
Surveys in Mathematics and its Applications

ISSN 1842-6298 (electronic), 1843-7265 (print)

Volume 9 (2014), 93 – 104

AVERAGING FOR FUZZY DIFFERENTIAL
EQUATIONS

Mustapha Lakrib, Rahma Guen and Amel Bourada

Abstract. We prove and discuss averaging results for fuzzy differential equations. Our results

generalize previous ones.

1 Introduction and preliminaries

In recent years, the fuzzy set theory introduced by Zadeh [20] has emerged as a
powerful tool for modeling of uncertainty and for processing of vague or subjective
information in mathematical models, whose main directions of development have
been diversified and applied in many varied real problems. For such mathematical
modeling, using fuzzy differential equations are necessary. For significant results
from the theory of fuzzy differential equations and their applications, among many
works we refer the interested reader, for instance, to the books [12, 16] and the
papers [1, 2, 4, 13, 17, 18, 19] and the references therein.

In the present paper, we establish averaging results for fuzzy differential equations.
As in the previous works of the first author on the justification of the method of
averaging (see [7, 8, 9, 10, 11]), the conditions we assume on the right-hand sides
of the fuzzy differential equations under which our averaging results are stated are
more general than those considered in the existing literature as in [5, 6, 15].

Let Rd denotes the d-dimensional space with the euclidian norm | · |. Conv(Rd)
stands for the class of all nonempty compact and convex subsets of Rd. In Conv(Rd)
the so-called Hausdorff metric is defined by

ρ(A,B) := max

(

sup
a∈A

inf
b∈B

|a− b|, sup
b∈B

inf
a∈A

|a− b|

)

, A,B ∈ Conv(Rd).

The metric space (Conv(Rd), ρ) is complete.

Denote E
d the space of functions u : R

d → [0, 1] that satisfy the following
conditions:
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i) u is normal, i.e., there exists x0 ∈ R
d such that u(x0) = 1;

ii) u is fuzzy convex, i.e., for any x, y ∈ R
d and λ ∈ [0, 1], one has

u(λx+ (1− λ)y) ≥ min{u(x), u(y)};

iii) u is upper semicontinuous, i.e., for any x0 ∈ R
d and ε > 0, there exists

δ = δ(x0, ε) > 0 such that u(x) < u(x0) + ε for all x ∈ R
d that satisfy the

condition |x− x0| < δ;

iv) the closure of the set {x ∈ R
d : u(x) > 0} is compact.

The zero element in E
d is defined by 0̂(y) = 1 if y = 0 and 0̂(y) = 0 if y 6= 0.

For α ∈ (0, 1], the α-section [u]α of a mapping u ∈ E
d is defined as the set

{x ∈ R
d : u(x) ≥ α}. The zero section of a mapping u ∈ E

d is defined as the closure
of the set {x ∈ R

d : u(x) > 0}.

From i)− iv), it follows that [u]α ∈ Conv(Rd) for all α ∈ [0, 1].

For addition and scalar multiplication, we have, for α ∈ [0, 1],

[u+ v]α = [u]α + [v]α, [λu]α = λ[u]α, u, v ∈ E
d, λ ∈ R.

In the space E
d, define D : Ed × E

d → R+ by setting

D(u, v) = sup
α∈[0,1]

ρ([u]α, [v]α), u, v ∈ E
d

where ρ is the Hausdorff metric. D is a metric in E
d such that:

i) (Ed, D) is complete;

ii) D(x+ z, y + z) = D(x, y) for all x, y, z ∈ E
d;

iii) D(kx, ky) = |k|D(x, y) for all x, y ∈ E
d and k ∈ R.

The following definitions and theorems are given in [3, 14]. Let I be an interval
in R.

Definition 1. A function f : I → E
d is called strongly measurable on I if, for all

α ∈ [0, 1], the set-valued function fα : I → Conv(Rd) defined by: fα(t) = [f(t)]α, is
Lebesgue-measurable.

Definition 2. A function f : I → E
d is called integrally bounded on I if there exists

a Lebesgue-integrable function k(t) such that |x| ≤ k(t) for all x ∈ f0(t).
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Definition 3. The integral of a function f : I → E
d over I, denoted by

∫

I f(t)dt, is
defined as an element G ∈ E

d such that, for all α ∈ (0, 1],

[G]α =

∫

I
fα(t)dt

=

{
∫

I
φ(t)dt | φ : I → R

d is a measurable selection for fα

}

.

Theorem 4. If a function f : I → E
d is strongly measurable and integrally bounded,

then f is integrable on I.

Theorem 5. If f, g : I → E
d are integrable on I and λ ∈ R, then the following

assertions are true:

i)

∫

I
[f(t) + g(t)]dt =

∫

I
f(t)dt+

∫

I
g(t)dt;

ii)

∫

I
λf(t)dt = λ

∫

I
f(t)dt;

iii) D

(
∫

I
f(t)dt,

∫

I
g(t)dt

)

≤

∫

I
D(f(t), g(t))dt.

Definition 6. A function f : I → E
d is called continuous at a point t0 ∈ I if,

for any ε > 0, there exists δ = δ(t0, ε) > 0 such that D(f(t), f(t0)) < ε whenever
|t− t0| < δ, t ∈ I.

A function f : I → E
d is called continuous on I if it is continuous at every point

t0 ∈ I.

Definition 7. A function f : I × E
d → E

d is called continuous at a point (t0, x0) ∈
I×E

d if, for any ε > 0 there exists δ = δ(t0, x0, ε) > 0 such that D(f(t, x), f(t0, x0)) <
ε whenever |t− t0| < δ and D(x, x0) < δ, t ∈ I and x ∈ E

d.
A function f : I × E

d → E
d is called continuous on I × E

d if it is continuous at
every point (t0, x0) ∈ I × E

d.

Definition 8. A function f : I ×E
d → E

d is called continuous in x ∈ E
d uniformly

with respect to t ∈ I if, for any x0 ∈ E
d and ε > 0 there exists δ = δ(x0, ε) > 0 such

that D(f(t, x), f(t, x0) < ε for all t ∈ I whenever D(x, x0) < δ, x ∈ E
d.

Definition 9. A function f : I → E
d is called differentiable at a point t0 ∈ I

if, for any α ∈ [0, 1], the set-valued function fα : I → Conv(Rd) is Hukuhara
differentiable at the point t0, its derivative is equal to DHfα(t0), and the family of
sets {DHfα(t0) : α ∈ [0, 1]} defines a function f ′(t0) ∈ E

d (which is called a fuzzy
derivative of f(t) at the point t0).

A function f : I → E
d is called differentiable on I if it is differentiable at every

point t0 ∈ I.
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Theorem 10. Suppose that a function f : I → E
d is differentiable and its fuzzy

derivative f ′ : I → E
d is integrable on I. Then, for any a, t ∈ I, we have

f(t) = f(a) +

∫ t

a
f ′(τ)dτ.

2 Averaging results

Consider the following initial value problem associated to a fuzzy differential equation
with a small parameter

ẋ = f

(

t

ε
, x

)

, x(0) = x0, (2.1)

where f : R+ × U → E
d, U an open subset of Ed, x0 ∈ U and ε > 0 is a small

parameter.

Definition 11. A function x : I → U, where I = [0, ω), 0 < ω ≤ ∞, is called a
solution of problem (2.1) if it is continuous and, for all t ∈ I, satisfies the integral
equation

x(t) = x0 +

∫ t

0
f
(τ

ε
, x(τ)

)

dτ.

We associate (2.1) with the averaged initial value problem

ẏ = fo(y), y(0) = x0, (2.2)

where the function fo : U → E
d is such that, for any x ∈ U

lim
T→∞

D

(

1

T

∫ T

0
f(τ, x)dτ, fo(x)

)

= 0. (2.3)

The main result of this paper establishes nearness of solutions of problems (2.1)
and (2.2) on finite time intervals, and reads as follows.

Theorem 12. Suppose that the following conditions are satisfied:

(H1) the function f : R+ × U → E
d in (2.1) is continuous;

(H2) the continuity of f in x ∈ U is uniform with respect to t ∈ R+;

(H3) there exist a locally integrable function m : R+ → R+ and a constant M > 0
such that

D(f(t, x), 0̂) ≤ m(t), ∀t ∈ R+, ∀x ∈ U

with
∫ t2

t1

m(t)dt ≤ M(t2 − t1), ∀t1, t2 ∈ R+;
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(H4) for all x ∈ U, the limit (2.3) exists;

(H5) for the function fo : U → E
d in (2.2), there exists a constant λ > 0 such that

for continuous functions u, v : R+ → U and t ∈ R+,

D

(
∫ t

0
fo(u(τ))dτ,

∫ t

0
fo(v(τ))dτ

)

≤ λ

∫ t

0
D(u(τ), v(τ))dτ. (2.4)

Let x0 ∈ U. Let xε be a solution of (2.1) and let I = [0, ωε), 0 < ωε ≤ ∞, be
its maximal positive interval of definition. Let y be the solution of (2.2) and let
J = [0, ω0), 0 < ω0 ≤ ∞, be its maximal positive interval of definition. Then, for
any L > 0, L ∈ I ∩ J , and δ > 0, there exists ε0 = ε0(L, δ) > 0 such that, for all
ε ∈ (0, ε0], we have D(xε(t), y(t)) < δ for all t ∈ [0, L].

Notice that in condition (H5) we do not require that the function fo is Lipschitz
continuous. On the other hand, the averaging results stated in [5, 6, 15] are proved
under conditions that are stronger compared to the ones above. In particular, the
authors assume that the function f satisfies the Lipschitz condition with respect to
the second variable.

We discuss now the result of Theorem 12 when the function f is periodic or
more generally almost periodic in t. In those cases some of the conditions in
Theorem 12 can be removed. Indeed, if f is periodic in t, from continuity and
periodicity properties one can easily deduce condition (H2). Periodicity also implies
condition (H4) in an obvious way. The average of f is then given, for any x ∈ U, by

D

(

1

P

∫ P

0
f(τ, x)dτ, fo(x)

)

= 0, (2.5)

where P is the period. If f is almost periodic in t, for all x ∈ U, the limit

lim
T→∞

D

(

1

T

∫ s+T

s
f(τ, x)dτ, fo(x)

)

= 0 (2.6)

exists uniformly with respect to s ∈ R. So, condition (H4) is satisfied when s = 0.
In a number of cases encountered in applications the function f is a finite sum
of periodic functions in t. As in the periodic case above, condition (H2) is then
satisfied. Hence we have the following result.

Corollary 13 (Periodic and Almost periodic cases). The conclusion of Theorem 12
holds when the function f satisfies conditions (H1), (H3), (H5) and is periodic
or a sum of periodic functions in the first variable. It holds also when f satisfies
conditions (H1), (H2), (H3), (H5) and is almost periodic in the first variable.
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2.1 Technical lemmas

In what follows we will prove some results we need for the proof of Theorem 12.

Lemma 14. Let f : R+×U → E
d be a function. Suppose that f satisfies conditions

(H2), (H3) and (H4) in Theorem 12. Then the function fo : U → R
d in (2.3) is

continuous and satisfies

D(fo(x), 0̂) ≤ M, ∀x ∈ U

where the constant M is as in condition (H4).

Proof. Continuity of fo. Let x0 ∈ U. By condition (H2), for any ξ > 0 there exists
δ > 0 such that, for all x ∈ U, D(x, x0) ≤ δ implies that

D(f(τ, x), f(τ, x0)) ≤ ξ, ∀τ ∈ R+. (2.7)

Now, by condition (H4), we can easily deduce that, for any η > 0 there exists
T0 = T0(x0, x, η) > 0 such that, for all T ≥ T0 we have

D(fo(x), fo(x0)) ≤ D

(

fo(x),
1

T

∫ T

0
f(τ, x)dτ

)

+D

(

1

T

∫ T

0
f(τ, x)dτ,

1

T

∫ T

0
f(τ, x0))dτ

)

+D

(

fo(x0),
1

T

∫ T

0
f(τ, x0)dτ

)

≤ 2η +
1

T

∫ T

0
D (f(τ, x), f(τ, x0)) dτ ≤ 2η + ξ.

Since the value of η is arbitrary, in the limit we obtain that D(fo(x), fo(x0)) ≤ ξ,
which finishes to prove the continuity of fo at the point x0.

Boundedness of fo by M . Let x ∈ U. By condition (H3), we deduce that, for
any η > 0 there exists T0 = T0(x, η) > 0 such that, for all T ≥ T0 we have

D(fo(x), 0̂) ≤ D

(

fo(x),
1

T

∫ T

0
f(τ, x)dτ

)

+D

(

1

T

∫ T

0
f(τ, x)dτ, 0̂

)

≤ η +
1

T

∫ T

0
D
(

f(τ, x), 0̂
)

dτ ≤ η +M.

Since the value of η is arbitrary, in the limit we obtain the desired result.

Lemma 15. Let f : R+ ×U → E
d be a function. Suppose that f satisfies condition

(H4) in Theorem 12. Then, for all x ∈ U, L > 0 and α > 0, we have

lim
ε→0

sup
t∈[0,L]

D

(

ε

α

∫ t/ε+α/ε

t/ε
f(τ, x)dτ, fo(x)

)

= 0.
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Proof. Let x ∈ U, L > 0 and α > 0. Let t ∈ [0, L].
Case 1: t = 0. From condition (H4), it follows immediately that

lim
ε→0

D

(

ε

α

∫ α/ε

0
f(τ, x)dτ, fo(x)

)

= 0.

Case 2: t ∈ (0, L]. We write

ε

α

∫ t/ε+α/ε

t/ε
f(τ, x)dτ

=
1

α/ε

∫ t/ε+α/ε

0
f(τ, x)dτ −

1

α/ε

∫ t/ε

0
f(τ, x)dτ

=
1

t/ε+ α/ε

(

t

α
+ 1

)
∫ t/ε+α/ε

0
f(τ, x)dτ

−
t

α

1

t/ε

∫ t/ε

0
f(τ, x)dτ

=
1

t/ε+ α/ε

∫ t/ε+α/ε

0
f(τ, x)dτ

+
t

α

[

1

t/ε+ α/ε

∫ t/ε+α/ε

0
f(τ, x)dτ −

1

t/ε

∫ t/ε

0
f(τ, x)dτ

]

.

Then, we obtain

sup
t∈(0,L]

D

(

ε

α

∫ t/ε+α/ε

t/ε
f(τ, x)dτ, fo(x)

)

≤ sup
t∈(0,L]

D

(

1

t/ε+ α/ε

∫ t/ε+α/ε

0
f(τ, x)dτ, fo(x)

)

+
L

α

[

sup
t∈(0,L]

D

(

1

t/ε+ α/ε

∫ t/ε+α/ε

0
f(τ, x)dτ, fo(x)

)

+ sup
t∈(0,L]

D

(

1

t/ε

∫ t/ε

0
f(τ, x)dτ, fo(x)

)]

.

(2.8)

From condition (H4), we can easily deduce that

lim
ε→0

sup
t∈(0,L]

D

(

1

t/ε+ α/ε

∫ t/ε+α/ε

0
f(τ, x)dτ, fo(x)

)

= 0

and

lim
ε→0

sup
t∈(0,L]

D

(

1

t/ε

∫ t/ε

0
f(τ, x)dτ, fo(x)

)

= 0.

Therefore the right-hand side of (2.8) tends to zero as ε → 0 and the result is
proved.
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The next corollary follows directly from Lemma 15.

Corollary 16. Suppose that the function f in (2.1) satisfies conditions (H1), (H3)
and (H4) in Theorem 12. Let x0 ∈ U. Let xε be a solution of (2.1) and let I = [0, ωε),
0 < ωε ≤ ∞, be its maximal positive interval of definition. Then, for all L > 0,
L ∈ I, and α > 0, we have

lim
ε→0

sup
t∈[0,L]

D

(

ε

α

∫ t/ε+α/ε

t/ε
f(τ, xε(t))dτ, f

o(xε(t))

)

= 0. (2.9)

Lemma 17. Suppose that the function f in (2.1) satisfies conditions (H1)-(H4)
in Theorem 12. Let x0 ∈ U. Let xε be a solution of (2.1) and let I = [0, ωε),
0 < ωε ≤ ∞, be its maximal positive interval of definition. Then, for all L > 0,
L ∈ I, we have

lim
ε→0

sup
t∈[0,L]

D

(
∫ t

0
f
(τ

ε
, xε(τ)

)

dτ,

∫ t

0
fo(xε(τ))dτ

)

= 0.

Proof. Let L > 0, L ∈ I, and t0 = 0 < t1 < · · · < tn < · · · < tp = L, p ∈ N,
a partition of [0, L] with α = α(ε) := tn+1 − tn, n = 1, . . . , p and lim

ε→0
α = 0. Let

t ∈ [tm, tm+1] for any m ∈ {0, · · · , p− 1}. Then

D

(
∫ t

0
f
(τ

ε
, xε(τ)

)

dτ,

∫ t

0
fo(xε(τ))dτ

)

≤

m−1
∑

n=0

D

(
∫ tn+1

tn

f
(τ

ε
, xε(τ)

)

dτ,

∫ tn+1

tn

fo(xε(τ))dτ

)

+D

(
∫ t

tm

f
(τ

ε
, xε(τ)

)

dτ,

∫ t

tm

fo(xε(τ))dτ

)

.

(2.10)

By condition (H3) and Lemma 14 we have

D

(
∫ t

tm

f
(τ

ε
, xε(τ)

)

dτ,

∫ t

tm

fo(xε(τ))dτ

)

≤ D

(
∫ t

tm

f
(τ

ε
, xε(τ)

)

dτ, 0̂

)

+D

(
∫ t

tm

fo(xε(τ))dτ, 0̂

)

≤

∫ t

tm

D
(

f
(τ

ε
, xε(τ)

)

, 0̂
)

dτ +

∫ t

tm

D
(

fo(xε(τ)), 0̂
)

dτ ≤ 2Mα.

Now, for each n = 0, . . . ,m−1 and τ ∈ [tn, tn+1], by condition (H3) we can easily
deduce that D(xε(τ), xε(tn)) ≤ Mα so that by conditions (H2) and the continuity
of fo (Lemma 15), it follows, respectively, that

D
(

f
(τ

ε
, xε(τ)

)

, f
(τ

ε
, xε(tn)

))

≤ γn = γn(ε)
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and

D(fo(xε(τ)), f
o(xε(tn))) ≤ δn = δn(ε),

with lim
ε→0

γn = lim
ε→0

δn = 0.

Hence, from (2.10), it follows that

D

(
∫ t

0
f
(τ

ε
, xε(τ)

)

dτ,

∫ t

0
fo(xε(τ))dτ

)

≤
m−1
∑

n=0

D

(
∫ tn+1

tn

f
(τ

ε
, xε(tn)

)

dτ,

∫ tn+1

tn

fo(xε(tn))dτ

)

+
m−1
∑

n=0

∫ tn+1

tn

(γn + δn)dτ + 2Mα.

(2.11)

For each n = 0, . . . ,m− 1, we have

βn := D

(
∫ tn+1

tn

f
(τ

ε
, xε(tn)

)

dτ,

∫ tn+1

tn

fo(xε(tn))dτ

)

= αD

(

ε

α

∫ tn/ε+α/ε

tn/ε
f (τ, xε(tn)) dτ, f

o(xε(tn))

)

≤ α sup
t∈[0,L]

D

(

ε

α

∫ t/ε+α/ε

t/ε
f(τ, xε(t))dτ, f

o(xε(t))

)

:= α̺ (̺ = ̺(ε)).

Then
m−1
∑

n=0

βn ≤ ̺
m−1
∑

n=0

α = ̺
m−1
∑

n=0

(tn+1 − tn) = ̺t ≤ ̺L,

where, by Corollary 16, lim
ε→0

̺ = 0.

On the other hand, we have

m−1
∑

n=0

∫ tn+1

tn

(γn + δn)dτ ≤ η
m−1
∑

n=0

∫ tn+1

tn

dτ = ηt ≤ ηL,

where η = η(ε) = max{γn + δn : n = 0, . . . ,m− 1} and lim
ε→0

η = 0.

Finally, from (2.11) we obtain

sup
t∈[0,L]

D

(
∫ t

0
f
(τ

ε
, xε(τ)

)

dτ,

∫ t

0
fo(xε(τ))dτ

)

≤ (̺+ η)L+ 2Mα. (2.12)

As the right-hand side of (2.12) tends to zero as ε → 0, the lemma is proved.
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2.2 Proof of Theorem 12

We are now able to prove our main result (there is not much work left). We assume
that the assumptions in Theorem 12 are fulfilled.

For t ∈ [0, L] ⊂ I ∩ J , using condition (H5), we obtain

D(y(t), xε(t)) = D

(
∫ t

0
fo(y(τ))dτ,

∫ t

0
f
(τ

ε
, xε(τ)

)

dτ

)

≤ D

(
∫ t

0
fo(y(τ))dτ,

∫ t

0
fo(xε(τ))dτ

)

+D

(
∫ t

0
fo(xε(τ))dτ,

∫ t

0
f
(τ

ε
, xε(τ)

)

dτ

)

≤ λ

∫ t

0
D (y(τ), xε(τ)) dτ + σ

(2.13)

where

σ = σ(ε) := sup
t∈[0,L]

D

(
∫ t

0
f
(τ

ε
, xε(τ)

)

dτ,

∫ t

0
fo(xε(τ))dτ

)

.

By Lemma 17, we have lim
ε→0

σ = 0.

Now, by Gronwall Lemma, from (2.13) we deduce that

D(y(t), xε(t)) ≤ σ
|eλL − 1|

λ
,

which implies that
lim
ε→0

sup
t∈[0,L]

D(xε(t), y(t)) = 0.

The proof is complete. �
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