TOEPLITZ OPERATORS AND MULTIPLICATION OPERATORS IN THE COMMUTANT OF A COMPOSITION OPERATOR ON WEIGHTED BERGMAN SPACES

Mahmood Haji Shaabani and Bahram Khani Robati

Abstract

Let φ be an analytic self-map of \mathbb{D}. We investigate which Toeplitz operators and multiplication operators commute with a given composition operator C_{φ} on $A_{\alpha}^{p}(\mathbb{D})$ for $1<p<\infty$ and $-1<\alpha<\infty$. Let S be a bounded linear operator in the commutant of C_{φ}. We show that under a certain condition on S, S is a polynomial in C_{φ}.

1 Introduction

Let \mathbb{D} denote the open unit disc in the complex plane and let $d A$ be the normalized area measure on \mathbb{D}. For $0<p<\infty$ and $-1<\alpha<\infty$, the weighted Bergman space $A_{\alpha}^{p}(\mathbb{D})=A_{\alpha}^{p}$ is the space of analytic functions in $L^{p}\left(\mathbb{D}, d A_{\alpha}\right)$, where

$$
d A_{\alpha}(z)=(\alpha+1)\left(1-|z|^{2}\right)^{\alpha} d A(z) .
$$

If f is in $L^{p}\left(\mathbb{D}, d A_{\alpha}\right)$, we note that

$$
\|f\|_{p . \alpha}=\left(\int_{\mathbb{D}}|f(z)|^{p} d A_{\alpha}(z)\right)^{\frac{1}{p}}
$$

When $1 \leq p<\infty$, the space $L^{p}\left(\mathbb{D}, d A_{\alpha}\right)$ is a Banach space and the weighted Bergman space A_{α}^{p} is closed in $L^{p}\left(\mathbb{D}, d A_{\alpha}\right)$. So A_{α}^{p} is a Banach space. Let $L^{\infty}(\mathbb{D})$ denote the space of essentially bounded functions on \mathbb{D}. For $f \in L^{\infty}(\mathbb{D})$, we define

$$
\|f\|_{\infty}=\operatorname{esssup}\{|f(z)|: z \in \mathbb{D}\} .
$$

The space $L^{\infty}(\mathbb{D})$ is a Banach space with the above norm. As usual, let $H^{\infty}(\mathbb{D})=$ H^{∞} denote the space of bounded analytic functions on \mathbb{D}. It is clear that H^{∞} is closed in $L^{\infty}(\mathbb{D})$ and hence is a Banach space.

[^0]http://www.utgjiu.ro/math/sma

Let φ be an analytic self-map of the unit disc, $1<p<\infty$ and $-1<\alpha<\infty$. The composition operator C_{φ} on A_{α}^{p}, is defined by the rule $C_{\varphi}(f)=f \circ \varphi$. Every composition operator C_{φ} on A_{α}^{p} is bounded (see, e.g., [9]).

Let for each $1<p<\infty, P_{\alpha}: L^{p}\left(\mathbb{D}, d A_{\alpha}\right) \rightarrow A_{\alpha}^{p}$ be the Bergman projection. We note that P_{α} is an integral operator represented by

$$
P_{\alpha} g(z)=\int_{\mathbb{D}} K(z, w) g(w) d A_{\alpha}(w),
$$

where

$$
\begin{aligned}
K(z, w) & =\frac{1}{(1-z \bar{w})^{2+\alpha}} \\
& =\sum_{n=0}^{\infty} \frac{\Gamma(n+2+\alpha)}{n!\Gamma(2+\alpha)}(z \bar{w})^{n} .
\end{aligned}
$$

For each $f \in L^{\infty}(\mathbb{D})$ and $1<p<\infty$, we define the Toeplitz operator T_{f} on A_{α}^{p} with symbol f by $T_{f}(g)=P_{\alpha}(f g)$. If we define $M_{f}: L^{p}\left(\mathbb{D}, d A_{\alpha}\right) \rightarrow L^{p}\left(\mathbb{D}, d A_{\alpha}\right)$ by $M_{f}(g)=f g$, it is obvious that M_{f} is bounded. Since the Bergman projection is bounded (see, e.g., [8]), we conclude that T_{f} is a bounded operator.

If f is a bounded complex valued harmonic function defined on \mathbb{D}, then there are holomorphic functions f_{1} and f_{2} such that $f=f_{1}+\overline{f_{2}}$. This decomposition is unique if we require $f_{2}(0)=0$. Of course f_{1} and f_{2} are not necessarily bounded, but they are certainly Bloch functions and they are in A_{α}^{p} for $1 \leq p \leq \infty$ (see, e.g., [1]).

Throughout this paper, we write $\varphi^{[j]}$ to denote the j th iterate of φ, that is, $\varphi^{[0]}$ is the identity map on \mathbb{D} and $\varphi^{[j+1]}=\varphi \circ \varphi^{[j]}$.

Suppose that φ is an analytic self-map of \mathbb{D} which is not the identity and not an elliptic disc automorphism. Then there is a point a in $\overline{\mathbb{D}}$ such that iterates of φ converges to a uniformly on compact subsets of \mathbb{D}. We note that for each fixed positive integer $l,\left\{\left(\varphi^{[n]}\right)^{l}\right\}$ converges weakly to a^{l} as $n \rightarrow \infty$ (see, e.g., [6]). For each $1<p<\infty$ and w in \mathbb{D}, let λ_{w} be the point evaluation function at w, that is, $\lambda_{w}(g)=g(w)$, where $g \in A_{\alpha}^{p}$. It is well-known that point evaluations at the points of \mathbb{D} are all continuous on A_{α}^{p} (see, e.g., [8]).

Given a fixed operator A, we say that an operator B commutes with A if $A B=$ $B A$. The set of all operators which commute with a fixed operator A is called the commutant of A. The commutant of a particular operator is known in a few cases. For further information about commutant of a composition operator, see [2], [3] and [7]. Also in [5], Carl Cowen showed that if f is a covering map of \mathbb{D} onto a bounded domain in the complex plane, then the commutant of the Toeplitz operator T_{f} is generated by composition operators induced by linear fractional transformation φ
that satisfy $f \circ \varphi=f$ and by Toeplitz operators. Also in [4], Bruce Clod determined which Toeplitz operators are in the commutant of a given composition operator C_{φ} on H^{2}.

In this paper, under certain conditions on φ we investigate which Toeplitz operators and Multiplication operators commute with C_{φ} on A_{α}^{p} for $1<p<\infty$.

2 Toeplitz operators in the commutant of a composition operator

Throughout this section, C_{φ} denotes a bounded composition operator on A_{α}^{p} for $1<p<\infty$ and $-1<\alpha<\infty$. Our goal is to find information about the commutant of C_{φ}.

Theorem 1. Let f be a harmonic function in $L^{\infty}(\mathbb{D})$, and let φ be an analytic self-map of \mathbb{D} which is neither an elliptic disc automorphism of finite periodicity nor the identity mapping. If $C_{\varphi} T_{f}=T_{f} C_{\varphi}$, then f is an analytic function.

Proof. Let $f=f_{1}+\overline{f_{2}}$ such that f_{1} and f_{2} belong to $A_{\alpha}^{p}, f_{2}(0)=0, f_{1}(z)=$ $\sum_{n=0}^{\infty} a_{n} z^{n}$ and $f_{2}(z)=\sum_{n=1}^{\infty} b_{n} z^{n}$. Since φ is an analytic map which is not an elliptic disc automorphism of finite periodicity, φ is a constant function or φ is an elliptic automorphism of infinite periodicity or φ is neither an elliptic disc automorphism nor a constant.

Case(1): Let φ be a constant. Then $\varphi(z)=b$ for all $z \in \mathbb{D}$, where $|b|<1$. Since $T_{f} C_{\varphi}(1)=C_{\varphi} T_{f}(1)$, we have $f_{1}(z)=f_{1}(b)$. Thus f_{1} is a constant, let $f_{1}=c$. For every g in $A_{\alpha}^{p}, T_{f} C_{\varphi}(g)=C_{\varphi} T_{f}(g)$ which implies that

$$
c g(b)=P\left(\bar{f}_{2} g\right)(b)+c g(b) .
$$

So $P\left(\bar{f}_{2} g\right)(b)=0$. In particular, if $g(z)=z^{k}$, then $b_{k}=0$ for all $k \in \mathbb{N}$. Hence $f=f_{1}=c$ is analytic.

Case(2): Suppose that φ is an elliptic disc automorphism of infinite periodicity. If $\varphi(0)=0$, then Schwarz's Lemma implies that $\varphi(z)=e^{i \theta} z$, where $e^{i n \theta} \neq 1$ for all integers $n \neq 0$. Since $C_{\varphi} T_{f}(1)=T_{f} C_{\varphi}(1)$, we have $f_{1}\left(e^{i \theta} z\right)=f_{1}(z)$ and so $f_{1}=a_{0}$. Now by induction, we show that $f_{2}=0$. Since $T_{f} C_{\varphi}(z)=C_{\varphi} T_{f}(z)$, we have $\overline{b_{1}}=e^{i \theta} \overline{b_{1}}$, so $b_{1}=0$. Let $b_{1}=b_{2}=\cdots=b_{l-1}=0$. We show that $b_{l}=0$. Since $C_{\varphi} T_{f}\left(z^{l}\right)=T_{f} C_{\varphi}\left(z^{l}\right)$, we have $\overline{b_{l}}=e^{i l \theta} \overline{b_{l}}$ and so $b_{l}=0$. Hence f must be a constant function.

Now let $b \neq 0$ be the fixed point of φ. Since $T_{f} C_{\varphi}(1)=C_{\varphi} T_{f}(1)$, we have $f_{1}=f_{1} \circ \varphi$. Since φ has infinite periodicity, we conclude that f_{1} is a constant. Hence f_{2} induces a Toeplitz operator which commutes with C_{φ}. We claim that
$f_{2}=0$. Let $\alpha(z)=\frac{b-z}{1-\bar{b} z}$, note that $\alpha^{-1}=\alpha$. Since $T_{\bar{f}_{2}}$ commutes with C_{φ}, $A=C_{\alpha} T_{\bar{f}_{2}} C_{\alpha}$ commutes with $C_{\alpha} C_{\varphi} C_{\alpha}=C_{\alpha \circ \varphi \circ \alpha}$. The function $\alpha \circ \varphi \circ \alpha$ is an elliptic disc automorphism of infinite periodicity with fixed point 0 . Thus there exists $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ such that $A\left(z^{n}\right)=\lambda_{n} z^{n}$ and $T_{\bar{f}_{2}}=C_{\alpha} A C_{\alpha}$ (If $C_{\varphi} T=T C_{\varphi}$ and $\varphi(z)=e^{i \theta} z$, then there exists $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ such that $\left.T\left(z^{n}\right)=\lambda_{n} z^{n}\right)$. Set $g=A(\alpha)$, we have

$$
g(z)=\lambda_{0} b+\sum_{k=1}^{\infty} \lambda_{k}(\bar{b})^{k-1}\left(|b|^{2}-1\right) z^{k} .
$$

Since $T_{\bar{f}_{2}}(z)=\frac{2}{2+\alpha} \overline{b_{1}}$, we see that $g \circ \alpha$ is a constant. Hence g is a constant which implies that $\lambda_{k}=0$ for $k \geq 1$. On the other hand, $\lambda_{0}=0$. Thus $A=0$ and hence $f_{2}=0$.

Case(3): Let φ be neither an elliptic disc automorphism nor a constant. Suppose that a is the Denjoy-Wolff point of φ. Since $T_{f} C_{\varphi}=C_{\varphi} T_{f}$, we have

$$
T_{f} C_{\varphi^{[n]}}(z)=C_{\varphi^{[n]}} T_{f}(z) .
$$

Therefore

$$
\begin{aligned}
C_{\varphi^{[n]}} T_{f}(z) & =C_{\varphi^{[n]}} P\left(z f_{1}+z \bar{f}_{2}\right) \\
& =\left(\frac{2}{2+\alpha} \overline{b_{1}}+z f_{1}\right) \circ \varphi^{[n]},
\end{aligned}
$$

and $T_{f} C_{\varphi}(1)=C_{\varphi} T_{f}(1)$ which implies that $f_{1} \circ \varphi=f_{1}$. Hence

$$
T_{f} C_{\varphi^{[n]}}(z)=\frac{2}{2+\alpha} \overline{b_{1}}+f_{1} \varphi^{[n]} .
$$

Now if we apply λ_{0} on $T_{f} C_{\varphi^{[n]}}$, then we obtain

$$
\lambda_{0}\left(T_{f} C_{\varphi^{[n]}}(z)\right)=\frac{2}{2+\alpha} \overline{b_{1}}+a_{0} \varphi^{[n]}(0) .
$$

Hence $\left\{\lambda_{0}\left(T_{f} C_{\varphi^{[n]}}\right)\right\}$ converges to $\frac{2}{2+\alpha} \overline{b_{1}}+a_{0} a$ as $n \rightarrow \infty$. Since $\left\{\varphi^{[n]}\right\}$ converges weakly to a as $n \rightarrow \infty,\left\{T_{f}\left(\varphi^{[n]}\right)\right\}$ converges weakly to $T_{f}(a)=a f_{1}$ as $n \rightarrow \infty$. So $\left\{\lambda_{0}\left(T_{f} C_{\varphi^{[n]}}\right)\right\}$ converges to $a_{0} a$ as $n \rightarrow \infty$. Thus $b_{1}=0$.

Now let $b_{1}=b_{2}=\cdots=b_{l-1}=0$. Consider $T_{f}\left(z^{l}\right)$ in the above argument, we have

$$
T_{f}\left(\left(\varphi^{[n]}\right)^{l}\right)=\frac{\Gamma(l+1) \Gamma(\alpha+2)}{\Gamma(l+2+\alpha)} \overline{b_{l}}+f_{1}\left(\varphi^{[n]}\right)^{l} .
$$

By applying λ_{0} on $T_{f}\left(\left(\varphi^{[n]}\right)^{l}\right)$ and since $\left\{T_{f}\left(\left(\varphi^{[n]}\right)^{l}\right)\right\}$ converges weakly to $T_{f}\left(a^{l}\right)$ as $n \rightarrow \infty$, we get

$$
a^{l} a_{0}=\frac{\Gamma(l+1) \Gamma(\alpha+2)}{\Gamma(l+2+\alpha)} \bar{b}_{l}+a^{l} a_{0} .
$$

Thus $b_{l}=0$. Hence by the strong induction, $b_{n}=0$ for all $n \geq 1$, that is, f is analytic.

Remark 2. If $\varphi(z)=\frac{1}{2} z$, then φ is loxodromic and φ is not an elliptic disc automorphism. Also let $f(z)=|z|^{2}$, we have f is bounded and f is not a harmonic function. Since for every $n \in \mathbb{N}$,

$$
T_{f} C_{\varphi}\left(z^{n}\right)=C_{\varphi} T_{f}\left(z^{n}\right)=\frac{n+1}{2^{n}(n+2+\alpha)} z^{n}
$$

we have $C_{\varphi} T_{f}=T_{f} C_{\varphi}$ and f is not analytic. This example shows that Theorem 1 is not true in general without f being harmonic.

The following theorem shows that Theorem 1 is not true for all elliptic disc automorphisms.

Theorem 3. Let f be a harmonic function in $L^{\infty}(\mathbb{D})$, and let φ be an elliptic disc automorphism of period q, where $q \geq 2$ with $\varphi(0)=0$. Then $T_{f} C_{\varphi}=C_{\varphi} T_{f}$ if and only if $f(z)=\sum_{n=0}^{\infty} a_{n q} z^{n q}+\sum_{n=1}^{\infty} \bar{b}_{n q} \bar{z}^{n q}$.
Proof. By hypothesis, $\varphi(z)=e^{i \theta} z$ with $\theta=2 \pi \frac{p}{q}$, where p is an integer, q is a natural number and g.c.d $(p, q)=1$. Let $f=f_{1}+\overline{f_{2}}$ such that f_{1} and f_{2} belong to $A_{\alpha}^{p}, f_{2}(0)=0, f_{1}(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $f_{2}(z)=\sum_{n=1}^{\infty} b_{n} z^{n}$. Since $T_{f} C_{e^{2 \pi i \frac{p}{q}} z^{p}}(1)=$ $C_{e^{2 \pi i \frac{p}{q}}{ }_{z}} T_{f}(1)$, we have $f_{1}(z)=f_{1}\left(e^{2 \pi i \frac{p}{q}} z\right)$. Thus

$$
\sum_{n=0}^{\infty} a_{n} z^{n}=\sum_{n=0}^{\infty} a_{n}\left(e^{2 \pi i \frac{p}{q}}\right)^{n} z^{n}
$$

So if $q \nmid n, a_{n}=0$. Hence $f_{1}(z)=\sum_{n=0}^{\infty} a_{n q} z^{n q}$. Since $T_{f} C_{e^{2 \pi i \frac{p}{q}}}(z)=C_{e^{2 \pi i \frac{p}{q}}} T_{f}(z)$, we have

$$
\frac{2}{2+\alpha} \bar{b}_{1} e^{2 \pi i \frac{p}{q}}+z e^{2 \pi i \frac{p}{q}} f_{1}(z)=z e^{2 \pi i \frac{p}{q}} f_{1}(z)+\frac{2}{2+\alpha} \bar{b}_{1} .
$$

Therefore $b_{1}=0$. For n such that $q \nmid n$ assume by induction that if $m<n$ and $q \nmid m$, then $b_{m}=0$. Since

$$
T_{f} C_{e^{2 \pi i \frac{p}{q}}}\left(z^{n}\right)=C_{e^{2 \pi i \frac{p}{q}}} T_{f}\left(z^{n}\right),
$$

by a similar argument, we can prove that $b_{n}=0$ which we omit the details.
Conversely, if $f(z)=\sum_{n=0}^{\infty} a_{n q} z^{n q}+\sum_{n=1}^{\infty} \bar{b}_{n q} \bar{z}^{n q}$, then by straightforward calculation T_{f} commutes with C_{φ}.

In Theorems 1 and 3 we have shown that except for elliptic disc automorphisms of finite periodicity, the Toeplitz operators which commute with C_{φ} must be analytic, that is, symbol of the Toeplitz operator must be analytic. Now let f be in H^{∞}. Then $T_{f}=M_{f}$ and in this case M_{f} commutes with C_{φ} is equivalent to $f \circ \varphi=f$. We will determine which multiplication operators commute with C_{φ} for certain composition operator C_{φ}.

Lemma 4. Let f be in H^{∞}, and let α be a disc automorphism. Then $C_{\alpha} M_{f} C_{\alpha^{-1}}=$ $M_{f \circ \alpha}$.

Proof. Let g be in A_{α}^{p}. Then

$$
\begin{aligned}
C_{\alpha} M_{f} C_{\alpha^{-1}}(g) & =C_{\alpha} M_{f}\left(g \circ \alpha^{-1}\right) \\
& =C_{\alpha}\left(g \circ \alpha^{-1} \cdot f\right) \\
& =\left(g \circ \alpha^{-1} \cdot f\right) \circ \alpha \\
& =g \cdot f \circ \alpha \\
& =M_{f \circ \alpha}(g) .
\end{aligned}
$$

Proposition 5. Let φ be an elliptic disc automorphism with fixed point b, and let $f \in H^{\infty}$. Then
(a) If φ is of infinite periodicity, then the multiplication operator M_{f} commutes with C_{φ} if and only if f is a constant.
(b) If φ is of period q, then M_{f} commutes with C_{φ} if and only if f is of the form $f(z)=\sum_{n=0}^{\infty} a_{n q}\left(\frac{b-z}{1-\bar{b} z}\right)^{n q}$.

Proof. (a) The proof follows from Theorem 1 case (2).
(b) If $f \in H^{\infty}$ and $\alpha(z)=\frac{b-z}{1-\bar{b} z}$, then $\alpha \circ \varphi \circ \alpha$ is an elliptic disc automorphism of period q, with fixed point 0 and we have M_{f} commutes with C_{φ} if and only if $C_{\alpha} M_{f} C_{\alpha}$ commutes with $C_{\alpha} C_{\varphi} C_{\alpha}=C_{\alpha \circ \varphi \circ \alpha}$ if and only if (by Lemma 4) $M_{f \circ \alpha}$ commutes with $C_{\alpha \circ \varphi \circ \alpha}$ if and only if (by Theorem 3) $f \circ \alpha(z)=\sum_{n=0}^{\infty} a_{n q} z^{n q}$ if and only if $f(z)=\sum_{n=0}^{\infty} a_{n q}\left(\frac{b-z}{1-\bar{b} z}\right)^{n q}$.

Proposition 6. Let φ be a self-map of \mathbb{D}, and let $f \in H^{\infty}$. Also suppose that φ is neither an elliptic disc automorphism nor the identity mapping, and φ has an interior fixed point. If M_{f} commutes with C_{φ}, then f is a constant.

Proof. Let $a \in \mathbb{D}$ and $\varphi(a)=a$. Since $f \circ \varphi=f$, we have $f\left(\varphi^{[n]}(z)\right)=f(z)$ for each $z \in \mathbb{D}$ and all $n \in \mathbb{N}$. From this, we have $f(z)=f(a)$ for all $z \in \mathbb{D}$, because $\left\{\varphi^{[n]}(z)\right\}$ converges to a as $n \rightarrow \infty$ for every $z \in \mathbb{D}$.

3 Some properties of the commutant of composition operators on weighted Bergman spaces

In this section, we consider the commutant of composition operator C_{φ} on A_{α}^{p} for $1<p<\infty$ and $-1<\alpha<\infty$, where φ is an analytic self-map of \mathbb{D} which is neither an elliptic disc automorphism nor the identity and a constant. Also we assume that $\varphi(a)=a$ for some $a \in \mathbb{D}$.

Lemma 7. There exists a point z_{0} in \mathbb{D} such that the iterates of φ at z_{0} are distinct. Proof. See [10].

Lemma 8. Let z_{0} satisfy the properties of Lemma 7. Then the linear span of reproducing kernels, $\left\{K_{\varphi^{[n]}\left(z_{0}\right)}: n \geq 0\right\}$ is dense in A_{α}^{p} for $1<p<\infty$.
Proof. Let A be the linear span of $\left\{K_{\varphi^{[n]}\left(z_{0}\right)}: n \geq 0\right\}$. Suppose that x^{*} is a bounded linear function on A_{α}^{p} for $1<p<\infty$. If $\frac{1}{p}+\frac{1}{q}=1$, then there is $g \in A_{\alpha}^{q}$ such that $x^{*}=F_{g}$ and F_{g} define by

$$
F_{g}(f)=\int_{\mathbb{D}} f(z) \overline{g(z)} d A(z)
$$

for each $f \in A_{\alpha}^{p}$ (see, e.g., [8]). Hence

$$
\begin{aligned}
A^{\perp} & =\left\{F_{g}: \quad F_{g}\left(K_{\varphi \varphi^{[n]}\left(z_{0}\right)}\right)=0(\forall n)\right\} \\
& =\left\{F_{g}: \quad g\left(\varphi^{[n]}\left(z_{0}\right)\right)=0(\forall n)\right\} .
\end{aligned}
$$

By the Denjoy-Wolff Theorem, the sequence $\left\{\varphi^{[n]}\left(z_{0}\right)\right\}_{n=0}^{\infty}$ has a limit point in \mathbb{D}. Then $A^{\perp}=\{0\}$ and ${ }^{\perp} A^{\perp}=\bar{A}=A_{\alpha}^{p}$, so the proof is complete.

Proposition 9. C_{φ}^{*} is cyclic.
Proof. Since $C_{\varphi}^{*}\left(K_{\varphi^{[n]}\left(z_{0}\right)}\right)=K_{\varphi^{[n+1]}\left(z_{0}\right)}$, by Lemmas 7 and 8 , the proof is complete.

Remark 10. If the Denjoy-Wolff point of φ is in the boundary of \mathbb{D}, then Lemma 8 is not true in general. For example, if $\varphi(z)=a z+b$, where $a, b \neq 0$ and $|a|+|b|=1$, then the sequence $\left\{\varphi^{[n]}(0)\right\}_{n=0}^{\infty}$ has distinct elements and each Blaschke product with zeros $\left\{\varphi^{[n]}(0)\right\}_{n=0}^{\infty}$ is in A^{\perp}. So A is not dense in A_{α}^{p}.

By Lemma 8, we can answer to some questions about the commutant of C_{φ}.
Theorem 11. Let S be a bounded operator such that $S C_{\varphi}=C_{\varphi} S$ and $S^{*} K_{z_{0}}=$ $\sum_{j=0}^{m} a_{j} K_{\varphi}{ }_{\varphi}^{[j]}\left(z_{0}\right)$ for some z_{0} in \mathbb{D} for which $\left\{\varphi^{[n]}\left(z_{0}\right)\right\}_{n=0}^{\infty}$ are distinct. Then S is a polynomial in C_{φ}.

Proof. Let $p(z)=\sum_{j=0}^{m} a_{j} z^{j}$, we show that $p\left(C_{\varphi}^{*}\right)=S^{*}$. By an easy computation, we have $p\left(C_{\varphi}^{*}\right) K_{z_{0}}=S^{*} K_{z_{0}}$. Let $\epsilon>0$ and $f \in A_{\alpha}^{p}$. Since the linear span of $\left\{K_{\varphi^{[n]}\left(z_{0}\right)}: n \geq 0\right\}$ is dense in A_{α}^{p}, there is $g=\sum_{k=0}^{n} g_{k} K_{\varphi^{[k]}\left(z_{0}\right)}$ such that

$$
\|f-g\|_{p . \alpha}<\epsilon /\left(1+\left\|p\left(C_{\varphi}^{*}\right)-S^{*}\right\|\right)
$$

Since $C_{\varphi^{[k]}}^{*} K_{z_{0}}=K_{\varphi^{[k]}\left(z_{0}\right)}$, we have

$$
\begin{aligned}
\left\|\left(p\left(C_{\varphi}^{*}\right)-S^{*}\right) f\right\|_{p . \alpha} & \leq\left\|\left(p\left(C_{\varphi}^{*}\right)-S^{*}\right)(f-g)\right\|_{p . \alpha}+\left\|\left(p\left(C_{\varphi}^{*}\right)-S^{*}\right)(g)\right\|_{p . \alpha} \\
& \leq \epsilon+\left\|\sum_{k=0}^{n} g_{k} C_{\varphi(k]}^{*}\left(p\left(C_{\varphi}^{*}\right)-S^{*}\right) K_{z_{0}}\right\|_{p . \alpha} \\
& =\epsilon .
\end{aligned}
$$

Hence $p\left(C_{\varphi}^{*}\right)=S^{*}$ and so the proof is complete.
Corollary 12. Let iterates of φ at zero be distinct, and let S be a bounded operator such that $S C_{\varphi}=C_{\varphi} S$ and $S^{*}(1)=\lambda I$. Then S is a multiple of the identity.

Proof. Since $K_{0}=1$, by Theorem 11, we have $S^{*}=\lambda I$.
Theorem 13. Let S be a bounded operator such that $S C_{\varphi}=C_{\varphi} S$. Then there is a dense subset on which S can be approximated by polynomials in C_{φ}.
Proof. Assume φ and z_{0} are as in the Lemma 7 and $S^{*} K_{z_{0}}=f$. Since the linear span of $\left\{K_{\varphi^{[n]}\left(z_{0}\right)}: n \geq 0\right\}$ is dense in A_{α}^{p}, there exists $f_{j}=\sum_{k=0}^{m_{j}} a_{j, k} K_{\varphi^{[k]}\left(z_{0}\right)}$ such that $\left\|f-f_{j}\right\|_{p . \alpha} \rightarrow 0$ as $j \rightarrow \infty$. If $p_{j}=\sum_{k=0}^{m_{j}} a_{j, k} z^{k}$, then we show that $p_{j}\left(C_{\varphi}^{*}\right)$ approximate S^{*} on the linear span of $\left\{K_{\varphi^{[n]}\left(z_{0}\right)}: n \geq 0\right\}$. Let $g=\sum_{n=0}^{m} g_{n} K_{\varphi^{[n]}\left(z_{0}\right)}$. Since $C_{\varphi^{[n]}}^{*} K_{z_{0}}=K_{\varphi^{[n]}\left(z_{0}\right)}$ and $S^{*} C_{\varphi^{[n]}}^{*}=C_{\varphi^{[n]}}^{*} S^{*}$, by an easy computation, we have $S^{*} g=\sum_{n=0}^{m} g_{n} C_{\varphi^{[n]}}^{*} f$ and

$$
p_{j}\left(C_{\varphi}^{*}\right) g=\sum_{k=0}^{m_{j}} \sum_{n=0}^{m} a_{j, k} g_{n} K_{\varphi^{[k+n]}\left(z_{0}\right)}=\sum_{n=0}^{m} g_{n} C_{\varphi^{[n]}}^{*} f_{j}
$$

Since $\left\{\varphi^{[n]}(0)\right\}$ converges to the Denjoy-Wolff point in the disc as $n \rightarrow \infty$, by using similar arguments as the proof of [9, Theorem 2.3], we have

$$
\left\|C_{\varphi_{n}}^{*}\right\| \leq\left(\frac{1+\left|\varphi^{[n]}(0)\right|}{1-\left|\varphi^{[n]}(0)\right|}\right)^{\frac{2+\alpha}{p}} \leq b
$$

where b is independent of n on A_{α}^{p} and so we have

$$
\begin{aligned}
\left\|\left(S^{*}-p_{j}\left(C_{\varphi}^{*}\right)\right) g\right\|_{p . \alpha} & \leq\left\|\sum_{n=0}^{m} g_{n} C_{\varphi^{[n]}}^{*}\left(f-f_{j}\right)\right\|_{p . \alpha} \\
& \leq b\left\|f-f_{j}\right\|_{p . \alpha} \sum_{n=0}^{m}\left|g_{n}\right|
\end{aligned}
$$

which converges to zero as $j \rightarrow 0$.

References

[1] P. Ahern and Ž. Čučković, The theorem of Brown-Halmos type for Bergman space Toeplitz operators, Funct. Analysis, 187(2001), 200-210. MR1867348(2002h:47040). Zbl 0996.47037.
[2] B. Cload, Generating the commutant of a composition operator, in: Contemp. Math. 213, Amer. Math. Soc. (1998), 11-15. MR1601052(98i:47030). Zbl 0901.47017.
[3] B. Cload, Composition operators: hyperinvariant subspaces, quasinormals, and isometries, Proc. Amer. Math. Soc. 127(6)(1999), 1697-1703. MR1476125(99i:47053). Zbl 0917.47027.
[4] B. Cload, Toeplitz operators in the commutant of a composition operator, Studia. Mathematica. 133(2) (1999), 187-196. MR1686697(2001c:47036). Zbl 0924.47017.
[5] C. C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc. 239 (1987), 1-31. MR0482347(58:2420). Zbl 0391.47014.
[6] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, 1995. MR1397026(97i:47056). Zbl 0873.47017.
[7] C. C. Cowen and B. D. MacCluer, Some problems on composition operators, Contemp. Math. 213, Amer. Math. Soc., (1998), 17-25. MR1601056(99d:47029). Zbl 0908.47025.
[8] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, SpringerVerlag, 2000. MR1758653(2001c:46043). Zbl 0955.32003.
[9] A. E. Richman, Subnormality and composition operator on the Bergman space, Integral Equations Operator Theory, 45(1)(2003), 105-124. MR1952344(2004c:47050). Zbl 1041.47010.
[10] T. S. Worner, Commutant of certain composition operator, Ph.D. thesis, Purdue University, 1998. MR2699464.

M. Haji Shaabani	B. Khani Robati
Shiraz University of Technology	Shiraz University
Department of Mathematics,	Department of Mathematics, College of Sciences,
Shiraz University of Technology,	Shiraz University,
Shiraz 71555-313, IRAN.	Shiraz 71454, IRAN.
E-mail: shaabani@sutech.ac.ir	E-mail: bkhani@shirazu.ac.ir

Surveys in Mathematics and its Applications 9 (2014), 139 - 147
http://www.utgjiu.ro/math/sma

[^0]: 2010 Mathematics Subject Classification: 47B33; 47B38.
 Keywords: Toeplitz operator; Weighted Bergman spaces; Composition operator; Commutant; Multiplication operators.

