ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 9 (2014), 139 – 147

TOEPLITZ OPERATORS AND MULTIPLICATION OPERATORS IN THE COMMUTANT OF A COMPOSITION OPERATOR ON WEIGHTED BERGMAN SPACES

Mahmood Haji Shaabani and Bahram Khani Robati

Abstract. Let φ be an analytic self-map of \mathbb{D} . We investigate which Toeplitz operators and multiplication operators commute with a given composition operator C_{φ} on $A^p_{\alpha}(\mathbb{D})$ for $1 and <math>-1 < \alpha < \infty$. Let S be a bounded linear operator in the commutant of C_{φ} . We show that under a certain condition on S, S is a polynomial in C_{φ} .

1 Introduction

Let \mathbb{D} denote the open unit disc in the complex plane and let dA be the normalized area measure on \mathbb{D} . For $0 and <math>-1 < \alpha < \infty$, the weighted Bergman space $A^p_{\alpha}(\mathbb{D}) = A^p_{\alpha}$ is the space of analytic functions in $L^p(\mathbb{D}, dA_{\alpha})$, where

$$dA_{\alpha}(z) = (\alpha + 1)(1 - |z|^2)^{\alpha} dA(z).$$

If f is in $L^p(\mathbb{D}, dA_\alpha)$, we note that

$$||f||_{p.\alpha} = \left(\int_{\mathbb{D}} |f(z)|^p dA_\alpha(z)\right)^{\frac{1}{p}}.$$

When $1 \leq p < \infty$, the space $L^p(\mathbb{D}, dA_\alpha)$ is a Banach space and the weighted Bergman space A^p_α is closed in $L^p(\mathbb{D}, dA_\alpha)$. So A^p_α is a Banach space. Let $L^\infty(\mathbb{D})$ denote the space of essentially bounded functions on \mathbb{D} . For $f \in L^\infty(\mathbb{D})$, we define

$$||f||_{\infty} = \operatorname{esssup}\{|f(z)| : z \in \mathbb{D}\}.$$

The space $L^{\infty}(\mathbb{D})$ is a Banach space with the above norm. As usual, let $H^{\infty}(\mathbb{D}) = H^{\infty}$ denote the space of bounded analytic functions on \mathbb{D} . It is clear that H^{∞} is closed in $L^{\infty}(\mathbb{D})$ and hence is a Banach space.

²⁰¹⁰ Mathematics Subject Classification: 47B33; 47B38.

Keywords: Toeplitz operator; Weighted Bergman spaces; Composition operator; Commutant; Multiplication operators.

Let φ be an analytic self-map of the unit disc, $1 and <math>-1 < \alpha < \infty$. The composition operator C_{φ} on A^p_{α} , is defined by the rule $C_{\varphi}(f) = f \circ \varphi$. Every composition operator C_{φ} on A^p_{α} is bounded (see, e.g., [9]).

Let for each $1 , <math>P_{\alpha} : L^{p}(\mathbb{D}, dA_{\alpha}) \to A^{p}_{\alpha}$ be the Bergman projection. We note that P_{α} is an integral operator represented by

$$P_{\alpha}g(z) = \int_{\mathbb{D}} K(z, w)g(w)dA_{\alpha}(w),$$

where

$$K(z,w) = \frac{1}{(1-z\overline{w})^{2+\alpha}}$$
$$= \sum_{n=0}^{\infty} \frac{\Gamma(n+2+\alpha)}{n!\Gamma(2+\alpha)} (z\overline{w})^n$$

For each $f \in L^{\infty}(\mathbb{D})$ and $1 , we define the Toeplitz operator <math>T_f$ on A^p_{α} with symbol f by $T_f(g) = P_{\alpha}(fg)$. If we define $M_f : L^p(\mathbb{D}, dA_{\alpha}) \to L^p(\mathbb{D}, dA_{\alpha})$ by $M_f(g) = fg$, it is obvious that M_f is bounded. Since the Bergman projection is bounded (see, e.g., [8]), we conclude that T_f is a bounded operator.

If f is a bounded complex valued harmonic function defined on \mathbb{D} , then there are holomorphic functions f_1 and f_2 such that $f = f_1 + \overline{f_2}$. This decomposition is unique if we require $f_2(0) = 0$. Of course f_1 and f_2 are not necessarily bounded, but they are certainly Bloch functions and they are in A^p_{α} for $1 \leq p \leq \infty$ (see, e.g., [1]).

Throughout this paper, we write $\varphi^{[j]}$ to denote the *j*th iterate of φ , that is, $\varphi^{[0]}$ is the identity map on \mathbb{D} and $\varphi^{[j+1]} = \varphi \circ \varphi^{[j]}$.

Suppose that φ is an analytic self-map of \mathbb{D} which is not the identity and not an elliptic disc automorphism. Then there is a point a in $\overline{\mathbb{D}}$ such that iterates of φ converges to a uniformly on compact subsets of \mathbb{D} . We note that for each fixed positive integer l, $\{(\varphi^{[n]})^l\}$ converges weakly to a^l as $n \to \infty$ (see, e.g., [6]). For each 1 and <math>w in \mathbb{D} , let λ_w be the point evaluation function at w, that is, $\lambda_w(g) = g(w)$, where $g \in A^p_{\alpha}$. It is well-known that point evaluations at the points of \mathbb{D} are all continuous on A^p_{α} (see, e.g., [8]).

Given a fixed operator A, we say that an operator B commutes with A if AB = BA. The set of all operators which commute with a fixed operator A is called the commutant of A. The commutant of a particular operator is known in a few cases. For further information about commutant of a composition operator, see [2], [3] and [7]. Also in [5], Carl Cowen showed that if f is a covering map of \mathbb{D} onto a bounded domain in the complex plane, then the commutant of the Toeplitz operator T_f is generated by composition operators induced by linear fractional transformation φ

that satisfy $f \circ \varphi = f$ and by Toeplitz operators. Also in [4], Bruce Clod determined which Toeplitz operators are in the commutant of a given composition operator C_{φ} on H^2 .

In this paper, under certain conditions on φ we investigate which Toeplitz operators and Multiplication operators commute with C_{φ} on A^p_{α} for 1 .

2 Toeplitz operators in the commutant of a composition operator

Throughout this section, C_{φ} denotes a bounded composition operator on A_{α}^{p} for $1 and <math>-1 < \alpha < \infty$. Our goal is to find information about the commutant of C_{φ} .

Theorem 1. Let f be a harmonic function in $L^{\infty}(\mathbb{D})$, and let φ be an analytic self-map of \mathbb{D} which is neither an elliptic disc automorphism of finite periodicity nor the identity mapping. If $C_{\varphi}T_f = T_f C_{\varphi}$, then f is an analytic function.

Proof. Let $f = f_1 + \overline{f_2}$ such that f_1 and f_2 belong to A^p_{α} , $f_2(0) = 0$, $f_1(z) = \sum_{n=0}^{\infty} a_n z^n$ and $f_2(z) = \sum_{n=1}^{\infty} b_n z^n$. Since φ is an analytic map which is not an elliptic disc automorphism of finite periodicity, φ is a constant function or φ is an elliptic automorphism of infinite periodicity or φ is neither an elliptic disc automorphism nor a constant.

Case(1): Let φ be a constant. Then $\varphi(z) = b$ for all $z \in \mathbb{D}$, where |b| < 1. Since $T_f C_{\varphi}(1) = C_{\varphi} T_f(1)$, we have $f_1(z) = f_1(b)$. Thus f_1 is a constant, let $f_1 = c$. For every g in A^p_{α} , $T_f C_{\varphi}(g) = C_{\varphi} T_f(g)$ which implies that

$$cg(b) = P(f_2g)(b) + cg(b).$$

So $P(\overline{f}_2g)(b) = 0$. In particular, if $g(z) = z^k$, then $b_k = 0$ for all $k \in \mathbb{N}$. Hence $f = f_1 = c$ is analytic.

Case(2): Suppose that φ is an elliptic disc automorphism of infinite periodicity. If $\varphi(0) = 0$, then Schwarz's Lemma implies that $\varphi(z) = e^{i\theta}z$, where $e^{in\theta} \neq 1$ for all integers $n \neq 0$. Since $C_{\varphi}T_f(1) = T_f C_{\varphi}(1)$, we have $f_1(e^{i\theta}z) = f_1(z)$ and so $f_1 = a_0$. Now by induction, we show that $f_2 = 0$. Since $T_f C_{\varphi}(z) = C_{\varphi}T_f(z)$, we have $\overline{b_1} = e^{i\theta}\overline{b_1}$, so $b_1 = 0$. Let $b_1 = b_2 = \cdots = b_{l-1} = 0$. We show that $b_l = 0$. Since $C_{\varphi}T_f(z^l) = T_f C_{\varphi}(z^l)$, we have $\overline{b_l} = e^{il\theta}\overline{b_l}$ and so $b_l = 0$. Hence f must be a constant function.

Now let $b \neq 0$ be the fixed point of φ . Since $T_f C_{\varphi}(1) = C_{\varphi} T_f(1)$, we have $f_1 = f_1 \circ \varphi$. Since φ has infinite periodicity, we conclude that f_1 is a constant. Hence f_2 induces a Toeplitz operator which commutes with C_{φ} . We claim that

 $f_2 = 0$. Let $\alpha(z) = \frac{b-z}{1-\overline{b}z}$, note that $\alpha^{-1} = \alpha$. Since $T_{\overline{f}_2}$ commutes with C_{φ} , $A = C_{\alpha}T_{\overline{f}_2}C_{\alpha}$ commutes with $C_{\alpha}C_{\varphi}C_{\alpha} = C_{\alpha\circ\varphi\circ\alpha}$. The function $\alpha\circ\varphi\circ\alpha$ is an elliptic disc automorphism of infinite periodicity with fixed point 0. Thus there exists $\{\lambda_n\}_{n=1}^{\infty}$ such that $A(z^n) = \lambda_n z^n$ and $T_{\overline{f}_2} = C_{\alpha}AC_{\alpha}$ (If $C_{\varphi}T = TC_{\varphi}$ and $\varphi(z) = e^{i\theta}z$, then there exists $\{\lambda_n\}_{n=1}^{\infty}$ such that $T(z^n) = \lambda_n z^n$). Set $g = A(\alpha)$, we have

$$g(z) = \lambda_0 b + \sum_{k=1}^{\infty} \lambda_k (\bar{b})^{k-1} (|b|^2 - 1) z^k.$$

Since $T_{\overline{f}_2}(z) = \frac{2}{2+\alpha}\overline{b_1}$, we see that $g \circ \alpha$ is a constant. Hence g is a constant which implies that $\lambda_k = 0$ for $k \ge 1$. On the other hand, $\lambda_0 = 0$. Thus A = 0 and hence $f_2 = 0$.

Case(3): Let φ be neither an elliptic disc automorphism nor a constant. Suppose that a is the Denjoy-Wolff point of φ . Since $T_f C_{\varphi} = C_{\varphi} T_f$, we have

$$T_f C_{\varphi^{[n]}}(z) = C_{\varphi^{[n]}} T_f(z).$$

Therefore

$$\begin{aligned} C_{\varphi^{[n]}}T_f(z) &= C_{\varphi^{[n]}}P(zf_1+z\overline{f}_2) \\ &= \left(\frac{2}{2+\alpha}\overline{b_1}+zf_1\right)\circ\varphi^{[n]}, \end{aligned}$$

and $T_f C_{\varphi}(1) = C_{\varphi} T_f(1)$ which implies that $f_1 \circ \varphi = f_1$. Hence

$$T_f C_{\varphi^{[n]}}(z) = \frac{2}{2+\alpha} \overline{b_1} + f_1 \varphi^{[n]}.$$

Now if we apply λ_0 on $T_f C_{\varphi^{[n]}}$, then we obtain

$$\lambda_0(T_f C_{\varphi^{[n]}}(z)) = \frac{2}{2+\alpha}\overline{b_1} + a_0 \varphi^{[n]}(0).$$

Hence $\{\lambda_0(T_f C_{\varphi^{[n]}})\}$ converges to $\frac{2}{2+\alpha}\overline{b_1} + a_0 a$ as $n \to \infty$. Since $\{\varphi^{[n]}\}$ converges weakly to a as $n \to \infty$, $\{T_f(\varphi^{[n]})\}$ converges weakly to $T_f(a) = af_1$ as $n \to \infty$. So $\{\lambda_0(T_f C_{\varphi^{[n]}})\}$ converges to $a_0 a$ as $n \to \infty$. Thus $b_1 = 0$.

Now let $b_1 = b_2 = \cdots = b_{l-1} = 0$. Consider $T_f(z^l)$ in the above argument, we have

$$T_f((\varphi^{[n]})^l) = \frac{\Gamma(l+1)\Gamma(\alpha+2)}{\Gamma(l+2+\alpha)}\overline{b_l} + f_1(\varphi^{[n]})^l.$$

By applying λ_0 on $T_f((\varphi^{[n]})^l)$ and since $\{T_f((\varphi^{[n]})^l)\}$ converges weakly to $T_f(a^l)$ as $n \to \infty$, we get

$$a^{l}a_{0} = \frac{\Gamma(l+1)\Gamma(\alpha+2)}{\Gamma(l+2+\alpha)}\overline{b}_{l} + a^{l}a_{0}.$$

Thus $b_l = 0$. Hence by the strong induction, $b_n = 0$ for all $n \ge 1$, that is, f is analytic.

Remark 2. If $\varphi(z) = \frac{1}{2}z$, then φ is loxodromic and φ is not an elliptic disc automorphism. Also let $f(z) = |z|^2$, we have f is bounded and f is not a harmonic function. Since for every $n \in \mathbb{N}$,

$$T_f C_{\varphi}(z^n) = C_{\varphi} T_f(z^n) = \frac{n+1}{2^n (n+2+\alpha)} z^n,$$

we have $C_{\varphi}T_f = T_fC_{\varphi}$ and f is not analytic. This example shows that Theorem 1 is not true in general without f being harmonic.

The following theorem shows that Theorem 1 is not true for all elliptic disc automorphisms.

Theorem 3. Let f be a harmonic function in $L^{\infty}(\mathbb{D})$, and let φ be an elliptic disc automorphism of period q, where $q \geq 2$ with $\varphi(0) = 0$. Then $T_f C_{\varphi} = C_{\varphi} T_f$ if and only if $f(z) = \sum_{n=0}^{\infty} a_{nq} z^{nq} + \sum_{n=1}^{\infty} \overline{b}_{nq} \overline{z}^{nq}$.

Proof. By hypothesis, $\varphi(z) = e^{i\theta}z$ with $\theta = 2\pi \frac{p}{q}$, where p is an integer, q is a natural number and g.c.d(p,q) = 1. Let $f = f_1 + \overline{f_2}$ such that f_1 and f_2 belong to A^p_{α} , $f_2(0) = 0$, $f_1(z) = \sum_{n=0}^{\infty} a_n z^n$ and $f_2(z) = \sum_{n=1}^{\infty} b_n z^n$. Since $T_f C_{e^{2\pi i \frac{p}{q}} z}(1) = C_{e^{2\pi i \frac{p}{q}} z}(1)$ $C_{e^{2\pi i \frac{p}{q}} z} T_f(1)$, we have $f_1(z) = f_1(e^{2\pi i \frac{p}{q}} z)$. Thus

$$\sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} a_n (e^{2\pi i \frac{p}{q}})^n z^n.$$

So if $q \nmid n$, $a_n = 0$. Hence $f_1(z) = \sum_{n=0}^{\infty} a_{nq} z^{nq}$. Since $T_f C_{e^{2\pi i \frac{p}{q}} z}(z) = C_{e^{2\pi i \frac{p}{q}} z} T_f(z)$, we have

$$\frac{2}{2+\alpha}\overline{b}_1 e^{2\pi i \frac{p}{q}} + z e^{2\pi i \frac{p}{q}} f_1(z) = z e^{2\pi i \frac{p}{q}} f_1(z) + \frac{2}{2+\alpha}\overline{b}_1.$$

Therefore $b_1 = 0$. For n such that $q \nmid n$ assume by induction that if m < n and $q \nmid m$, then $b_m = 0$. Since

$$T_f C_{e^{2\pi i \frac{p}{q}} z}(z^n) = C_{e^{2\pi i \frac{p}{q}} z} T_f(z^n),$$

by a similar argument, we can prove that $b_n = 0$ which we omit the details.

Conversely, if $f(z) = \sum_{n=0}^{\infty} a_{nq} z^{nq} + \sum_{n=1}^{\infty} \overline{b}_{nq} \overline{z}^{nq}$, then by straightforward calculation T_f commutes with C_{φ} .

Surveys in Mathematics and its Applications 9 (2014), 139 – 147

In Theorems 1 and 3 we have shown that except for elliptic disc automorphisms of finite periodicity, the Toeplitz operators which commute with C_{φ} must be analytic, that is, symbol of the Toeplitz operator must be analytic. Now let f be in H^{∞} . Then $T_f = M_f$ and in this case M_f commutes with C_{φ} is equivalent to $f \circ \varphi = f$. We will determine which multiplication operators commute with C_{φ} for certain composition operator C_{φ} .

Lemma 4. Let f be in H^{∞} , and let α be a disc automorphism. Then $C_{\alpha}M_fC_{\alpha^{-1}} = M_{f\circ\alpha}$.

Proof. Let g be in A^p_{α} . Then

$$C_{\alpha}M_{f}C_{\alpha^{-1}}(g) = C_{\alpha}M_{f}(g \circ \alpha^{-1})$$

= $C_{\alpha}(g \circ \alpha^{-1}.f)$
= $(g \circ \alpha^{-1}.f) \circ \alpha$
= $g.f \circ \alpha$
= $M_{f \circ \alpha}(g).$

Proposition 5. Let φ be an elliptic disc automorphism with fixed point b, and let $f \in H^{\infty}$. Then

(a) If φ is of infinite periodicity, then the multiplication operator M_f commutes with C_{φ} if and only if f is a constant.

(b) If φ is of period q, then M_f commutes with C_{φ} if and only if f is of the form $f(z) = \sum_{n=0}^{\infty} a_{nq} \left(\frac{b-z}{1-bz}\right)^{nq}$.

Proof. (a) The proof follows from Theorem 1 case (2).

(b) If $f \in H^{\infty}$ and $\alpha(z) = \frac{b-z}{1-\overline{b}z}$, then $\alpha \circ \varphi \circ \alpha$ is an elliptic disc automorphism of period q, with fixed point 0 and we have M_f commutes with C_{φ} if and only if $C_{\alpha}M_fC_{\alpha}$ commutes with $C_{\alpha}C_{\varphi}C_{\alpha} = C_{\alpha\circ\varphi\circ\alpha}$ if and only if (by Lemma 4) $M_{f\circ\alpha}$ commutes with $C_{\alpha\circ\varphi\circ\alpha}$ if and only if (by Theorem 3) $f \circ \alpha(z) = \sum_{n=0}^{\infty} a_{nq} z^{nq}$ if and only if $f(z) = \sum_{n=0}^{\infty} a_{nq} \left(\frac{b-z}{1-\overline{b}z}\right)^{nq}$.

Proposition 6. Let φ be a self-map of \mathbb{D} , and let $f \in H^{\infty}$. Also suppose that φ is neither an elliptic disc automorphism nor the identity mapping, and φ has an interior fixed point. If M_f commutes with C_{φ} , then f is a constant.

Proof. Let $a \in \mathbb{D}$ and $\varphi(a) = a$. Since $f \circ \varphi = f$, we have $f(\varphi^{[n]}(z)) = f(z)$ for each $z \in \mathbb{D}$ and all $n \in \mathbb{N}$. From this, we have f(z) = f(a) for all $z \in \mathbb{D}$, because $\{\varphi^{[n]}(z)\}$ converges to a as $n \to \infty$ for every $z \in \mathbb{D}$.

Surveys in Mathematics and its Applications 9 (2014), 139 – 147 http://www.utgjiu.ro/math/sma

3 Some properties of the commutant of composition operators on weighted Bergman spaces

In this section, we consider the commutant of composition operator C_{φ} on A^{p}_{α} for $1 and <math>-1 < \alpha < \infty$, where φ is an analytic self-map of \mathbb{D} which is neither an elliptic disc automorphism nor the identity and a constant. Also we assume that $\varphi(a) = a$ for some $a \in \mathbb{D}$.

Lemma 7. There exists a point z_0 in \mathbb{D} such that the iterates of φ at z_0 are distinct.

Proof. See [10].

Lemma 8. Let z_0 satisfy the properties of Lemma 7. Then the linear span of reproducing kernels, $\{K_{\varphi^{[n]}(z_0)} : n \ge 0\}$ is dense in A^p_{α} for 1 .

Proof. Let A be the linear span of $\{K_{\varphi^{[n]}(z_0)} : n \ge 0\}$. Suppose that x^* is a bounded linear function on A^p_{α} for $1 . If <math>\frac{1}{p} + \frac{1}{q} = 1$, then there is $g \in A^q_{\alpha}$ such that $x^* = F_g$ and F_g define by

$$F_g(f) = \int_{\mathbb{D}} f(z)\overline{g(z)}dA(z)$$

for each $f \in A^p_{\alpha}$ (see, e.g., [8]). Hence

$$\begin{aligned} A^{\perp} &= \{ F_g : F_g(K_{\varphi^{[n]}(z_0)}) = 0 \ (\forall n) \} \\ &= \{ F_g : g(\varphi^{[n]}(z_0)) = 0 \ (\forall n) \}. \end{aligned}$$

By the Denjoy-Wolff Theorem, the sequence $\{\varphi^{[n]}(z_0)\}_{n=0}^{\infty}$ has a limit point in \mathbb{D} . Then $A^{\perp} = \{0\}$ and ${}^{\perp}A^{\perp} = \overline{A} = A^p_{\alpha}$, so the proof is complete. \Box

Proposition 9. C^*_{φ} is cyclic.

Proof. Since $C^*_{\varphi}(K_{\varphi^{[n]}(z_0)}) = K_{\varphi^{[n+1]}(z_0)}$, by Lemmas 7 and 8, the proof is complete.

Remark 10. If the Denjoy-Wolff point of φ is in the boundary of \mathbb{D} , then Lemma 8 is not true in general. For example, if $\varphi(z) = az+b$, where $a, b \neq 0$ and |a|+|b| = 1, then the sequence $\{\varphi^{[n]}(0)\}_{n=0}^{\infty}$ has distinct elements and each Blaschke product with zeros $\{\varphi^{[n]}(0)\}_{n=0}^{\infty}$ is in A^{\perp} . So A is not dense in A_{α}^{p} .

By Lemma 8, we can answer to some questions about the commutant of C_{φ} .

Theorem 11. Let S be a bounded operator such that $SC_{\varphi} = C_{\varphi}S$ and $S^*K_{z_0} = \sum_{j=0}^{m} a_j K_{\varphi^{[j]}(z_0)}$ for some z_0 in \mathbb{D} for which $\{\varphi^{[n]}(z_0)\}_{n=0}^{\infty}$ are distinct. Then S is a polynomial in C_{φ} .

Proof. Let $p(z) = \sum_{j=0}^{m} a_j z^j$, we show that $p(C_{\varphi}^*) = S^*$. By an easy computation, we have $p(C_{\varphi}^*)K_{z_0} = S^*K_{z_0}$. Let $\epsilon > 0$ and $f \in A_{\alpha}^p$. Since the linear span of $\{K_{\varphi^{[n]}(z_0)} : n \ge 0\}$ is dense in A_{α}^p , there is $g = \sum_{k=0}^{n} g_k K_{\varphi^{[k]}(z_0)}$ such that

$$||f - g||_{p.\alpha} < \epsilon/(1 + ||p(C_{\varphi}^*) - S^*||).$$

Since $C^*_{\omega^{[k]}} K_{z_0} = K_{\varphi^{[k]}(z_0)}$, we have

$$\begin{aligned} \|(p(C_{\varphi}^{*}) - S^{*})f\|_{p.\alpha} &\leq \|(p(C_{\varphi}^{*}) - S^{*})(f - g)\|_{p.\alpha} + \|(p(C_{\varphi}^{*}) - S^{*})(g)\|_{p.\alpha} \\ &\leq \epsilon + \|\sum_{k=0}^{n} g_{k}C_{\varphi^{[k]}}^{*}(p(C_{\varphi}^{*}) - S^{*})K_{z_{0}}\|_{p.\alpha} \\ &= \epsilon. \end{aligned}$$

Hence $p(C^*_{\varphi}) = S^*$ and so the proof is complete.

Corollary 12. Let iterates of φ at zero be distinct, and let S be a bounded operator such that $SC_{\varphi} = C_{\varphi}S$ and $S^*(1) = \lambda I$. Then S is a multiple of the identity.

Proof. Since $K_0 = 1$, by Theorem 11, we have $S^* = \lambda I$.

Theorem 13. Let S be a bounded operator such that $SC_{\varphi} = C_{\varphi}S$. Then there is a dense subset on which S can be approximated by polynomials in C_{φ} .

Proof. Assume φ and z_0 are as in the Lemma 7 and $S^*K_{z_0} = f$. Since the linear span of $\{K_{\varphi^{[n]}(z_0)} : n \ge 0\}$ is dense in A_{α}^p , there exists $f_j = \sum_{k=0}^{m_j} a_{j,k} K_{\varphi^{[k]}(z_0)}$ such that $\|f - f_j\|_{p,\alpha} \to 0$ as $j \to \infty$. If $p_j = \sum_{k=0}^{m_j} a_{j,k} z^k$, then we show that $p_j(C_{\varphi}^*)$ approximate S^* on the linear span of $\{K_{\varphi^{[n]}(z_0)} : n \ge 0\}$. Let $g = \sum_{n=0}^{m} g_n K_{\varphi^{[n]}(z_0)}$. Since $C_{\varphi^{[n]}}^*K_{z_0} = K_{\varphi^{[n]}(z_0)}$ and $S^*C_{\varphi^{[n]}}^* = C_{\varphi^{[n]}}^*S^*$, by an easy computation, we have $S^*g = \sum_{n=0}^{m} g_n C_{\varphi^{[n]}}^*f$ and

$$p_j(C_{\varphi}^*)g = \sum_{k=0}^{m_j} \sum_{n=0}^m a_{j,k}g_n K_{\varphi^{[k+n]}(z_0)} = \sum_{n=0}^m g_n C_{\varphi^{[n]}}^* f_j.$$

Since $\{\varphi^{[n]}(0)\}$ converges to the Denjoy-Wolff point in the disc as $n \to \infty$, by using similar arguments as the proof of [9, Theorem 2.3], we have

$$\|C_{\varphi_n}^*\| \le \left(\frac{1+|\varphi^{[n]}(0)|}{1-|\varphi^{[n]}(0)|}\right)^{\frac{2+\alpha}{p}} \le b,$$

where b is independent of n on A^p_{α} and so we have

$$\begin{aligned} \|(S^* - p_j(C^*_{\varphi}))g\|_{p.\alpha} &\leq \|\sum_{n=0}^m g_n C^*_{\varphi^{[n]}}(f - f_j)\|_{p.\alpha} \\ &\leq b\|f - f_j\|_{p.\alpha} \sum_{n=0}^m |g_n|, \end{aligned}$$

which converges to zero as $j \to 0$.

References

- P. Ahern and Ž. Čučković, The theorem of Brown-Halmos type for Bergman space Toeplitz operators, Funct. Analysis, 187(2001), 200-210. MR1867348(2002h:47040). Zbl 0996.47037.
- B. Cload, Generating the commutant of a composition operator, in: Contemp. Math. 213, Amer. Math. Soc. (1998), 11-15. MR1601052(98i:47030). Zbl 0901.47017.
- B. Cload, Composition operators: hyperinvariant subspaces, quasinormals, and isometries, Proc. Amer. Math. Soc. 127(6)(1999), 1697-1703. MR1476125(99i:47053). Zbl 0917.47027.
- [4] B. Cload, Toeplitz operators in the commutant of a composition operator, Studia. Mathematica. 133(2) (1999), 187-196. MR1686697(2001c:47036). Zbl 0924.47017.
- [5] C. C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc. 239 (1987), 1-31. MR0482347(58:2420). Zbl 0391.47014.
- [6] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, 1995. MR1397026(97i:47056). Zbl 0873.47017.
- [7] C. C. Cowen and B. D. MacCluer, Some problems on composition operators, Contemp. Math. 213, Amer. Math. Soc., (1998), 17-25. MR1601056(99d:47029).
 Zbl 0908.47025.
- [8] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Springer-Verlag, 2000. MR1758653(2001c:46043). Zbl 0955.32003.
- [9] A. E. Richman, Subnormality and composition operator on the Bergman space, Integral Equations Operator Theory, 45(1)(2003), 105-124. MR1952344(2004c:47050). Zbl 1041.47010.
- [10] T. S. Worner, Commutant of certain composition operator, Ph.D. thesis, Purdue University, 1998. MR2699464.

B. Khani Robati		
Shiraz University		
Department of Mathematics, College of Sciences,		
Shiraz University,		
Shiraz 71454, IRAN.		
E-mail: bkhani@shirazu.ac.ir		

Surveys in Mathematics and its Applications 9 (2014), 139 – 147 http://www.utgjiu.ro/math/sma