Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 12 (2017), 103 -- 115

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

BOUNDARY VALUE PROBLEM FOR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS

Yacine Arioua and Nouredine Benhamidouche

Abstract. The aim of this work is to study the existence and uniqueness solutions for boundary value problem of nonlinear fractional differential equations with Caputo-Hadamard derivative in bounded domain. We used the standard and Krasnoselskii's fixed point theorems. Some new results of existence and uniqueness solutions for Caputo-Hadamard fractional equations are obtained.

2010 Mathematics Subject Classification: 34A08; 34A37.
Keywords: Caputo-Hadamard derivative; Fractional differential equations; Fixed point theorems.

Full text

References

  1. B. Ahmad and S.K. Ntouyas, On Hadamard fractional integro-differential boundary value problems, J. Appl. Math. Comput 2015 (2015). Zbl 1328.34006.

  2. B. Ahmad and S.K. Ntouyas, Initial value problems of fractional order Hadamard-type functional differential equations, Electron. J. Differ. Equ. 2015 (2015), 77. Zbl 1320.34109.

  3. B. Ahmad and S.K. Ntouyas, A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations, Fract. Calc. Appl. Anal. 17 (2014), 348-360. MR3181059.

  4. Alsaedi et al, Nonlinear Hadamard fractional differential equations with Hadamard type nonlocal non-conserved conditions, Advances in Difference Equations 2015 (2015),285. Zbl 1351.34003.

  5. M. Benchohra, S. Hamani and S.K. Ntouyas, Boundary value problems for differential equations with fractional order, Surveys in Mathematics and its Applications vol, 3 (2008), 1-12. MR2532767. Zbl 1157.26301.

  6. PL. Butzer, A.A. Kilbas and J.J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl. 269 (2002), 387-400. Zbl 1027.26004.

  7. K. Diethelm, The Analysis of Fractional Differential Equations, Springer Berlin, 2010. http://dx.doi.org/10.1007/978-3-642-14574-2.

  8. Gambo et al, On Caputo modification of the Hadamard fractional derivatives, Adv. Difference Equ. 2014 (2014), Paper No. 10, 12 p. Zbl 1343.26002.

  9. A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003. MR1987179.

  10. J. Hadamard, Essai sur l'etude des fonctions donnees par leur developpment de Taylor, J. Math. Pures Appl. 8 (1892), 101-186. MR2005999.

  11. F. Jarad, D. Baleanu and A. Abdeljawad, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ. 2012 (2012), 142. Zbl 1346.26002.

  12. A.A. Kilbas, H.H. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V. Amsterdam, 2006. MR2218073(2007a:34002). Zbl 1092.45003.

  13. A. A. Kilbas and A. A. Titioura, Nonlinear differential equations with Marchaud-Hadamard-type fractional derivative in the weighted space of summable functions, Math. Model. Anal. 12 (3) (2007), 343--356. Zbl 1132.26314.

  14. A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc. 38 (2001), 1191--1204 . MR1858760. Zbl 1018.26003.

  15. M.A. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk 10 (1955), 123--127.

  16. F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics in Fractals and Fractional Calculus in Continuum Mechanics, Vol. 378 of CISM Courses and Lectures, pp. 291--348, Springer, Vienna, Austria, 1997. MR1611587(99f:26010).

  17. LI. Mengmeng and W. Jinrong, Existence of local and global solutions for Hadamard fractional differential equations, Electron. J. Differ. Equ, Vol. 2015 (2015), No. 166, pp. 1-8. Zbl 1321.26014.

  18. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. MR1926477(2001m:22005). Zbl 0924.34008.

  19. S. G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach Science Publishers, Switzerland, 1993. MR1347689(96d:26012). Zbl 0818.26003.

  20. Thiramanus et al, Positive solutions for Hadamard fractional differential equations on infinite domain, Adv. Difference Equ. 2016 (2016), Paper No. 83, 18 p. Zbl 1348.34025.



Arioua Yacine
Laboratory for Pure and Applied Mathematics, University of M'sila, Bp 166 M'sila, 28000,
Algeria.
e-mail: ariouayacine@ymail.com


Benhamidouche Nouredine
Laboratory for Pure and Applied Mathematics, University of M'sila, Bp 166 M'sila, 28000,
Algeria.
e-mail: benhamidouche@yahoo.fr


http://www.utgjiu.ro/math/sma