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INITIAL VALUE PROBLEMS FOR FRACTIONAL
FUNCTIONAL DIFFERENTIAL INCLUSIONS
WITH HADAMARD TYPE DERIVATIVES IN

BANACH SPACES

John R. Graef, Nassim Guerraiche and Samira Hamani

Abstract. The authors establish sufficient conditions for the existence of solutions to boundary
value problems for fractional differential inclusions involving the Hadamard type derivatives of order

a € (0,1] in Banach spaces.

1 Introduction

This paper is concerned with the existence of solutions to initial value problems
(IVP for short) for fractional order functional differential inclusions. We consider
the initial value problem

Hpey(t) € F(t,y), forae teJ=[1,T], 0<a<]l, (1.1)

y(t) =p(t), tel[l-—r1], (1.2)

where 7 D is the Hadamard fractional derivative, E is a Banach space, P(E) is the
family of all nonempty subsets of E, F': [l —r,T] x E — P(E) is a multivalued map,
and ¢ € C([1 —r,1],E) with ¢(1) = 0. For any function y defined on [1 — r,T] and
any t € J, we denote by y; the element of C'([1 —r,1],E) defined by

yt:y(t+9), 0 e [1—T,1]

Here, y;() represents the history of the state of the system from the time ¢ — r up
to the present time ¢.

Differential equations of fractional order have recently proved to be valuable tools
in modeling many phenomena in various fields of science and engineering. There are

2010 Mathematics Subject Classification: 34K09; 34K37.
Keywords: initial value problems; fractional derivatives; functional differential inclusions;
Hadamard derivatives.

kst sk ok sk ok sk s ok sk sk ok s ok sk sk ok s sk sk ok sk sk sk s sk sk sk ok sk sk sk sk ok sk sk sk s sk sk sk ok sk ok sk sk ok sk sk sk s ok sk sk sk sk ok sk sk ok ok sk ok sk sk ok ok sk skok ok sk ok

http://www.utgjiu.ro/math /sma


http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma

28 J. R. Graef, N. Guerraiche and S. Hamani

numerous applications in viscoelasticity, electrochemistry, control, porous media,
electromagnetism, etc. documented in the literature (see [29, 32, 38]). There have
been significant developments in the theory of fractional differential equations in
recent years; see, for example, the monographs of Hilfer [30], Kilbas et al. [32],
Momani et al. [35], and Podlubny [38], as well as the papers [1, 2, 11, 12, 13, 22,
23, 27, 29, 35]. However, the literature on Hadamard-type fractional differential
equations has not undergone as much development; see, for example, [4, 10, 24,
25, 40]. The fractional derivative that Hadamard [26] introduced in 1892 differs
from the aforementioned derivatives in the sense that the kernel of the integral in
the definition of the Hadamard derivative contains a logarithmic function with an
arbitrary exponent (see Definition 6 below). A detailed description of the Hadamard
fractional derivative and integral can be found in [15, 16, 17].

In this paper, we present existence results for the problem (1.1)—(1.2) in the
case where the right hand side is convex valued. This result relies on the set-valued
analog of Monch’s fixed point theorem combined with the technique of measure
of noncompactness. Recently, this has proved to be a valuable tool in studying
fractional differential equations and inclusions in Banach spaces; for details, see the
papers of Agarwal et al. [2], Benchohra et al. [12, 13, 14], Graef et al. [25], and
Laosta et al. [34]. The results here extend to the multivalued case some previous
results in the literature, and we believe constitutes an interesting contribution to
this emerging field of study.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that will
be used in the remainder of this paper.

Let C(J,E) be the Banach space of all continuous functions from J into E with
the norm

[ylloe = sup{Jy(t)| : 0 < ¢ < T},

and let L'(J,E) denote the Banach space of functions y : J — E that are Lebesgue
integrable with the norm

T
Iyl = /O y(0)\dt.

We take AC(J,E) to be the space of functions y : J — [E that are absolutely
continuous. We endow the space C([1 —r, 1], E) with the norm

lellc =sap{le(@)]: 1 -7 <0 <1}

For any Banach space (X, | - ||), we let Py(X) = {Y € P(X) : Y is closed},
Py(X) ={Y € P(X) : Y is bounded}, P,(X) ={Y € P(X) : Y is compact}, and
P o(X)={Y € P(X) :Y is compact and convex}.
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A multivalued map G : X — P(X) is convez (closed) valued if G(X) is convex
(closed) for all x € X. We say that G is bounded on bounded sets if G(B) =
UzepG(x) is bounded in X for all B € By(X) (i.e., sup,ep{sup{|y| : v € G(z)}}).

The mapping G is called upper semi-continuous (u.s.c.) on X if for each xg € X,
the set G(zp) is a nonempty closed subset of X, and for each open set N of X
containing G(x¢), there exists an open neighborhood Ny of ¢ such that G(Ny) C N.
Also, G is said to be completely continuous if G(B) is relatively compact for every
B € Py(X).

If the multivalued map G is completely continuous with nonempty compact
values, then G is u.s.c if and only if G has a closed graph (i.e., T, = Tu, Yn — Yx,
Yyn € G(xy,) imply y. € G(x)). The mapping G has a fized point if there is z € X
such that z € G(x). The set of fixed point of the multivalued operator G will be
denoted by FizG. A multivalued map G : J — P,(X) is said to be measurable if
for every y € X, the function

t —d(y,G(t)) = inf{ly — 2| : 2 € G(t)}
is measurable.
Definition 1. A multivalued map F : J x E — P(E) is said to be Carathéodory if:
(1) t — F(t,u) is measurable for each u € E;

(2) w— F(t,u) is upper semicontinuous for almost all t € J.

For each y € AC(J,E), define the set of selections of F' by
Spy={ve LYJ,E): v(t) € F(t,y) ae. t € J}.

Let (X, d) be a metric space induced from the normed space (X, |- |). The function
Hy:P(X)xP(X)— Ry U{oo} given by

Hy(A, B) = maz{supd(a, B),supd(A,b)}
acA beB
is known as the Hausdorff-Pompeiu metric.
For more details on multivalued maps see the books of Aubin and Cellina [6],
Aubin and Frankowska [7], Castaing and Valadier [19], and Deimling [21].
Next, we define the Kuratowski measure of noncompactness and give some of its
important properties.

Definition 2. ([5, 8]) Let E be a Banach space and let Qg be the set of all bounded
subsets of E. The Kuratowski measure of noncompactness is the map B : Qp —

[0,00) defined by

B(B) =inf{e >0 : B C U Bj, B € Qg, and diam (Bj) < €} .
j=1
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Properties: The Kuratowski measure of noncompactness satisfies the following
properties (for more details see [5, 8]).

(1) B(B) =0 if and only if B is compact (B is relatively compact).
B(B) = B(B).

A C B implies 5(A) < B(B).
B(A+ B) < B(A) + B(B).
B(cB) = |c|B(B), ¢ € R.

(6) BlconB) = B(B).

Here B and conB denote the closure and the convex hull of the bounded set B,
respectively.

Theorem 3. ([28], [37, Theorem 1.3]) Let E be a Banach space and C C L'(J,E)
be a countable set with |u(t)| < h(t) for a.e. t € J and every u € C, where h €
LY(J,Ry). Then the function (t) = B(C(t)) belongs to L*(J,R,) and satisfies

B</0Tu(s)ds:u60>§2/oTB(Cs ds

Lemma 4. ([34, Lemma 2.6]) Let J be a compact real interval, let F' be a Carathéodory
multivalued map, and let 0 be a linear continuous map from L'(J,E) — C(J,E).
Then the operator

00 Spy: C(JE) = Py o(C(LE)),  yr= (605ky)(y) =0(Sky)
is a closed graph operator in C(J,E) x C(J,E).

2
3

(2)
(3)
(4)
()

5

In the remainder of this paper we use the notation that log(:) = log, () and that
[a] denotes the integer part of a.

Definition 5. ([32]) The Hadamard fractional integral of order o of a function
h:[1,T] — E is defined by

I%h(t) = I‘(la) /It <log i)a_l hjis)ds, a >0,

provided the integral exists.

Definition 6. ([32]) For a function h given on the interval [1,T], the Hadamard
fractional derivative of order o of h is defined by

(1 DR)(1) = F(nla) (tjt)n/lt (log z>nal hf)ds, n-l<a<n, n=a+,

Here [«] denotes the integer part of o and log(-) = log,(+).
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The following result, known as Modnch’s fixed point theorem, will be used to
prove our main results.

Theorem 7. ([37]) Let K be a closed, convex subset of a Banach space E, U be a
relatively open subset of K, and N : U — P(K). Assume that graph N is closed, N
maps compact sets into relatively compact sets, and for some xg € U, the following
two conditions are satisfied:

(i) M C U,AJ C conv(zgUN(M)), and M = U with C' a countable subset of M,

implies M 1is compact;
(ii) * & (1 — N)wzg+ AN(z) for allz € U\ U, € (0,1).
Then there exists x € U with x € N(x).

3 Main results

We begin this section with the definition of a solution to our problem (1.1)—(1.2).

Definition 8. A functiony € AC([1—r,T],R) is said to be a solution of (1.1)-(1.2),
if there exists a function v € L'([1,T],R), with v(t) € F(t,y;) for a.e. t € [1,T],
such that

Hpoyt)y =v(t), ae te[l,T], 0<a<]l,

and the function y satisfies condition (1.2).

Theorem 9. Let R >0, B={z € E: ||z|| < R}, andU = {x € C(J,E) : ||z|| < R},
and assume the following conditions hold:

(H1) F : J x E = Pepp(E) is a Carathéodory multi-valued map;
(H2) There exists a function p € L*(J,E) such that
IF(t w)llp = sup{le] : o(t) € F(t,y)} < p(t)
for each (t,y) € J x E with |y| > R, and

T
t)dt
lim infM:(5<oo;
R—o0 R
(H3) There exists a Carathéodory function v : J x [1,2R]| — Ry such that

B(F(t,M)) <(t,f(M)) a.e. t € J and each M C B;

(H4) The function ¢ =0 is the unique solution in C(J,[1,2R]) of the inequality

-1

1 t t\“ ds

o(t) < 2—— log — P(s,p(s))— forte
INCGON A s s

ok sk sk sk sk sk sk sk sk sk sk s sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk s sk ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk kok sk sk sk sk sk sk ok ok

Surveys in Mathematics and its Applications 13 (2018), 27 — 40
http://www.utgjiu.ro/math/sma


http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma

32 J. R. Graef, N. Guerraiche and S. Hamani

Then the IVP (1.1)-(1.2) has at least one solution in C(J, B), provided that

INa+1)

o< (logT)"

(3.1)

Proof. To transform the problem (1.1)—(1.2) into a fixed point problem, consider
the multivalued operator

N(y)(t) = {h e C([1 —r,T],R) : h(t)

o(t), ifte[l—r1]

= 1 t £\t forve S
/ gt} "as ifrey F
INa) /i s s

Clearly, the fixed points of N are solutions to (1.1)—(1.2). We shall show that N
satisfies the assumptions of Ménch’s fixed point theorem. The proof will be given
in several steps.

Step 1: N(y) is convex for each y € C(J, B). Let hy, hy belong to N(y); then
there exist v, v2 € Sk, such that for each t € J, we have

hi(t) = r(la) /lt <10g z>a_1”i’5) ds,

for i =1,2. Let 0 < d < 1. Then, for each t € J, we have

t a—1
(dh + (1 = d)h)(t) - = F(la) /1 (bgi) [dv1+<1_d>v2]§.

Now Sf, is convex since F' has convex values, so

dh1 4 (1 —d)hs € N(y).
Step 2: N (M) is relatively compact for each compact set M C U. Let M C U
be a compact set and let {h,} be any sequence of elements of N(M). We will show

that {h,} has a convergent subsequence by using the Arzela-Ascoli theorem. Since
hn € N(M), there exist y, € M and v, € Spy, n =1,2,..., such that

hn(t) = F(la) /lt <10g z>a1 vn(s)%. (3.2)

Using Theorem 3 and the properties of the Kuratowski measure of noncompactness,

we have
1 t t a—1 Un(S)
B({ha(t)}) < 2 [r@ [ ({(u;) ( }) ds] 63
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On the other hand, since M (s) is compact in E, the set {v,(s) : n > 1} is compact.
Consequently, 8({v,(s) : n > 1}) =0 for a.e. s € J. Furthermore,

8 ({ (lgt) ) }) _ (logz)almvn(s) 1)) =0,

for a.e. t, s € J. Now (3.3) implies that {h,(t) : n > 1} is relatively compact in B
for each t € J. In addition, for each t1, t5 € J with t; < to, we have

r?a) () ( 3]
)

1 t2 < to
(Oé) t1

[y <logz>“‘1 :
()

As t; — t9, the right hand side of the above inequality tends to zero. This shows
that {hy : n > 1} is equicontinuous. Consequently, N (M) is relatively compact in
C(J,B).

|fin(t2) = hn(t1)] =

S

Step 3: N has a closed graph. Let y, — y«, hp € N(yn), and h, — h,. We
need to show that h, € N(y.). Now h,, € N(y,) implies there exists v, € Sp, such

that for each t € J,
1 t £\ ds
ho(t) = — log — n(8)—.
T CH G

Consider the continuous linear operator 0 : L!(J, E) + C(J, E) defined by

O(0)(E) 1> T (t) = F(la) /lt <log Z)a_l vn(s)%.

Clearly, ||hn(t) — h(t)|| = 0 as n — co. From Lemma 4 it follows that 6 o Sg,, is a
closed graph operator. Moreover, h,(t) € (S, ). Since y, — y, Lemma 4 implies

h(t) = F(la)/lt <logi>a_lv(s)cis.

Step 4: M is compact. Assume M C U, M C conv({0} U N(M)), and M = C
for some countable set C' C M. By an argument similar to the one used in Step 2, we
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see that N (M) is equicontinuous. Since M C conv({0}UN (M)), we conclude that M
is equicontinuous as well. To apply the Arzela-Ascoli theorem, we need to show that
M (t) is relatively compact in E for each ¢ € J. Since C C M C conv({0} U N(M))
and C' is countable, we can find a countable set H = {h,, : n > 1} C N(M) with
C C conv({0} U H). Then, there exist y, € M and v, € Sk, such that

hn(t) = F(la) [ (log Z)a_l Un(s)%.

From the fact that M C C' C conv({0} U H)), in view of Theorem 3, we have

BM(H)) < B(C(1) < BH(H) = B({hn(t) : n > 1}).

Now in view of the fact that v,(s) € M(s), applying (3.3), we have

BM (1)) < 2 F(la ({ <1 ) s)% ‘> 1}) ds]
=2 -F(la < gi) iS]
<» _F(la ( gt) <s>>>dj] .

Also, the function ¢ given by ¢(t) = a(M(t)) belongs to C(J, [1,2R]). Consequently,
by (H3), ¢ = 0; that is, S(M(t)) = 0 for all t € J. Thus, by the Arzela-Ascoli
theorem, M is relatively compact in C'(J, B).

Step 5: N has a fized point. Let h € N(y) with y € U. To see that N(U) C U,
suppose this is not the the case. Then there would exist a function y € U with

ING)lp > R and o
h(t) = 1“(1a)/1 <log i) ’U(S)%

for some v € Sgy. On the other hand,

L[ AN (logT)* [*
R<|N@)|p < F(oz)/l (log8> (s )|? < r(a+1)/ p(s)ds.

Dividing both sides by R and taking the liminf R — oo, we conclude that

which contradicts (3.1). Hence N(U) C U.
As a consequence of Steps 1-5 and Theorem 7, we conclude that N has a fixed
point y € C'(J, B) that in turn is a solution of the problem (1.1)-(1.2). O
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4 An example

In this section we apply the main result in this paper, Theorem 9 above, to the
fractional differential inclusion

Hpoy(t) € Ft,y;) forae teJ=[1,T], 0<a<l, (4.1)

y(t) = Sp(t)a te [1 - 1]) (42)
where F': [1 —7,T] x R — P(R) is a multivalued map, and ¢ € C([1 —r, 1], R) with
(1) = 0. Set

Ft,y)={veR: fit,y) <v < fo(t,y)}

where fi, fo: [1 —r,T] x R — R. We assume that for each ¢t € [1 —r, T, fi(t,-) is
lower semi-continuous (i.e., the set {y € R: fi(t,y) > u} is open for each p € R),
and fa(t,+) is upper semi-continuous (i.e., the set {y € R : fo(t,y) < p} is open for
each ;1 € R). We also assume that there is a function p € L*(J,R)) such that

|1 F(t, uw)|lp = sup{|v] : v(t) € F(t,y)}
=max(|f1(t,y)],|fe(t,y)| <p(t) forte[l—rT] and y€R.

It is clear that F' is compact and convex valued and is upper semi-continuous.
We take C(s) to be the space of linear functions, i.e., we will choose p(t) =
B(C(t)) such that

Blu(s) = 4
where
u(s) =as, a>0, and ggsgﬁ.
a a
For each (t,y) € J x R with |y| > R we have
T
lim infM:5<oo.

R—o0

Finally, we assume that there exists a Carathéodory function ¢ : J x [1,2R] — Ry
such that
B(E(t,M)) <(t,B(M)), a.e. t € J and each M C B,

and ¢ = 0 is the unique solution in C(J,[1,2R]) of the inequality

o <2 [ (o) wiseon®

for ¢t € J. Since all the conditions of Theorem 9 are satisfied, problem (4.1)—(4.2)
has at least one solution y on [1 —r,e].
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