(t, y(t), g(t)).

Clearly, the fixed points of operator N are solutions of problem (1.1)-(1.2). Let
u,w ∈ C(J,R). Then for t ∈ J , we have

(Nu)(t)− (Nw)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1(g(s)− h(s))ds,

where g, h ∈ C(J,R) be such that

g(t) = f(t, u(t), g(t)),

h(t) = f(t, w(t), h(t)),

Then, for t ∈ J

|(Nu)(t)− (Nw)(t)| ≤
1

Γ(α)

∫ t

0
(t− s)α−1|g(s)− h(s)|ds. (3.4)

By (H2) we have

|g(t)− h(t)| = |f(t, u(t), g(t))− f(t, w(t), h(t))|

≤ K|u(t)− w(t)|+ L|g(t)− h(t)|.

Thus

|g(t)− h(t)| ≤
K

1− L
|u(t)− w(t)|.
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By (3.4) we have

|(Nu)(t)− (Nw)(t)| ≤
K

(1− L)Γ(α)

∫ t

0
(t− s)α−1|u(s)− w(s)|ds

≤
KTα

(1− L)Γ(α+ 1)
‖u− w‖∞.

Then

‖Nu−Nw‖∞ ≤
KTα

(1− L)Γ(α+ 1)
‖u− w‖∞.

By (3.2), the operator N is a contraction. Hence, by Banach’s contraction princi-
ple, N has a unique fixed point which is a unique solution of the problem (1.1)-(1.2).

Our next existence result is based on Schauder’s fixed point theorem.

Theorem 11. Assume (H1),(H2) and the following hypothesis holds.

(H3) There exist p, q, r ∈ C(J,R+) with r∗ = sup
t∈J

r(t) < 1 such that

|f(t, u, w)| ≤ p(t) + q(t)|u|+ r(t)|w| for t ∈ J and u,w ∈ R.

If
q∗Tα

(1− r∗)Γ(α+ 1)
< 1, (3.5)

where p∗ = sup
t∈J

p(t), and q∗ = sup
t∈J

q(t), then the IVP (1.1)-(1.2) has at least one

solution.

Proof. Let the operator N defined in (3.3). We shall show that N satisfies the
assumption of Schauder’s fixed point theorem. The proof will be given in several
steps.

Claim 1: N is continuous.
Let {un} be a sequence such that un → u in C(J,R). Then for each t ∈ J

|N(un)(t)−N(u)(t)| ≤
1

Γ(α)

∫ t

0
(t− s)α−1|gn(s)− g(s)|ds, (3.6)

where gn, g ∈ C(J,R) such that

gn(t) = f(t, un(t), gn(t)),

and
g(t) = f(t, u(t), g(t)).
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Nonlinear Implicit Fractional Differential Equations 85

By (H2) we have

|gn(t)− g(t)| = |f(t, un(t), gn(t))− f(t, u(t), g(t))|

≤ K|un(t)− u(t)|+ L|gn(t)− g(t)|.

Then

|gn(t)− g(t)| ≤
K

1− L
|un(t)− u(t)|.

Since un → u, then we get gn(t) → g(t) as n → ∞ for each t ∈ J. and let η > 0 be
such that, for each t ∈ J , we have |gn(t)| ≤ η and |g(t)| ≤ η, then, we have

(t− s)α−1|gn(s)− g(s)| ≤ (t− s)α−1[|gn(s)|+ |g(s)|]

≤ 2η(t− s)α−1.

For each t ∈ J , the function s → 2η(t−s)α−1 is integrable on [0, t], then the Lebesgue
Dominated Convergence Theorem and (3.6) imply that

|N(un)(t)−N(u)(t)| → 0 as n → ∞,

and hence

‖N(un)−N(u)‖∞ → 0 as n → ∞.

Consequently, N is continuous.

Let

R ≥
M |y0|+ p∗Tα

M − q∗Tα
,

where M := (1− r∗)Γ(α+ 1) and define

DR = {u ∈ C(J,R) : ‖u‖∞ ≤ R}.

It is clear that DR is a bounded, closed and convex subset of C(J,R).

Claim 2: N(DR) ⊂ DR.

Let u ∈ DR we show that Nu ∈ DR.

We have, for each t ∈ J

|Nu(t)| ≤ |y0|+
1

Γ(α)

∫ t

0
(t− s)α−1|g(s)|ds. (3.7)
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By (H3) we have for each t ∈ J,

|g(t)| = |f(t, u(t), g(t))|

≤ p(t) + q(t)|u(t)|+ r(t)|g(t)|

≤ p(t) + q(t)R+ r(t)|g(t)|

≤ p∗ + q∗R+ r∗|g(t)|.

Then

|g(t)| ≤
p∗ + q∗R

1− r∗
:= M̃.

Thus (3.7) implies that

|Nu(t)| ≤ |y0|+
p∗Tα

(1− r∗)Γ(α+ 1)
+

q∗RTα

M

≤ |y0|+
p∗Tα

M
+

q∗RTα

M
≤ R.

Then N(DR) ⊂ DR.

Claim 3: N(DR) is relatively compact.

Let t1, t2 ∈ J, t1 < t2, and let u ∈ DR. Then

|N(u)(t2)−N(u)(t1)| =

∣∣∣∣
1

Γ(α)

∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]g(s)ds

+
1

Γ(α)

∫ t2

t1
[(t2 − s)α−1g(s)ds

∣∣∣∣

≤
M̃

Γ(α+ 1)
(tα2 − tα1 + 2(t2 − t1)

α).

As t1 → t2, the right-hand side of the above inequality tends to zero.

As a consequence of Claims 1 to 3 together with the Arzelá-Ascoli theorem, we
conclude that N : C(J,R) → C(J,R) is continuous and compact. As a consequence
of Schauder’s fixed point theorem ([14]), we deduce that N has a fixed point which
is a solution of the problem (1.1)− (1.2).

Our next existence result is based on Nonlinear alternative of Leray-Schauder
type.

Theorem 12. Assume (H1),(H2),(H3) hold. Then the IVP (1.1)-(1.2) has at least
one solution.
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Proof. Consider the operator N defined in (3.3). We shall show that N satisfies
the assumption of Leray-Schauder fixed point theorem. The proof will be given in
several claims.

Claim 1: Clearly N is continuous.

Claim 2: N maps bounded sets into bounded sets in C(J,R).

Indeed, it is enough to show that for any ρ > 0, there exist a positive constant
ℓ such that for each u ∈ Bρ = {u ∈ C(J,R) : ‖u‖∞ ≤ ρ}, we have ‖N(u)‖∞ ≤ ℓ.

For u ∈ Bρ, we have, for each t ∈ J ,

|Nu(t)| ≤ |y0|+
1

Γ(α)

∫ t

0
(t− s)α−1|g(t)|ds. (3.8)

By (H3) we have for each t ∈ J,

|g(t)| = |f(t, u(t), g(t))|

≤ p(t) + q(t)|u(t)|+ r(t)|g(t)|

≤ p(t) + q(t)ρ+ r(t)|g(t)|

≤ p∗ + q∗ρ+ r∗|g(t)|.

Then

|g(t)| ≤
p∗ + q∗ρ

1− r∗
:= M∗.

Thus (3.8) implies that

|Nu(t)| ≤ |y0|+
M∗Tα

Γ(α+ 1)
.

Thus

‖Nu‖∞ ≤ |y0|+
M∗Tα

Γ(α+ 1)
:= l.

Claim 3: Clearly, N maps bounded sets into equicontinuous sets of C(J,R).

We conclude that N : C(J,R) −→ C(J,R) is continuous and completely contin-
uous.

Claim 4: A priori bounds.
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We now show there exists an open set U ⊆ C(J,R) with u 6= λN(u), for λ ∈ (0, 1)
and u ∈ ∂U . Let u ∈ C(J,R) and u = λN(u) for some 0 < λ < 1. Thus for each
t ∈ J , we have

u(t) = λy0 +
λ

Γ(α)

∫ t

0
(t− s)α−1g(s)ds.

This implies by (H2) that for each t ∈ J we have

|u(t)| ≤ |y0|+
1

Γ(α)

∫ t

0
(t− s)α−1|g(s)|ds. (3.9)

And, by (H3) we have for each t ∈ J,

|g(t)| = |f(t, u(t), g(t))|

≤ p(t) + q(t)|u(t)|+ r(t)|g(t)|

≤ p∗ + q∗|u(t)|+ r∗|g(t)|.

Thus

|g(t)| ≤
1

1− r∗
(p∗ + q∗|u(t)|).

Hence

|u(t)| ≤ |y0|+
p∗Tα

(1− r∗)Γ(α+ 1)
+

q∗

(1− r∗)Γ(α)

∫ t

0
(t− s)α−1|u(s)|ds.

Then Lemma 4 implies that for each t ∈ J

|u(t)| ≤

(
|y0|+

p∗Tα

(1− r∗)Γ(α+ 1)

)(
1 +

Kq∗Tα

(1− r∗)Γ(α+ 1)

)
.

Thus

‖u‖∞ ≤

(
|y0|+

p∗Tα

(1− r∗)Γ(α+ 1)

)(
1 +

Kq∗Tα

(1− r∗)Γ(α+ 1)

)
:= M. (3.10)

Let

U = {u ∈ C(J,R) : ‖u‖∞ < M + 1}.

By our choice of U , there is no u ∈ ∂U such that u = λN(u), for λ ∈ (0, 1). As a
consequence of Leray-Schauder’s theorem ([14]), we deduce that N has a fixed point
u in U which is a solution to (1.1)-(1.2).
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Nonlinear Implicit Fractional Differential Equations 89

4 Examples

Example 1. Consider the following Cauchy problem

cD
1

2 y(t) =
1

2et+1(1 + |y(t)|+ |cD
1

2 y(t)|)
, for each, t ∈ [0, 1], (4.1)

y(0) = 1. (4.2)

Set

f(t, u, v) =
1

2et+1(1 + |u|+ |v|)
, t ∈ [0, 1], u, v ∈ R

Clearly, the function f is jointly continuous.
For any u, v, ū, v̄ ∈ R and t ∈ [0, 1] :

|f(t, u, v)− f(t, ū, v̄)| ≤
1

2e
(|u− ū|+ |v − v̄|).

Hence condition (H2) is satisfied with K = L = 1
2e .

It remains to show that condition (3.2) is satisfied. Indeed, we have

KTα

(1− L)Γ(α+ 1)
=

1

(2e− 1)Γ(32)
< 1.

It follows from Theorem 10 that the problem (4.1)-(4.2) as a unique solution.

Example 2. Consider the following Cauchy problem

cD
1

2 y(t) =
(2 + |y(t)|+ |cD

1

2 y(t)|)

2et+1(1 + |y(t)|+ |cD
1

2 y(t)|)
, for each, t ∈ [0, 1], (4.3)

y(0) = 1. (4.4)

Set

f(t, u, v) =
(2 + |u|+ |v|)

2et+1(1 + |u|+ |v|)
, t ∈ [0, 1], u, v ∈ R.

Clearly, the function f is jointly continuous.
For any u, v, ū, v̄ ∈ R and t ∈ [0, 1]

|f(t, u, v)− f(t, ū, v̄)| ≤
1

2e
(|u− ū|+ |v − v̄|).

Hence condition (H2) is satisfied with K = L = 1
2e . Also, we have,

|f(t, u, v)| ≤
1

2et+1
(2 + |u|+ |v|).
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90 M. Benchohra and J. E. Lazreg

Thus condition (H3) is satisfied with p(t) = 1
et+1 and q(t) = r(t) = 1

2et+1 .

And condition
q∗Tα

(1− r∗)Γ(α+ 1)
=

1

(2e− 1)Γ(32)
< 1,

is satisfied with T = 1, α = 1
2 , and q∗ = r∗ = 1

2e .

It follows from Theorem 11 that the problem (4.3)-(4.4) has at least one solution.
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