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SOME FIXED POINT RESULTS IN FUZZY METRIC
SPACES USING A CONTROL FUNCTION

C. T. Aage, Binayak S. Choudhury and Krishnapada Das

Abstract. In this paper, we establish the results on existence and uniqueness of fixed point
for ¢-contractive and generalized C-contractive mapping in the fuzzy metric space in the sense of

George and Veeramani. We use the notion of altering distance for proving the results.

1 Introduction

Menger [19] introduced an interesting and important generalization of the metric
space called probabilistic metric space in 1942. The idea was to use distribution
functions instead of non-negative real numbers as values of the metric. Kramosil
and Michalek [18] introduced fuzzy metric space as a generalization of Menger spaces.
Later George and Veermani [11] modified the notion of fuzzy metric spaces. They
imposed some conditions on the fuzzy metric space in order to obtain a Hausdorff
topology. In this paper we consider some fixed point problems in the fuzzy metric
spaces defined in the sense of George and Veeramani.

Fixed point theory is an active branch of research. Sehgal and Bharucha-Reid [26]
introduced the notion of contraction mapping in probabilistic metric spaces. They
studied the existence and uniqueness of fixed point for B-contraction on a complete
Menger space. Hicks [16] introduced the class of probabilistic C-contractions which
was different from Sehgal’s contraction. After that fixed point theory in probabilistic
and fuzzy metric spaces developed in different directions. A comprehensive survey of
research in this line was given by Hadzic and Pap in [14]. Some of recent references
probabilistic and fuzzy metric spaces may be noted in [2, 5, 6, 7, 9, 10, 13] and [27].

In 1984 Khan et al [17] introduced the notion altering distance function and
using it they had proved some fixed point theorems in complete metric spaces.
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Altering distance function has been used in a number of works in metric fixed point
theory. Some of the results are noted in [8, 23] and [24]. The concept of altering
distance function has been generalized to two variables and three variables in [1]
and [3] respectively. This notion has also been used to prove fixed point results for
multivalued and fuzzy mappings in [4].

With a view to extending the idea of altering distance function to probabilistic
metric spaces Choudhury and Das [5] introduced a new contraction in Menger spaces.
The contraction involves a class of real function, known as ®-function and generalizes
the Sehgal’s contraction. Further fixed point results by use of ®-functions have been
established in [6, 7, 9] and [22].

In this paper we prove some fixed point results in fuzzy metric spaces by use of
®-functions. We use the concept of p-convergence. This type of convergence was
introduced by Mihet in [21]. We also support our result by examples.

2 Section

In this section we give some definitions and results which are needed for our discussion.

Definition 1. [14, 25] A mapping F : (—oo,00) — [0,1] is called a distribution
function if it is nondecreasing and left continuous on [0, 1] with F(0) = 0.

The class of all distribution functions is denoted by A..

Definition 2. Probabilistic metric Space [14, 25]

A probabilistic metric space is an order pair (X, F') where X is a nonempty set and
F is a mapping from X x X to Ay (denoted by F), 4(-)) which satisfies the following
conditions for all x,y,z € X:

(i) Fry(0) =0,
(17) Fpy(t)=1 forall t >0 iff x =1y,
(idi) Fyy(t) = Fya(t),t >0,

() if Fpy(t1) =1 and Fy.(t2) =1, then F, . (t1 +t2) =1.

Definition 3. t-norm [14, 25]
A binary operation T : [0,1] x [0,1] — [0,1] is called a triangular norm (abbreviated
t-norm) if the following conditions are satisfied:

(1) T(1,a) = a,
(73) T(a,b) =T(b,a),
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(#i1) T(c,d) > T(a,b) whenever ¢ > a and d > b,
(iv) T(T(a,b),c) =T(a,T(b,c)).

Definition 4. Menger Space [14, 25]

A Menger space is a triplet (X, F,T) where X is a non empty set, F is a function

defined on X x X to the set of distribution functions and T is a t-norm, such that
the following are satisfied:

(i)  Fyy(0)=0 forallz,y € X,
(i) Fry(
(iii) wy(8) = Fya(s) for all z,y € X,s >0 and
(i) Fuy(

Definition 5. Fuzzy Metric Space (Kramosil and Michalek) [18]
The 3-tuple (X, M, T) is said to be a fuzzy metric space if X is an arbitrary set, T
is a t-norm and M is a fuzzy set on X? x [0,00) satisfying the following conditions

(i) M(z,y,0) =0,

s)=1 for all s >0 and z,y € X if and only if x =y,

u+v) > T(Fy.(u), F.y(v)) for allu,v >0 and z,y,z € X.

(
(ii) M(x,y,t) =1 for allt >0 if and only if x =y,
(iii) M(x,y,t) = M(y,x,t),
(iv) M(z,z,t+s)>T(M(x,y,t), M(y,z,s)),
(v) M(z,y,.):[0,00) —= [0,1] is left continuous for x,y,z € X and t,s > 0.

George and Veeramani have extended fuzzy metric space in order to ensure a
Hausdorff topology on the fuzzy metric space, in [11]. The definition is as follows :

Definition 6. Fuzzy Metric Space (George and Veeramani) [11]
The 3-tuple (X, M, T) is said to be a fuzzy metric space if X is an arbitrary set, T

is a continuous t-norm and M is a fuzzy set on X2 x (0, 00) satisfying the following
conditions:

(i) M(z,y,t) >

(ii) M(z,y,t) =1 if and only if v =y,

(iii) M(z,y,t) = M(y,z,t)

(iv) M(z,2,t+s) > T(M(z,y,t), M(y,z,s)),
(

(v) M(z,y,.):(0,00) = [0,1] is continuous for x,y,z € X and t,s > 0.
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Definition 7. Convergent Sequence[25]
A sequence {xy} in a fuzzy metric space (X, M, T) is said to be convergent to x € X
if li_>m M(xp,x,t) =1, for each t > 0.

n—oo

Definition 8. Cauchy Sequence[11]

A sequence {x,} in a fuzzy metric space (X, M, T) is called Cauchy sequence if for
A € (0,1) andt > 0 there exists a positive integer N1 such that M (xy,, xp,t) > 1=\
for all m,n > Ni.

Definition 9. G-Cauchy Sequence[12]

A sequence {x,} in a fuzzy metric space (X, M, T) is called G-Cauchy sequence if for
A€ (0,1) and t > 0 there exists a positive integer N1 such that M (zpip, Ty, t) >
1— X foralln > Ny and p > 0.

It follows immediately that a Cauchy sequence is a G-Cauchy sequence but the
converse is not always true. This has been established by an example in [28].

Definition 10. A fuzzy metric space (X, M,T) is said to be complete if every
Cauchy sequence in X converges in X.

Definition 11. [26] Let (X, F') is a probabilistic metric space and f is a self-mapping
on X. The mapping f is said to be a B-contraction (or Sehgal contraction) if

Fip rq(kt) > Fpq(t) Vp,q € X and Vt > 0,
where 0 < k < 1 is a fized constant.

As already mentioned in the introduction another notion of contraction known
as C-contraction in probabilistic metric spaces was introduced by Hicks [16]. C-
contractions in probabilistic and fuzzy metric spaces have been considered in a
number of works such as those noted in [15, 20, 21] and [29].

In 1984 Khan et al [17] introduced the following notion, which they called
alternating distance function and using it they had proved some fixed point theorems
in a complete metric spaces.

Definition 12. Altering distance function [17]
An altering distance function is a function v : [0,00) — [0, 00)
(i) which is monotone increasing and continuous and
(i1) (t) = 0 if and only if t = 0.
They proved the following result.

Theorem 13. [17] Let (X, d) be a complete metric space, 1 be an altering distance
function and let f : X — X be a self mapping which satisfies the following inequality

(d(fz, fy)) < cv(d(z,y))
for all x,y € X and for some 0 < c < 1. Then f has a unique fized point.
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To extending the above idea in the context of Menger spaces Choudhury and
Das [5] introduced the following definition.

Definition 14. ®-function [5]
A function ¢ : R — R% is said to be a ®-function if it satisfies the following
conditions:

(i)  ¢(t) =0 if and only if t =0,

(it)  @(t) is increasing and ¢(t) — o0 ast — oo,
(#i7) @ is left continuous in (0,00),
(tv) ¢ is continuous at 0.

Definition 15. Let (X, M,T) be a fuzzy metric space. A self map f: X — X is
said to be ¢-contractive if

M(fz, fy,0(0) = Mz, (9(1)), 21)

where 0 < c <1, z,y € X, t >0 and ¢ is a -function.

Definition 16. Let (X, M,T) be a fuzzy metric spaces. A mapping f: X — X is
called a generalized C'-contraction if for any € > 0 and A > 0,

M(z,y,6(c)) > 1 — X implies M(fa, fy, d(ke)) > 1 — ki), (2.2)
where ¢ is a P-function and k, k1 are positive numbers with 0 < k,ky < 1.

Definition 17. Let(X,M,T) be a fuzzy metric space. A sequence {x,} in X is
said to be point convergent or p-convergent to x € X if there exists t > 0 such that

lim M(zp,z,t) = 1.

n—oo

We write x,, —p = and call z as the p-limit of {x,}.

It follows that convergence implies p-convergence. That the converse is not true
has been established by an example in [21].

The following lemma was proved in [21].

Lemma 18. p-limit of a point convergent sequence is unique.
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3 Main Results

Theorem 19. Let (X, M,T) be a fuzzy metric space in the sense of George and
Veeramani and f : X — X be a ¢-contraction. Suppose that for some xy € X the
sequence {f"xo} has a p-convergent subsequence. Then f has a unique fized point.

Proof. Let 29 € X. In view of the condition (i) and (iv) in definition 2.14, for
s > 0 we can find a number r such that s > ¢(r). Then for s > 0 we have by (1),

M (2p, nt1,8) > M(frn_1, fon, 6(r))
> M(xn_17$n7¢(£))
= M(fan-2, fan-1,6())
> M(2p9, 201, ()

c2

Therefore for all n > 1,
,
M (2, Tni1,8) > M(x07x17¢(07))'
Taking n — oo, we have for all s > 0,

M(zy, xny1,8)) — 1. (3.1)

Suppose {z,,} is a p-convergent subsequence of {z,}, therefore there is a yo € X
and € > 0 such that M(x,,,y0,5) — 1. Hence for A € (0,1), we can find a positive
integer Np(A) such that

€ .
M(xnjuy()? 5) >1- )\7 v.] > N1<)\) (32)

Now we show that M (zy,1,¥0,€) — 1. Since T' is continuous, there is a 6 € (0,1)
such that T'(1 — 6,1 — ) > 1 — A. By virtue of (3) we can find a positive integer No
depend on § and hence depend on A such that,

M (2, @np1,5) > 1= 6 Vj > Na(A). (33)

Then for all j > max{Ni(\), N2(A)} we have,

=) M@, 90, 5))
>T(1—6,1-6) (by (4) and (5))

>1-A

M(‘T’n]’-i—h Yo, 6) 2 T(M(wnj-i-la wnja
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Hence, lim M(zn;+1,v0,€) = 1, that is,

]4}

Tp,+1 TN 0. (3.4)

We now show that M (xn; 11, fyo,€) =1, as n — oo. By the property of ¢-function
we can find €; > 0 such that § < ¢(ey).

Now, we have,

M (2,41, fyo, ¢(€1)) = M (fxn;, fyo, ¢(e1))
(e 90:9(7)) (by (1))
(s 0, 9(€1)
(

v

v

€
3)
—1 as j — oo.

M
M
M

v

Tn;, Yo,

Therefore, ;11 2 fyo. Again by Lemma 2.18 we have p-limit of a p-convergent
sequence is unique. Therefore, we have fyy = yo, that is, yo is a fixed point of f.

We next show that the fixed point is unique. If possible, let u and v be two fixed
points of f. As in the above corresponding to a given s; > 0, we can find a 7 > 0
such that s; > ¢(r1). Then we have,

M(u,v,s1) = M(fu, fv,s1)
> M(fu’ Jv, ¢(T1))
> M(u,0,6())
= M(fu, fv,6("2)
> M(u,0,0(13))
>

Taking n — oo we have M (u,v,s1) — 1 for all s; > 0, that is, v = v. This proves
the uniqueness of the fixed point and completes the proof.

Theorem 20. Let (X, M,T) be a fuzzy metric space in the sense of George and
Veermani and f : X — X be a generalized C-contraction. Suppose that for some
x € X the sequence {f"x} has a p-convergent subsequence. Then f has a unique
fized point.
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Proof Let f satisfy (2) and ¢ > 1. Now for any r > 0,
M(z,y,¢(r)) >1—t for all z,y € X.
Then we have,
M(fx, fy,¢(kr)) > 1 — kqt.
Applying the above procedure we have after n steps,
M(f"x, fhy, p(k"r)) > 1 — k't (3.5)

Let € > 0, A > 0 be arbitrary. Since 0 < k,k; < 1, we have k't — 0 as n — oo,
therefore there exists a positive integer Nj(A) such that for all n > Nj()\)

1— kMt >1-—\ (3.6)

Again by the properties of ¢-function we can find a positive integer Na(e) such
that

e > ¢(k"r), ¥V n> Na(e). (3.7)
Using (8) and (9) we have from (7), for all z,y € X
M(f", fy,€) > M(f"s, fy, (k")) > 1 — kit > 1\ (3.8)
Therefore, for all n > N(e, A) = max{N;(\), Na(¢)}, we have
M(f "z, f"y,e) > 1 — A\ (3.9)

Putting © = zp and y = z,,—p, for m > n in (11) we have that M (x,, Ty, €) >
1 — A. Hence, {f"x} is a Cauchy sequence.

Suppose {z,} has a p-convergent subsequence {x,;} which converges to some
point o9 € X. Then there exists A > 0 and a positive integer N3(\) such that for all
J> N3()\)7 M(xnjay(]a %) >1-=A

Since {z,, } and then {z,, } are Cauchy sequences we can take Ng = max{N1(\), N2(¢), N3()\)}
such that

M (2, 41,2050 5) > 1= A, Vi 2 No (3.10)
and from the p-convergent subsequence we have,
M(zn;,50,5) > 1= A, Vj = No. (3.11)
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Since T is continuous, we can find a 6 € (0,1) such that T(1 — A\, 1 —X) > 1 — 4.
Now we have,

€ €
M(:Enj+17y07 6) > T(M(xnj+17 Tnj, §)> M(ajnjaym 5))
>T(1—=XN1=X) (by (12) and (13))

>1-—9,
which implies that Tnj+1 N 20-

By the properties of ¢ we can get €; > 0 such that ¢(e1) > § > ¢(ker) and we
have by (13), for all j > Ny
M(xnj7y07 ¢(61)) Z M(‘rnj7y07 %) > 1 - A

Therefore by (2) we have,
M(fxnj,fyo,qb(k:q)) >1— kA, for all j > Ny
that is, M (zn;+1, fyo, ¢(ke1)) > 1 — A, ((since 0 < ky < 1),
that is, M (zn;+1, Y0, §) = M (Tn;41, fyo, ¢(ke1)) > 1 — A, for all j > Np.

Therefore, ;11 2 fyo. Again by Lemma 2.18 we have p-limit of a p-convergent
sequence is unique. Therefore, we have fyy = yo, that is, yo is a fixed point of f.

For uniqueness, let v and v be two fixed points of f, then by the properties of
¢-function we can find 71 and ¢; with 71 > 0 and 0 < ¢; < 1 such that

M(u,v,p(r1)) > 1 —t;.
Therefore by (2) we have
M(fu, fv,¢(kr1)) >1—kits
that is M (u,v, ¢(kr1)) > 1 — kit;. Applying this procedure we have after n steps
M (u,v,¢(k"r1)) > 1 — kl't1.

Again let € > 0 be arbitrary. By the properties of ¢-function we can find a positive
integer Ny such that € > ¢(k™ry) for all n > Ny. Therefore M (u,v,€) > 1 — k't for
all n > Ny. Therefore M (u,v,€) =1 for arbitrary € > 0, that is u = v.

Example 21. Let X = {x1, 29,23} , M(z,y,t) be defined as

0, if <0,
M(:L‘l,xg,t):M(acQ,xl,t): 0.9, if 0<t<3,
1, if t>3,

M(.Tl,ﬂ?g,t) - M(x?nxlat) =
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0, if <0,
M($2,$3,t) = M(xg,xQ,t) = 0.7, if 0<t<6,
1, if t>6,

and T(a,b) = min{a,b} then (X,M,T) is a complete fuzzy metric space. If

fr1

= fag = my, fxs = w1 and ¢(t) = /'t then f satisfies all the conditions of

Theorem 3.2 and xs is the unique fized point of f.
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