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A NONCOMMUTATIVE CONVEXITY IN
C∗-BIMODULES

M. Kian and M. Dehghani

Abstract. Let A and B be C∗-algebras. We consider a noncommutative convexity in Hilbert

A -B-bimodules, called A -B-convexity, as a generalization of C∗-convexity in C∗-algebras. We

show that if X is a Hilbert A -B-bimodule, then Mn(X ) is a Hilbert Mn(A )-Mn(B)-bimodule

and apply it to show that the closed unit ball of every Hilbert A -B-bimodule is A -B-convex. Some

properties of this kind of convexity and various examples have been given.

1 Introduction and preliminaries

Suppose that A and B are C∗-algebras. Let (X , ⟨·, ·⟩A ) be a left Hilbert A -module
and (X , ⟨·, ·⟩B) be a right Hilbert B-module satisfying

⟨x, y⟩A z = x⟨y, z⟩B (x, y, z ∈ X ).

Then X is called Hilbert A -B-bimodule. It is known that every C∗-algebra A is a
Hilbert A -A -bimodule via the bimodule structure given by the multiplication in A
and the inner products ⟨a, b⟩ = ab∗ and ⟨a, b⟩ = a∗b. Particularity, if H and K are
Hilbert spaces and B(K,H) is the Banach algebra of all bounded linear operators
from K into H, then B(K,H) is a Hilbert B(H)-B(K)-bimodule with the following
inner products:

⟨S, T ⟩B(H) = ST ∗.

⟨S, T ⟩B(K) = S∗T.

We recall that every Hilbert A -B-bimodule X satisfies

⟨xb, xb⟩A ≤ ∥b∥2⟨x, x⟩A , ⟨ax, ax⟩B ≤ ∥a∥2⟨x, x⟩B. (1.1)

⟨xb, y⟩A = ⟨x, yb∗⟩A , ⟨ax, y⟩B = ⟨x, a∗y⟩B. (1.2)

∥axb∥ ≤ ∥a∥∥x∥∥b∥ (1.3)
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8 M. Kian and M. Dehghani

for all a ∈ A , b ∈ B and all x, y ∈ X (cf. [7, 15]).
For a full description of Hilbert bimodules, see for example [7, 15] and the

references therein.

1.1 C∗-convexity

Let A be a unital C∗-algebra with unit 1A . For a1, · · · , an ∈ A with
∑n

i=1 a
∗
i ai =

1A , the sum
∑n

i=1 a
∗
ixiai is called a C∗-convex combination of {x1, · · · , xn} ⊆ A ,

with coefficients a1, · · · , an. A subset S of A is called C∗-convex if it is closed under
C∗-convex combinations of its elements. It means that

n∑
i=1

a∗ixiai ∈ S

for all x1, · · · , xn ∈ S and all a1, · · · , an ∈ A with
∑n

i=1 a
∗
i ai = 1A .

This notion of convexity, called the C∗-convexity, has been introduced by Loebl
and Paulsen [10] as a non-commutative generalization of linear convexity. It is known
that the sets

(1) {T ∈ B(H) : 0 ≤ T ≤ IH};

(2) {T ∈ B(H); ∥T∥ ≤M} for a fix scalar M > 0;

(3) {T ∈ B(H) : ω(T ) ≤ r}, where ω(T ) is the numerical radius of T

are C∗-convex in the C∗-algebra B(H) with the identity operator IH. It is evident
that the C∗-convexity of a set S in A , implies its convexity in the usual sense.
For if x, y ∈ S and λ ∈ [0, 1], then with a1 =

√
λ1A and a2 =

√
1− λ1A we have

a∗1a1 + a∗2a2 = 1A and

λx+ (1− λ)y = a∗1xa1 + a∗2ya2 ∈ S.

But the converse is not true in general. For example, it was shown that [10] if A ≥ 0,
then [0, A] = {X ∈ B(H); 0 ≤ X ≤ A} is convex but not C∗-convex.

Some essential results of convexity theory have been generalized in [3] to C∗-
convex sets. Specially, a version of the so-called Hahn-Banach theorem was presented.
The operator extension of extreme points, the C∗-extreme points have also been
introduced and studied, see [4, 6, 10, 13]. Moreover, Magajna [12, 14] extended the
notion of C∗-convexity to operator modules and proved some separation theorems.
We refer the reader to [8, 9, 11, 12, 14, 16] for further results concerning C∗-convexity.

In this paper, we consider the notion of A -B-convex sets in Hilbert A -B-
bimodules as a generalization of C∗-convex sets in C∗-algebras. We will try to
illustrate differences between these notions by giving various examples. Some properties
of A -B-convex sets are also presented. In particular, it is shown that the closed
unit ball of a Hilbert A -B-bimodule is A -B-convex.
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A NONCOMMUTATIVE CONVEXITY IN C∗-BIMODULES 9

2 Main results

Throughout this section, suppose that A and B are unital C∗-algebras with units
1A and 1B, respectively and B(H) is the C∗-algebra of all bounded linear operators
on a Hilbert space H with the identity operator IH. For given C∗-subalgebras A
and B of B(H) the notion of “A, B-absolutely convexity” in operator bimodules
has been defined and studied in [12]. Similarly, an A -B-convex set in a Hilbert
A -B-bimodule can be defined as follows.

Definition 1. Let X be a Hilbert A -B-bimodule. A subset S of X is called A -B-
convex if

n∑
i=1

aia
∗
i = 1A ,

n∑
i=1

b∗i bi = 1B =⇒
n∑

i=1

aixibi ∈ S

for all ai ∈ A , bi ∈ B, xi ∈ S and n ∈ N.

Remark 2. Assume that X is a Hilbert A -B-bimodule, S is an A -B-convex subset
of X and 0 ∈ S. Assume that xi ∈ S, ai ∈ A and bi ∈ B with

∑k
i=1 aia

∗
i ≤ 1A

and
∑k

i=1 b
∗
i bi ≤ 1B. Put c =

√
1A −

∑k
i=1 aia

∗
i and d =

√
1B −

∑k
i=1 b

∗
i bi. Then∑k

i=1 aia
∗
i + cc∗ = 1A and

∑k
i=1 b

∗
i bi + d∗d = 1B. Moreover,

k∑
i=1

aixibi =

k∑
i=1

aixibi + c0d ∈ S.

In other words,
∑k

i=1 aixibi ∈ S even if
∑k

i=1 aia
∗
i ≤ 1A and

∑k
i=1 b

∗
i bi ≤ 1B.

Note that, if r is a positive scalar, then it is easy to see that the set

S := {T ∈ B(H) : 0 ≤ T ≤ r}

is C∗-convex, see e.g., [10]. We give some examples in the case of A -B-convexity.

Example 3. Let Γ be an index set. Define X to be the set

X =

{
(Xα)α∈Γ

⏐⏐⏐⏐⏐ Xα ∈ B(H),
∑
α∈Γ

X∗
αXα converges in B(H)

}
.

Define a map ⟨·, ·⟩ : X × X → B(H) by

⟨(Xα)α∈Γ, (Yα)α∈Γ⟩ =
∑
α∈Γ

X∗
αYα.
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10 M. Kian and M. Dehghani

It is not hard to see that ⟨·, ·⟩ is well-defined inner product on X . Moreover, if
T ∈ B(H) and (Xα)α∈Γ ∈ X , then

X∗
αT

∗TXα ≤ ∥T∥2X∗
αXα.

It follows that X can be regarded as a B(H)-bimodule via the bimodule structure
given by

X × B(H) → X , (Xα)α∈Γ × T = (XαT )α∈Γ

and
B(H)×X → X , T × (Xα)α∈Γ = (TXα)α∈Γ.

Hence, X would be a Hilbert B(H)-B(H)-bimodule.
Assume that r is a positive real number. We are going to show that the subset

S of X defined by

S = {(Xα)α∈Γ ∈ X | 0 ≤ X∗
αXα ≤ r, α ∈ Γ}

is B(H)-B(H)-convex.
Assume that Ai, Bi ∈ B(H) with

∑n
i=1AiA

∗
i = IH =

∑n
i=1B

∗
iBi. If

(Xα)
i
α∈Γ = (Xi

α)α∈Γ ∈ S (i = 1, · · · , n),

then 0 ≤
(
Xi

α

)∗
Xi

α ≤ r. Obviously(
n∑

i=1

AiX
i
αBi

)∗( n∑
i=1

AiX
i
αBi

)
≥ 0.

Moreover,
(
Xi

α

)∗
Xi

α ≤ r if and only if 1√
r

(
Xi

α

)∗
Xi

α ≤
√
r if and only if (see e.g.,

[1, 2, 5]) ( √
r
(
Xi

α

)∗
Xi

α

√
r

)
≥ 0, i = 1, · · · , n.

Therefore,( √
r

(∑n
i=1AiX

i
αBi

)∗∑n
i=1AiX

i
αBi

√
r

)
=

n∑
i=1

(
B∗

i 0
0 Ai

)( √
r
(
Xi

α

)∗
Xi

α

√
r

)(
Bi 0
0 A∗

i

)
≥ 0,

which implies that
(∑n

i=1AiX
i
αBi

)∗ (∑n
i=1AiX

i
αBi

)
≤ r. Hence

n∑
i=1

Ai(Xα)
i
α∈ΓBi =

(
n∑

i=1

AiX
i
αBi

)
α∈Γ

∈ S,

and so S is B(H)-B(H)-convex.
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A similar argument used in Example 3 can be applied to show the following
result.

Proposition 4. Consider B(K,H) as a Hilbert B(H)-B(K)-bimodule. Then for a
fixed scalar r > 0, the set

S := {T ∈ B(K,H); 0 ≤ T ∗T ≤ rIK}

is B(H)-B(K)-convex.

Remark 5. Let X be a Hilbert A -B-bimodule. If S is an A -B-convex subset
of X , then it is convex in the usual sense. For if λi ∈ [0, 1], (i = 1, . . . , n), and∑n

i=1 λi = 1, then with ai =
√
λi1A ∈ A and bi =

√
λi1B ∈ B we have

n∑
i=1

aia
∗
i =

n∑
i=1

λi1A = 1A and
n∑

i=1

b∗i bi =
n∑

i=1

λi1B = 1B.

Now if xi ∈ S (i = 1, . . . , n), then

n∑
i=1

λixi =
n∑

i=1

aixibi ∈ S,

which means that S is convex.

Remark 6. Consider the C∗-algebra A as a Hilbert A -A -bimodule. If a subset
S of A is A -A -convex, then it is C∗-convex. Assume that c1, . . . , ck ∈ A with∑k

i=1 c
∗
i ci = 1A . If x1, . . . , xk ∈ S, then the A -A -convexity of S with ai := c∗i and

bi := ci, implies that
k∑

i=1

c∗ixici =
k∑

i=1

aixibi ∈ S.

Therefore, it seems that the concept of A -B-convexity is stronger than C∗-convexity.
The next example reveals this fact.

Example 7. (1) Consider M2(C) as a Hilbert M2(C)-M2(C)-bimodule. Let α be
a fixed scalar and I be the identity matrix. It is clear that the set S = {αI} is a
C∗-convex subset of M2(C). However, it is not M2(C)-M2(C)-convex. Put

A =

⎛⎝ √
1
2

√
1
2

−
√

1
2

√
1
2

⎞⎠ and B =

⎛⎝ √
1
3

√
2
3

−
√

2
3

√
1
3

⎞⎠ .

Then AA∗ = I = B∗B, while A(αI)B = αAB ̸∈ S.
(2) Consider B(H) as a Hilbert B(H)-B(H)-bimodule. The subsets

S1 = {T ∈ B(H) : T ∗ = T} and S2 = {T ∈ B(H) : 0 ≤ T ≤ IH}
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12 M. Kian and M. Dehghani

are C∗-convex subsets of the C∗-algebra B(H). Let A,B ∈ B(H) with AA∗ = IH =
B∗B and put T = IH ∈ S1 ∩ S2. Since AB = ATB is not hermitian at all, we
conclude that AB ̸∈ S1 and AB ̸∈ S2. It follows that S1 and S2 are not B(H)-B(H)-
convex.

Example 8. Let X be a Hilbert A -B-bimodule. Then the subset

S := {x ∈ X : ⟨x, x⟩A ≤ r21A , for some positive real number r ̸= 1}

of X is A -B-convex.

Proof. Let ai ∈ A and bi ∈ B (i = 1, . . . , n) with
∑n

i=1 aia
∗
i = 1A and

∑n
i=1 b

∗
i bi =

1B. We have

0 ≤ aia
∗
i ≤

n∑
i=1

aia
∗
i = 1A , 0 ≤ b∗i bi ≤

n∑
i=1

b∗i bi = 1B.

It follows that ∥bi∥ ≤ 1. If xi ∈ S (i = 1, . . . , n), then (1.1)implies that

⟨aixibi, aixibi⟩A ≤ ∥bi∥2⟨aixi, aixi⟩A
≤ ai⟨xi, xi⟩A a∗i
≤ r2aia

∗
i

≤ r21A , (1 ≤ i ≤ n).

Then aixibi ∈ S for all i = 1, . . . , n. Moreover, if x, y ∈ S, then there exist positive
real numbers r ̸= 1 and s ̸= 1 such that ⟨x, x⟩ ≤ r21A and ⟨y, y⟩ ≤ s21A . In a
C∗-algebra A we have

(Rea)2 + (Ima)2 =
a∗a+ aa∗

2
, (a ∈ A ).

Therefore

0 ≤ 2
(
Re⟨y, x⟩

)2 ≤ ⟨x, y⟩⟨y, x⟩+ ⟨y, x⟩⟨x, y⟩.

It follows that

2∥Re(⟨y, x⟩)∥2 ≤ ∥⟨y, x⟩∥2 + ∥⟨x, y⟩∥2 ≤ 2∥x∥2∥y∥2 ≤ 2r2s2.

Hence

Re(⟨y, x⟩) ≤ ∥Re(⟨y, x⟩)∥1A ≤ rs.

Consequently

⟨x+ y, x+ y⟩ = ⟨x, x⟩+ ⟨y, y⟩+ 2Re(⟨y, x⟩)
≤ (r2 + s2 + 2rs)1A

= (r + s)21A .

It follows that x+ y ∈ S and so
∑n

i=1 aixibi ∈ S.
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Many properties of a topological vector space, like locally boundedness, locally
compactness and locally convexity come from the structure of the neighborhoods of
its origin, the zero vector. In a normed space, the unit ball plays this role. We know
that the unit ball of every normed space is convex. More generally, the unit ball
of B(H) is C∗-convex [10]. The next theorems show that more generally, the closed
unit ball of every Hilbert A -B-bimodule is A -B-convex.

Theorem 9. Let A and B be commutative C∗-algebras and let X be a Hilbert
A -B-bimodule. Then the closed unit ball of X is A -B-convex.

Proof. Suppose that ϕ : A → C(T ) and ψ : B → C(S) are the Gelfand representations
of A and B, respectively, where S, T are compact Hausdorff spaces. Let ai ∈ A
and bi ∈ B ( i = 1, · · · , n ) such that

n∑
i=1

aia
∗
i = 1A ,

n∑
i=1

b∗i bi = 1B.

It follows from the Gelfand representation theorem that
∑n

i=1 |ϕ(ai)(t)|2 = 1 (t ∈ T )
and

∑n
i=1 |ψ(bi)(s)|2 = 1 (s ∈ S). Let S = {x ∈ X : ∥x∥ ≤ 1} and xi ∈ S

(i = 1, · · · , n). Then we have
n∑

i=1

aixibi

 ≤
n∑

i=1

∥aixibi∥

≤
n∑

i=1

∥ai∥ ∥xi∥ ∥bi∥ ( by (1.3) )

≤
n∑

i=1

∥ai∥ ∥bi∥

=

n∑
i=1

∥ϕ(ai)∥ ∥ψ(bi)∥ (by the Gelfand representation theorem)

≤

(
n∑

i=1

∥φ(ai)∥2
) 1

2
(

n∑
i=1

∥ψ(bi)∥2
) 1

2

(by the Cauchy-Schwarz inequality)

≤

(
sup
t∈T

n∑
i=1

|φ(ai)(t)|2
) 1

2
(
sup
s∈S

n∑
i=1

|ψ(bi)(s)|2
) 1

2

= 1.

Therefore S is A -B-convex.

More generally, the C∗-algebras A and B need not to be commutative. We
prove this fact using a different argument.
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14 M. Kian and M. Dehghani

Theorem 10. Let A and B be C∗-algebras and X be a Hilbert A -B-bimodule. If
M is a positive scalar, then S = {x ∈ X , ∥x∥ ≤M} is A -B-convex. In particular,
the closed unit ball of X is A -B-convex.

Proof. Assume thatMn(A ) andMn(B) are the matrix C∗-algebras whose elements
are n× n matrices with entries in A and B, respectively. Put

Mn(X ) = {[xij ]; xij ∈ X , 1 ≤ i, j ≤ n} .

Then Mn(X ) is a Mn(A )-Mn(B)-bimodule with respect to the following module
operations:

� : Mn(A )×Mn(X ) → Mn(X )(
[aij ], [xij ]

)
↦→

[
n∑

k=1

aikxkj

]
,

� : Mn(X )×Mn(B) → Mn(X )

([xij ], [bij ]) ↦→

[
n∑

k=1

xikbkj

]
,

and the inner products on Mn(X ) defined by

Mn(X )×Mn(X ) → Mn(A )
(
Mn(B)

)
⟨
[xij ], [yij ]

⟩
↦→

[
n∑

k=1

⟨xik, ykj⟩A

] ([
n∑

k=1

⟨xik, ykj⟩B

])
.

Assume that x1, . . . , xn ∈ S. Let ai ∈ A , bi ∈ B (i = 1, . . . , n) such that
∑n

i=1 aia
∗
i =

1A and
∑n

i=1 b
∗
i bi = 1B. Put

A =

⎛⎜⎜⎜⎝
a1 a2 . . . an
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎝
b1 0 . . . 0
b2 0 . . . 0
...

...
. . .

...
bn 0 . . . 0

⎞⎟⎟⎟⎠ and X =

⎛⎜⎜⎜⎝
x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn

⎞⎟⎟⎟⎠ .

Then A ∈ Mn(A ), B ∈ Mn(B) and X ∈ Mn(X ). Moreover,

∥|A∥| = ∥|A∗∥| = ∥|A∗A∥|
1
2 = ∥|AA∗∥|

1
2

and

∥|B∥| = ∥|B∗∥| = ∥|B∗B∥|
1
2 = ∥|BB∗∥|

1
2
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and

∥|X∥| = ∥|⟨X,X⟩∥|
1
2 =



⏐⏐⏐⏐⏐⏐⏐⏐⏐

⎛⎜⎜⎜⎝
∥x1∥2 0 . . . 0
0 ∥x2∥2 . . . 0
...

...
. . .

...
0 0 . . . ∥xn∥2

⎞⎟⎟⎟⎠


⏐⏐⏐⏐⏐⏐⏐⏐⏐

1
2

≤M.

It follows from using (1.3) in the Mn(X ) that


n∑

i=1

aixibi

 =



⏐⏐⏐⏐⏐⏐⏐⏐⏐

⎛⎜⎜⎜⎝
∑n

i=1 aixibi 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞⎟⎟⎟⎠


⏐⏐⏐⏐⏐⏐⏐⏐⏐
= ∥|AXB∥| ≤ ∥|A∥| · ∥|X∥| · ∥|B∥|

≤M∥|AA∗∥| 12 ∥|B∗B∥| 12

=



⏐⏐⏐⏐⏐⏐⏐⏐⏐

⎛⎜⎜⎜⎝
∑n

i=1 aia
∗
i 0 . . . 0

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞⎟⎟⎟⎠


⏐⏐⏐⏐⏐⏐⏐⏐⏐

1
2

·



⏐⏐⏐⏐⏐⏐⏐⏐⏐

⎛⎜⎜⎜⎝
∑n

i=1 b
∗
i bi 0 . . . 0

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞⎟⎟⎟⎠


⏐⏐⏐⏐⏐⏐⏐⏐⏐

1
2

=


n∑

i=1

aia
∗
i

 ·


n∑
i=1

b∗i bi


≤M.

Corollary 11. Consider B(K,H) as a Hilbert B(H)-B(K)-bimodule. If M is a
positive scalar, then the set S = {T ∈ B(K,H), ∥T∥ ≤M} is B(H)-B(K)-convex.
In particular, the closed unit ball of B(K,H) is B(H)-B(K)-convex.

Remark 12. It should be remarked that our mean by the closed unit ball of X in
Theorem 9 and 10 is the closed unit ball of X with respect to the norm induced by
the C∗-algebras A and B. In other words, the closed unit ball of a Hilbert A -B-
bimodule with respect to an arbitrary norm need not to be A -B-convex. Too see this,
let Mn(C) be the algebra of all n×n matrices with complex entries. For A ∈ Mn(C),
let s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) be the singular values of A, i.e., the eigenvalues of

|A| = (A∗A)
1
2 . Our mean by the spectral norm ∥ · ∥∞ is the norm on Mn(C) defined

by ∥A∥∞ = s1(A), while the trace norm is defined on Mn(C) by ∥A∥1 = Tr(|A|).
Consider Mn(C) as a Hilbert Mn(C)-Mn(C)-bimodule. The closed unit ball of
the trace norm, say B = {X ∈ Mn(C) : ∥X∥1 ≤ 1} is not Mn(C)-Mn(C)-convex.
Indeed, if

P = X =

(
1 0
0 0

)
and Q = Y =

(
0 0
0 1

)
,
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then P and Q are projections, P +Q = I and ∥PXP∥1 = ∥QY Q∥1 = 1. However,
∥PXP +QY Q∥1 = 2 and so PXP +QY Q ̸∈ B. This shows that B is not M2(C)-
M2(C)-convex.

Note that Theorem 10 guarantees the Mn(C)-Mn(C)-convexity of the closed
unit ball of the spectral norm ∥ · ∥∞. More generally, the set

S :=

{
X ∈ Mn(C) :

(
S X
X∗ T

)
≥ 0, ∃S, T : 0 ≤ S ≤ I, 0 ≤ T ≤ I

}
is Mn(C)-Mn(C)-convex. Indeed, assume that Ai, Bi ∈ Mn(C), (i = 1, · · · , k)
with

∑k
i=1AiA

∗
i = I =

∑k
i=1B

∗
iBi. If Xi ∈ S, (i = 1, · · · , k), then there exist

Si, Ti ∈ Mn(C) with 0 ≤ Si ≤ I and 0 ≤ Ti ≤ I such that(
Si Xi

X∗
i Ti

)
≥ 0, i = 1, · · · , k.

It follows that[ ∑k
i=1AiSiA

∗
i

∑k
i=1AiXiBi(∑k

i=1AiXiBi

)∗ ∑k
i=1B

∗
i TiBi

]
=

k∑
i=1

[
Ai 0
0 B∗

i

] [
Si Xi

X∗
i Ti

] [
A∗

i 0
0 Bi

]
≥ 0.

Moreover,

0 ≤
k∑

i=1

AiSiA
∗
i ≤

k∑
i=1

AiA
∗
i = I and 0 ≤

k∑
i=1

B∗
i TiBi ≤

k∑
i=1

B∗
iBi = I,

from which we get
∑k

i=1AiXiBi ∈ S and so S is Mn(C)-Mn(C)-convex. Putting
S = T = I and using the fact that that for X ∈ Mn(C), ∥X∥∞ ≤ 1 if and only if[

I X
X∗ I

]
≥ 0, (see for example [1]) we conclude the Mn(C)-Mn(C)-convexity of

S = {X ∈ Mn(C); ∥X∥∞ ≤ 1} .

Let X be a Hilbert A -B-bimodule, S ⊆ X and let ∥ · ∥A and ∥ · ∥B be the norms
on X induced by ⟨·, ·⟩A and ⟨·, ·⟩B, respectively. We mean by SA and SB the norm
closures of S in X with respect to ∥ · ∥A and ∥ · ∥B, respectively.

Proposition 13. If S is A -B-convex, then so are SA and SB.

Proof. Let S be A -B-convex and x1, . . . , xn ∈ SA . Assume that xik is a sequence
in S such that ∥xik − xi∥A → 0 for i = 1, . . . , n as k → ∞. If a1, . . . , an ∈ A and
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b1, . . . , bn ∈ B with
∑n

i=1 aia
∗
i = 1A and

∑n
i=1 b

∗
i bi = 1B, then

∑n
i=1 aixikbi ∈ S,

for every k ∈ N. Moreover, for every 1 ≤ i ≤ n we have

∥aixikbi − aixibi∥2A = ∥⟨ai(xik − xi)bi, ai(xik − xi)bi⟩A ∥
≤ ∥bi∥2B∥⟨ai(xik − xi), ai(xik − xi)⟩A ∥
≤ ai∥⟨xik − xi, xik − xi⟩A ∥a∗i
= ai∥xik − xi∥2A a∗i → 0.

Therefore, 
n∑

i=1

aixikbi −
n∑

i=1

aixibi


A

≤
n∑

i=1

∥aixikbi − aixibi∥A → 0.

It follows that
∑n

i=1 aixikbi →
∑n

i=1 aixibi as k → ∞ and so
∑n

i=1 aixibi ∈ SA .

For every two element x, y in a Hilbert A -B-bimodule X , we define the A -B-
segment connecting x and y by

SA ,B(x, y) = {axb+ cyd | aa∗ + cc∗ = 1A , b∗b+ d∗d = 1B } .

and the A -B-convex segment connecting x and y by

CSA ,B(x, y) =

⎧⎨⎩
n∑

i=1

aixbi +

m∑
j=1

cjydj

⏐⏐⏐⏐⏐⏐
n∑

i=1

aia
∗
i +

m∑
j=1

cjc
∗
j = 1A ,

n∑
i=1

b∗i bi +

m∑
j=1

d∗jdj = 1B

⎫⎬⎭ .

If A = B, then we denote SA ,B(x, y) and CSA ,B(x, y) by SA (x, y) and CSA (x, y),
respectively. These concepts are natural generalizations of C∗-segment and C∗-
convex segments in C∗-algebras. The A -B-segment connecting x and y, the SA ,B(x, y),
is not A -B-convex in general. The next example shows that SA ,B(x, y) is not even
convex.

Example 14. [10] Consider M2(C) as a Hilbert M2(C)-M2(C)-bimodule. Let

X =

(
1 0
0 0

)
and Y = 0. Then every element in the SM2(C)(X,Y ) is a rank

one matrix. If A =

(
0 1
1 0

)
, then AA∗ = I and so T =

(
0 0
0 1

)
= AXA∗ ∈

SM2(C)(X,Y ). However, λT + (1 − λ)X =

(
1− λ 0
0 λ

)
is not of rank one. It

follows that SM2(C)(X,Y ) is not even convex.

However, CSA ,B(x, y) is A -B-convex.

Proposition 15. If x, y ∈ X , then CSA ,B(x, y) is A -B-convex and contains x and
y.
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Proof. Assume that n = m = 1, a1 = 1A , c1 = 0, b1 = 1B and d1 = 0. Then

x = a1xb1 + c1yd1 ∈ CSA ,B(x, y).

Similarly y ∈ CSA ,B(x, y). Now assume that z1, . . . , zn ∈ CSA ,B(x, y). Then

zk =

nk∑
i=1

aikxbik +

mk∑
j=1

cjkydjk ∀k = 1, . . . , n

in which
∑nk

i=1 aika
∗
ik +

∑mk
j=1 cjkc

∗
jk = 1A and

∑nk
i=1 b

∗
ikbik +

∑mk
j=1 d

∗
jkdjk = 1B,

for every k. Let p1, . . . , pn ∈ A and q1, . . . , qn ∈ B with
∑n

i=1 pkp
∗
k = 1A and∑n

i=1 q
∗
kqk = 1B. We have

n∑
k=1

pkzkqk =
n∑

k=1

pk

⎛⎝ nk∑
i=1

aikxbik +

mk∑
j=1

cjkydjk

⎞⎠ qk

=

n∑
k=1

nk∑
i=1

pkaikxbikqk +

n∑
k=1

mk∑
j=1

pkcjkydjkqk ∈ CSA ,B(x, y),

since

n∑
k=1

nk∑
i=1

pkaika
∗
ikp

∗
k +

n∑
k=1

mk∑
j=1

pkcjkc
∗
jkp

∗
k =

n∑
k=1

pk

⎛⎝ nk∑
i=1

aika
∗
ik +

mk∑
j=1

cjkc
∗
jk

⎞⎠ p∗k = 1A

and

n∑
k=1

nk∑
i=1

(bikqk)
∗bikqk +

n∑
k=1

mk∑
j=1

(djkqk)
∗djkqk =

n∑
k=1

q∗k

⎛⎝ nk∑
i=1

b∗ikbik +

mk∑
j=1

d∗jkdjk

⎞⎠ qk = 1B.

We are going to show that every A -B-convex combination of elements of an
A -B-convex set, can be presented as a combination of two terms.

Proposition 16. Let S be an A -B-convex subset of the Hilbert A -B-bimodule X
and let x1, · · · , xn ∈ S. If z =

∑n
i=1 aixibi with ai ∈ A , bi ∈ B and

∑n
i=1 aia

∗
i = 1A

and
∑n

i=1 b
∗
i bi = 1B, then z = e1xf1 + e2yf2, for some x, y ∈ S, e1, e2 ∈ A and

f1, f2 ∈ B with e1e
∗
1 + e2e

∗
2 = 1A and f∗1 f1 + f∗2 f2 = 1B.

Proof. Assume that z =
∑n

i=1 aixibi. Put u = 1
2a1a

∗
1 and v = 1

2b
∗
1b1 so that u and v

are positive invertible elements in A and B, respectively. Put c1 =
1√
2
(1− u)

−1
2 a1,

d1 =
1√
2
b1(1− v)

−1
2 and

ci = (1− u)
−1
2 ai, di = bi(1− v)

−1
2 i = 2, · · · , n.
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then ci ∈ A , di ∈ B and

n∑
i=1

cic
∗
i =

1

2
(1− u)

−1
2 a1a

∗
1(1− u)

−1
2 +

n∑
i=2

(1− u)
−1
2 aia

∗
i (1− u)

−1
2

= (1− u)
−1
2

(
1

2
a1a

∗
1 +

n∑
i=2

aia
∗
i

)
(1− u)

−1
2 = 1A .

Similarly,
∑n

i=1 d
∗
i di = 1B. It follows that y =

∑n
i=1 cixidi ∈ S. But we have

z =
n∑

i=1

aixibi =

(
1√
2
a1

)
x1

(
1√
2
b1

)
+ (1− u)

1
2 y(1− v)

1
2

in which x1, y ∈ S, 1
2a1a

∗
1 + (1− u) = 1A and 1

2b
∗
1b1 + (1− v) = 1B.

Remark 17. Suppose that X is a Hilbert A -B-bimodule and S is an A -B-convex
subset of X and 0 ∈ S. If x ∈ S and u and v are unitaries in C∗-algebras A and B,
respectively, then trivially uxv ∈ S. Let x1, x2 ∈ S, a1, a2 ∈ A and b1, b2 ∈ B with
a1a

∗
1 + a2a

∗
2 = 1A and b∗1b1 + b∗2b2 = 1B. Assume that a∗i = ui|a∗i | and bi = vi|bi| be

the polar decomposition. Then

z = a1x1b1 + a2x2b2 = |a∗1|u∗1x1v1|b1|+ |a∗2|u∗2x2v2|b2| = |a∗1|y1|b1|+ |a∗2|y2|b2|

in which, y1, y2 ∈ S and |a∗1|2 + |a∗2|2 = 1A and |b1|2 + |b2|2 = 1B. It means that z
can be presented as a combination with positive coefficients.
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