Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 13 (2018), 107 -- 117
This work is licensed under a Creative Commons Attribution 4.0 International License.SOME FIXED POINT THEOREMS INVOLVING RATIONAL TYPE CONTRACTIVE OPERATORS IN COMPLETE METRIC SPACES
M. O. Olatinwo and B. T. Ishola
Abstract. Let (X, d) be a complete metric space and T from X to X a mapping of X. In 1975 Dass and Gupta introduced the following rational type contractive condition to prove a generalization of Banach's Fixed Point Theorem: For α,β∈[0,1), such that α + β d(Tx,Ty)≤ α * d(y,Ty)*(1+d(x,Tx))⁄(1+d(x,y))+β*d(x,y), where T is continuous.
There are several generalization and extension of Dass and Gupta's result under the hypothesis that T is continuous and α + β<1.
In this paper, we prove some fixed point theorems in a complete metric space setting by employing more general rational type contractive conditions than the above one. We show in our results that the continuity of the above operator T is unnecessary and the restrictive condition that α + β2010 Mathematics Subject Classification: 47H06, 54H25
Keywords: complete metric spaces; rational type contractive conditions.
References
S. Banach,Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae 3 (1922), 133-181. JFM 48.0201.01.
V. Berinde, Iterative approximation of fixed points. 2nd revised and enlarged ed., Lecture Notes in Mathematics 1912 Springer-Verlag Berlin Heidelberg, 2007. MR2323613. Zbl 1165.47047.
S. K. Chatterjea,Fixed-point theorems, C. R. Acad. Bulgare, Sci. 25 (1972), 727-730. MR0324493. Zbl 0274.54033.
Lj. B. \acuteCiri\acutec, On contraction type mappings, Math. Balk 1 (1971), 52-57. MR0324494. Zbl 0223.54018.
Lj. B. \acuteCiri\acutec, Some recent results in metrical fixed point theory, University of Belgrade, 2003.
B. K. Dass and S. Gupta, An extension of Bannach contraction principle through rational expression, Indian J. Pure and Appl. Math 6 (1975), 1455-1458. MR0467708. Zbl 0371.54074.
P. Dass, A fixed point theorem on a class of generalized metric spaces, Korean J. Math. Sci. 1 (2002), 29-55.
P. Das and L. K. Dey, A fixed point theorem in a generalized metric space, Soochow Journal of Mathematics 33 (2007), 33-39. MR2294745. Zbl 1137.54024.
P. Das, L. K. Dey, Fixed point of contractive mappings in generalized metric spaces, Math. Slovaca 59(4) (2009), 499-504. MR2529258. Zbl 1240.54119.
M. Edelstein, On fixed and periodic points under contractive mappings, J. Lond. Math. Soc. 37 (1962), 74 - 79. MR0133102. Zbl 0113.16503.
D. S. Jaggi, Some unique fixed point theorems, Indian Journal of Pure and Applied Mathematics 8(2) (1977), 223-230. MR0669594. Zbl 0379.54015.
D. S. Jaggi and B. K. Dass, An extension of Banach's fixed point theorem through rational expression, Bull Cal. Math. 72 (1980), 261-266. MR0500887. Zbl 0476.54044.
J. Harjani, B. Lopez and K. Sadaragani, A fixed point theorem for mappings satisfying a contractive condition of rational type on a partially ordered metric space, Abstract and Applied Analysis (2010). MR2726609. Zbl 1203.54041.
G. E. Hardy and T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Soc. 16 (1973), 201-206. MR0324495. Zbl 0266.54015.
M. A. Khamsi, Introduction to metric fixed theory, International workshop on non-linear functional anal. and its App., Shahid Behesht Uni. (2002), 20-24.
R. Kannan, Some results on fixed points, Bull Calcutta Math. Soc. 60 (1968), 71-76. MR0257837. Zbl 0209.27104.
M. G. Maia, Un’osservazione sulle contrazioni metriche, Rend. Sem. Mat. Univ. Padova 40 (1968), 139–143. MR0229103. Zbl 0188.45603.
J. A. Meszáros, A comparison of various definitions of contractive type mappings, Bull Calcutta Math. Soc. 84 (2) (1992), 167-194. MR1210588. Zbl 0782.54040.
M. R. Takovic, A generalization of Banach's contraction principle, Publications de l’Institut Mathématique. Nouvelle Série (Beograd) 23(37) (1978), 179-191 MR0508142. Zbl 0403.54042.
M. O. Olatinwo, Some new fixed point theorems in complete metric spaces, Creative Math. Inform. 21(2) (2012), 189-196. MR3027361. Zbl 1289.54141.
E. Rakotch, A note on contractive mappings, Proc. Amer Math. Soc. 13 (1962), 459-465. MR0148046. Zbl 0105.35202.
T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math. (Basel) 23 (1972), 292-298. MR0310859. Zbl 0239.54030.
E. Zeidler, Nonlinear functional analysis and its applications. I. Fixed-point theorems. Translated from the German by Peter R. Wadsack, Springer-Verlag, New York, 1986. MR0816732. Zbl 0583.47050.
M. O. Olatinwo
Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria.
e-mail:~memudu.olatinwo@gmail.com, molaposi@yahoo.com, polatinwo@oauife.edu.ng
B. T. Ishola
Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria.
e-mail: ~isholababs44@gmail.com