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GREENLEES-MAY DUALITY IN A NUTSHELL

Hossein Faridian

Abstract. This expository article delves deep into Greenlees-May Duality which is widely

thought of as a far-reaching generalization of Grothendieck’s Local Duality. Despite its focal role in

the theory of derive local homology and cohomology, in the literature this theorem did not get the

treatment it deserves, as indeed its proof is a tangled web in a series of scattered papers. By carefully

scrutinizing the requisite tools, we present a clear-cut well-documented proof of this theorem for the

sake of reference.

1 Introduction

Throughout this note, all rings are assumed to be commutative and noetherian with
identity.

The Riemann-Roch Theorem is a ground-breaking result in mathematics, which
is especially important in the realms of complex analysis and algebraic geometry.
Quite unexpectedly, it establishes a formula for the computation of the dimension
of the space of meromorphic functions with prescribed zeroes and allowed poles.
It relates the complex analysis of a connected compact Riemann surface with the
surface’s purely topological genus, in a way that can be carried over into purely
algebraic settings. Initially proved as Riemann’s inequality by Riemann in 1857,
the theorem reached its definitive form for Riemann surfaces after the work of
Riemann’s student Gustav Roch in 1865. It was later generalized to algebraic curves,
to higher-dimensional varieties and beyond.

Serre Duality is a duality theory, generalizing the Riemann-Roch Theorem in
some sense, which shows that the cohomology group in degree i of a non-singular
projective algebraic variety of dimension n is the dual space of the cohomology group
in degree n− i. Grothendieck vastly generalized this result to his Coherent Duality
Theories. In the present article we are, however, mainly interested in the algebraic
side of the theory, i.e. the algebraic counterpart to Serre Duality, the so-called Local
Duality.
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18 H. Faridian

In his algebraic geometry seminars of 1961-2, Grothendieck founded the theory
of local cohomology as an indispensable tool in both algebraic geometry and
commutative algebra. Given an ideal a of a ring R, the local cohomology functor
H i

a(−) is defined as the ith right derived functor of the a-torsion functor Γa(−) ∼=
lim−→HomR(R/a

n,−). Among a myriad of exceptional results, he proved the so-called
Local Duality Theorem:

Theorem 1. Let (R,m, k) be a local ring (i.e. m is the only maximal ideal of R and
k = R/m) with a dualizing module ωR, and M a finitely generated R-module. Let
(−)∨ := HomR (−, ER(k)), where ER(k) is the injective envelope of k. Then

H i
m(M) ∼= Ext

dim(R)−i
R (M,ωR)

∨

for every i ≥ 0.

The dual theory to local cohomology, i.e. local homology, was initiated by Matlis
[12] in 1974, and its study was continued by Simon in [17] and [18]. Given an ideal a
of R, the local homology functor Ha

i (−) is defined as the ith left derived functor of
the a-adic completion functor Λa(−) ∼= lim←−(R/a

n ⊗R −).
The existence of a dualizing module in Theorem 1 is rather restrictive as it forces

R to be Cohen-Macaulay. To proceed further and generalize Theorem 1, Greenlees
and May [7, Propositions 3.1 and 3.8], established a spectral sequence

E2
p,q = Ext−p

R (Hq
a (R),M)⇒

p
Ha

p+q(M) (1.1)

for any R-module M . One can also settle the dual spectral sequence

E2
p,q = TorRp (Hq

a (R),M)⇒
p
Hp+q

a (M) (1.2)

for any R-module M .
It is by and large more palatable to have isomorphisms rather than spectral

sequences. But the problem is that the category of R-modules M(R) is not rich
enough to allow for such isomorphisms. We need to enlarge this category to the
category of R-complexes C(R), and even enhance it further, to the derived category
D(R). This is a standard context in which the sought isomorphisms do indeed exist.
As a matter of fact, the spectral sequence (1.1) turns into the isomorphism

RHomR (RΓa(R), X) ≃ LΛa(X), (1.3)

and the spectral sequence (1.2) turns into the isomorphism

RΓa(R)⊗L
R X ≃ RΓa(X) (1.4)

in D(R) for any R-complex X. Patching the two isomorphisms (1.3) and (1.4)
together, we obtain the celebrated Greenlees-May Duality Theorem:
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Greenlees-May Duality in a Nutshell 19

Theorem 2. Let a be an ideal of R, and X,Y ∈ D(R). Then there is a natural
isomorphism

RHomR (RΓa(X), Y ) ≃ RHomR (X,LΛa(Y ))

in D(R).

This was first proved by Alonso Tarŕıo, Jeremı́as López and Lipman in [2].
Theorem 2 is a far-reaching generalization of Theorem 1 and indeed extends it to its
full generality. This theorem also demonstrates perfectly some sort of adjointness
between derived local cohomology and homology.

Despite its incontrovertible impact on the theory of derived local homology and
cohomology, we regretfully notice that there is no comprehensive and accessible
treatment of the Greenlees-May Duality in the literature. There are some papers that
touch on the subject, each from a different perspective, but none of them present a
clear-cut and thorough proof that is fairly readable for non-experts; see for example
[7], [2], [13], and [15]. In order to remedy this defect, our approach is to present
this theorem starting from scratch, providing all prerequisites in a self-contained
text. Our aim is to present a well-documented and rigorous proof, accessible to
non-specialists. Our proof mixes standard arguments with new ones; however, in
any case, all details are fully worked out. Our final goal is to explain the highly
non-trivial fact that Greenlees-May Duality generalizes Local Duality in simple and
traceable steps.

2 Module Prerequisites

In this section, we embark on providing the requisite tools on modules which are
needed in Section 4.

First we recall the notion of a δ-functor which will be used as a powerful tool to
establish natural isomorphisms.

Definition 3. Let R and S be two rings. Then:

(i) A homological covariant δ-functor is a sequence (Fi :M(R)→M(S))i≥0 of
additive covariant functors with the property that every short exact sequence

0→M ′ →M →M ′′ → 0

of R-modules gives rise to a long exact sequence

· · · → F2(M
′′)

δ2−→ F1(M
′)→ F1(M)→ F1(M

′′)
δ1−→ F0(M

′)→ F0(M)→ F0(M
′′)→ 0

of S-modules, such that the connecting morphisms δi are natural in the sense
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20 H. Faridian

that any commutative diagram

0 M ′ M M ′′ 0

0 N ′ N N ′′ 0

of R-modules with exact rows induces a commutative diagram

· · · F2(M
′′) F1(M

′) F1(M) F1(M
′′) F0(M

′) F0(M) F0(M
′′) 0

· · · F2(N
′′) F1(N

′) F1(N) F1(N
′′) F0(N

′) F0(N) F0(N
′′) 0

δ2 δ1

∆2 ∆1

of S-modules with exact rows.

(ii) A cohomological covariant δ-functor is a sequence
(
F i :M(R)→M(S)

)
i≥0

of
additive covariant functors with the property that every short exact sequence

0→M ′ →M →M ′′ → 0

of R-modules gives rise to a long exact sequence

0→ F0(M ′)→ F0(M)→ F0(M ′′)
δ0−→ F1(M ′)→ F1(M)→ F1(M ′′)

δ1−→ F2(M ′)→ · · ·

of S-modules, such that the connecting morphisms δi are natural in the sense
that any commutative diagram

0 M ′ M M ′′ 0

0 N ′ N N ′′ 0

of R-modules with exact rows induces a commutative diagram

0 F0(M ′) F0(M) F0(M ′′) F1(M ′) F1(M) F1(M ′′) F2(M ′) · · ·

0 F0(N ′) F0(N) F0(N ′′) F1(N ′) F1(N) F1(N ′′) F2(N ′) · · ·

δ0 δ1

∆0 ∆1

of S-modules with exact rows.
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Greenlees-May Duality in a Nutshell 21

Example 4. Let R and S be two rings, and F :M(R)→M(S) an additive covariant
functor. Then the sequence (LiF :M(R)→M(S))i≥0 of left derived functors of F
is a homological covariant δ-functor, and the sequence

(
RiF :M(R)→M(S)

)
i≥0

of right derived functors of F is a cohomological covariant δ-functor.

Definition 5. Let R and S be two rings. Then:

(i) A morphism

τ : (Fi :M(R)→M(S))i≥0 → (Gi :M(R)→M(S))i≥0

of homological covariant δ-functors is a sequence τ = (τi : Fi → Gi)i≥0 of
natural transformations of functors, such that any short exact sequence

0→M ′ →M →M ′′ → 0

of R-modules induces a commutative diagram

· · · F2(M
′′) F1(M

′) F1(M) F1(M
′′) F0(M

′) F0(M) F0(M
′′) 0

· · · G2(M ′′) G1(M ′) G1(M) G1(M ′′) G0(M ′) G0(M) G0(M ′′) 0

δ2 δ1

∆2 ∆1

τ2(M
′′) τ1(M

′) τ1(M) τ1(M
′′) τ0(M

′) τ0(M) τ0(M
′′)

of S-modules with exact rows. If in particular, τi is an isomorphism for every
i ≥ 0, then τ is called an isomorphism of δ-functors.

(ii) A morphism

τ :
(
F i :M(R)→M(S)

)
i≥0
→

(
Gi :M(R)→M(S)

)
i≥0

of cohomological covariant δ-functors is a sequence τ =
(
τ i : F i → Gi

)
i≥0

of
natural transformations of functors, such that any short exact sequence

0→M ′ →M →M ′′ → 0

of R-modules induces a commutative diagram

0 F0(M ′) F0(M) F0(M ′′) F1(M ′) F1(M) F1(M ′′) F2(M ′) · · ·

0 G0(M ′) G0(M) G0(M ′′) G1(M ′) G1(M) G1(M ′′) G2(M ′) · · ·

δ0 δ1

∆0 ∆1

τ0(M ′) τ0(M) τ0(M ′′) τ1(M ′) τ1(M) τ1(M ′′) τ2(M ′)

of S-modules with exact rows. If in particular, τ i is an isomorphism for every
i ≥ 0, then τ is called an isomorphism of δ-functors.

******************************************************************************
Surveys in Mathematics and its Applications 14 (2019), 17 – 48

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v14/v14.html
http://www.utgjiu.ro/math/sma


22 H. Faridian

The following remarkable theorem due to Grothendieck provides hands-on conditions
that ascertain the existence of isomorphisms between δ-functors.

Theorem 6. Let R and S be two rings. Then the following assertions hold:

(i) Assume that (Fi :M(R)→M(S))i≥0 and (Gi :M(R)→M(S))i≥0 are two
homological covariant δ-functors such that Fi(F ) = 0 = Gi(F ) for every free
R-module F and every i ≥ 1. If there is a natural transformation η : F0 → G0
of functors which is an isomorphism on free R-modules, then there is a unique
isomorphism τ : (Fi)i≥0 → (Gi)i≥0 of δ-functors such that τ0 = η.

(ii) Assume that
(
F i :M(R)→M(S)

)
i≥0

and
(
Gi :M(R)→M(S)

)
i≥0

are two

cohomological covariant δ-functors such that F i(I) = 0 = Gi(I) for every
injective R-module I and every i ≥ 1. If there is a natural transformation
η : F0 → G0 of functors which is an isomorphism on injective R-modules, then
there is a unique isomorphism τ : (F i)i≥0 → (Gi)i≥0 of δ-functors such that
τ0 = η.

Proof. The proof is standard and can be found in almost every book on homological
algebra. For example, see [14, Corollaries 6.34 and 6.49]. One should note that the
above version is somewhat stronger than what is normally recorded in the books.
However, the same proof can be modified in a suitable way to imply the above
version.

The following corollary sets forth a special case of Theorem 6 which frequently
occurs in practice.

Corollary 7. Let R and S be two rings. Then the following assertions hold:

(i) Assume that F : M(R) → M(S) is an additive covariant functor, and
(Fi :M(R)→M(S))i≥0 is a homological covariant δ-functor such that Fi(F ) =
0 for every free R-module F and every i ≥ 1. If there is a natural transformation
η : L0F → F0 of functors which is an isomorphism on free R-modules, then
there is a unique isomorphism τ : (LiF)i≥0 → (Fi)i≥0 of δ-functors such that
τ0 = η.

(ii) Assume that F : M(R) → M(S) is an additive covariant functor, and(
F i :M(R)→M(S)

)
i≥0

is a cohomological covariant δ-functor such that

F i(I) = 0 for every injective R-module I and every i ≥ 1. If there is a
natural transformation η : F0 → R0F of functors which is an isomorphism on
injective R-modules, then there is a unique isomorphism τ : (F i)i≥0 → (RiF)i≥0

of δ-functors such that τ0 = η.

Proof. (i): We note that (LiF)(F ) = 0 for every i ≥ 1 and every free R-module F .
Now the result follows from Theorem 6 (i).
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Greenlees-May Duality in a Nutshell 23

(ii): We note that (RiF)(I) = 0 for every i ≥ 1 and every injective R-module I.
Now the result follows from Theorem 6 (ii).

We next recall the Koszul complex and the Koszul homology briefly. The Koszul
complex KR(a) on an element a ∈ R is the R-complex

KR(a) := Cone(R
a−→ R),

and the Koszul complex KR(a) on a sequence of elements a = a1, . . . , an ∈ R is the
R-complex

KR(a) := KR(a1)⊗R · · · ⊗R K
R(an).

It is easy to see that KR(a) is a complex of finitely generated free R-modules
concentrated in degrees n, . . . , 0. Given any R-module M , there is an isomorphism
of R-complexes

KR(a)⊗R M ∼= ΣnHomR

(
KR(a),M

)
,

which is sometimes referred to as the self-duality property of the Koszul complex.
Accordingly, we feel free to define the Koszul homology of the sequence a with
coefficients in M , by setting

Hi(a;M) := Hi

(
KR(a)⊗R M

) ∼= Hi−n

(
HomR

(
KR(a),M

))
for every i ≥ 0.

One can form both direct and inverse systems of Koszul complexes and Koszul
homologies as explicated in the next remark.

Remark 8. We have:

(i) Given an element a ∈ R, we define a morphism ϕk,l
a : KR(ak) → KR(al) of

R-complexes for every k ≤ l as follows:

0 R R 0

0 R R 0

ak

al
al−k

It is easily seen that
{
KR(ak), ϕk,l

a

}
k∈N

is a direct system of R-complexes.

Given elements a = a1, ..., an ∈ R, we let ak = ak1, ..., a
k
n for every k ≥ 1. Now

KR(ak) = KR(ak1)⊗R · · · ⊗R K
R(akn),

and we let
ϕk,l := ϕk,l

a1 ⊗R · · · ⊗R ϕ
k,l
an .
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24 H. Faridian

It follows that
{
KR(ak), ϕk,l

}
k∈N is a direct system of R-complexes. It is also

clear that
{
Hi

(
ak;M

)
, Hi

(
ϕk,l ⊗R M

)}
k∈N is a direct system of R-modules

for every i ∈ Z.

(ii) Given an element a ∈ R, we define a morphism ψk,l
a : KR(ak) → KR(al) of

R-complexes for every k ≥ l as follows:

0 R R 0

0 R R 0

ak

al
ak−l

It is easily seen that
{
KR(ak), ϕk,l

a

}
k∈N

is an inverse system of R-complexes.

Given elements a = a1, ..., an ∈ R, we let ak = ak1, ..., a
k
n for every k ≥ 1. Now

KR(ak) = KR(ak1)⊗R · · · ⊗R K
R(akn),

and we let

ψk,l := ψk,l
a1 ⊗R · · · ⊗R ψ

k,l
an .

It follows that
{
KR(ak), ψk,l

}
k∈N is an inverse system of R-complexes. It

is also clear that
{
Hi

(
ak;M

)
, Hi

(
ψk,l ⊗R M

)}
k∈N is an inverse system of

R-modules for every i ∈ Z.

Recall that an inverse system {Mα, ϕα,β}α∈N of R-modules is said to satisfy
the trivial Mittag-Leffler condition if for every β ∈ N, there is an α ≥ β such
that ϕαβ = 0. Besides, the inverse system {Mα, ϕα,β}α∈N of R-modules is said to
satisfy the Mittag-Leffler condition if for every β ∈ N, there is an α0 ≥ β such that
imϕαβ = imϕα0β for every α ≥ α0 ≥ β. It is straightforward to verify that the
trivial Mittag-Leffler condition implies the Mittag-Leffler condition.

The following lemma reveals a significant feature of Koszul homology and lies at
the heart of the proof of Greenlees-May Duality. The idea of the proof is taken from
[15].

Lemma 9. Let a = a1, ..., an ∈ R, and ak = ak1, ..., a
k
n for every k ≥ 1. Then the

inverse system
{
Hi

(
ak;R

)}
k∈N satisfies the trivial Mittag-Leffler condition for every

i ≥ 1.

Proof. Let a ∈ R and M a finitely generated R-module. The transition maps of the
inverse system

{
KR(ak)⊗R M

}
k∈N can be identified with the following morphisms

******************************************************************************
Surveys in Mathematics and its Applications 14 (2019), 17 – 48

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v14/v14.html
http://www.utgjiu.ro/math/sma


Greenlees-May Duality in a Nutshell 25

of R-complexes for every k ≥ l:

0 M M 0

0 M M 0

ak

al
ak−l

Since H1

(
ak;M

)
=

(
0 :M ak

)
, the transition maps of the inverse system{

H1

(
ak;M

)}
k∈N

can be identified with the R-homomorphisms(
0 :M ak

)
ak−l

−−−→
(
0 :M al

)
for every k ≥ l. Fix l ∈ N. Since R is noetherian and M is finitely generated, the
ascending chain

(0 :M a) ⊆
(
0 :M a2

)
⊆ · · ·

of submodules of M stabilizes, i.e. there is an integer t ≥ 1 such that(
0 :M at

)
=

(
0 :M at+1

)
= · · · .

Set k := t+ l. Then the transition map
(
0 :M ak

) ak−l

−−−→
(
0 :M al

)
is zero. Indeed, if

x ∈
(
0 :M ak

)
, then since(

0 :M ak
)
=

(
0 :M at+l

)
=

(
0 :M at

)
,

we have x ∈
(
0 :M at

)
, so ak−lx = atx = 0. This shows that the inverse system{

H1

(
ak;M

)}
k∈N satisfies the trivial Mittag-Leffler condition. ButHi

(
ak;M

)
= 0 for

every i ≥ 2, so the inverse system
{
Hi

(
ak;M

)}
k∈N satisfies the trivial Mittag-Leffler

condition for every i ≥ 1.
Now we argue by induction on n. If n = 1, then the inverse system

{
Hi

(
ak1;R

)}
k∈N

satisfies the trivial Mittag-Leffler condition for every i ≥ 1 by the discussion above.
Now assume that n ≥ 2, and make the obvious induction hypothesis. There is an
exact sequence of inverse systems{

Hi

(
ak1, ..., a

k
n−1;R

)}
k∈N
→

{
H0

(
akn;Hi

(
ak1, ..., a

k
n−1;R

))}
k∈N
→ 0 (2.1)

of R-modules for every i ≥ 0. By the induction hypothesis, the inverse system{
Hi

(
ak1, ..., a

k
n−1;R

)}
k∈N satisfies the trivial Mittag-Leffler condition for every i ≥ 1,

so the exact sequence (2.1) shows that the inverse system{
H0

(
akn;Hi

(
ak1, ..., a

k
n−1;R

))}
k∈N
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26 H. Faridian

satisfies the Mittag-Leffler condition for every i ≥ 1. On the other hand, there is a
short exact sequence of inverse systems

0→
{
H0

(
akn;Hi

(
ak1, ..., a

k
n−1;R

))}
k∈N
→

{
Hi

(
ak1, ..., a

k
n;R

)}
k∈N
→{

H1

(
akn;Hi−1

(
ak1, ..., a

k
n−1;R

))}
k∈N
→ 0 (2.2)

of R-modules for every i ≥ 0. Since Hi−1

(
ak1, ..., a

k
n−1;R

)
is a finitely generated

R-module for every i ≥ 1, the discussion above shows that{
H1

(
akn;Hi−1

(
ak1, ..., a

k
n−1;R

))}
k∈N

satisfies the Mittag-Leffler condition for every i ≥ 1. Therefore, the short exact
sequence (2) shows that the inverse system

{
Hi

(
ak1, ..., a

k
n;R

)}
k∈N satisfies the trivial

Mittag-Leffler condition for every i ≥ 1.

The category C(R) of R-complexes enjoys direct limits and inverse limits. However,
the derived category D(R) does not support the notions of direct limits and inverse
limits. But this situation is remedied by the existence of homotopy direct limits
and homotopy inverse limits as defined in triangulated categories with countable
products and coproducts.

Remark 10. Let
{
Xα, ϕαβ

}
α∈N be a direct system of R-complexes, and

{
Y α, ψαβ

}
α∈N

an inverse system of R-complexes. Then we have:

(i) The direct limit of the direct system
{
Xα, ϕαβ

}
α∈N is an R-complex lim−→Xα

given by
(
lim−→Xα

)
i
= lim−→Xα

i and ∂
lim−→Xα

i = lim−→ ∂X
α

i for every i ∈ Z. Indeed, it
is easy to see that lim−→Xα satisfies the universal property of direct limits in a
category.

(ii) The homotopy direct limit of the direct system
{
Xα, ϕαβ

}
α∈N is given by

holim−−−→Xα = Cone(ϑ), where the morphism ϑ :
⨁∞

α=1X
α →

⨁∞
α=1X

α is given

by ϑi ((x
α
i )) = ιαi (x

α
i ) − ι

α+1
i

(
ϕα,α+1
i (xαi )

)
for every i ∈ Z. Indeed, it is easy

to see that the morphism ϑ fits into a distinguished triangle

∞⨁
α=1

Xα →
∞⨁
α=1

Xα → holim−−−→Xα → .

(iii) The inverse limit of the inverse system
{
Y α, ψαβ

}
α∈N is an R-complex lim←−Y

α

given by
(
lim←−Y

α
)
i
= lim←−Y

α
i and ∂

lim←−Y α

i = lim←− ∂
Y α

i for every i ∈ Z. Indeed, it
is easy to see that lim←−X

α satisfies the universal property of inverse limits in a
category.
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Greenlees-May Duality in a Nutshell 27

(iv) The homotopy inverse limit of the inverse system
{
Y α, ψαβ

}
α∈N is given by

holim←−−−Y
α = Σ−1Cone(ϖ), where the morphism ϖ :

∏∞
α=1 Y

α →
∏∞

α=1 Y
α is

given by ϖi ((y
α
i )) =

(
yαi − ψ

α+1,α
i (yα+1

i )
)
for every i ∈ Z. Indeed, it is easy

to see that the morphism ϖ fits into a distinguished triangle

holim←−−−Y
α →

∞∏
α=1

Y α →
∞∏
α=1

Y α → .

The Mittag-Leffler condition forces many limits to vanish.

Lemma 11. Let {Mα, ϕαβ}α∈N be an inverse system of R-modules that satisfies the
trivial Mittag-Leffler condition, and F :M(R)→M(R) an additive contravariant
functor. Then the following assertions hold:

(i) lim←−Mα = 0 = lim←−
1Mα.

(ii) lim−→F(Mα) = 0.

Proof. (i): Let ϖ :
∏

α∈NMα →
∏

α∈NMα be an R-homomorphism given by
ϖ ((xα)) = (xα − ϕα+1,α(xα+1)). We show that ϖ is an isomorphism. Let (xα) ∈∏

α∈NMα be such that xα = ϕα+1,α(xα+1) for every α ∈ N. Fix α ∈ N, and by the
trivial Mittag-Leffler condition choose γ ≥ α such that ϕγα = 0. Then we have

xα = ϕα+1,α(xα+1)

= ϕα+1,α (ϕα+2,α+1 (... (ϕγ,γ−1(xγ))))

= ϕγα(xγ)

= 0.

Hence (xα) = 0, and thus ϖ is injective. Now let (yα) ∈
∏

α∈NMα. For any β ∈ N, we
set xβ :=

∑∞
α=β ϕαβ(yα) which is a finite sum by the trivial Mittag-Leffler condition.

Then we have

ϕβ+1,β(xβ+1) = ϕβ+1,β

⎛⎝ ∞∑
α=β+1

ϕα,β+1(yα)

⎞⎠
=

∞∑
α=β+1

ϕαβ(yα)

=

∞∑
α=β

ϕαβ(yα)− ϕββ(yβ)

= xβ − yβ.
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Therefore, we have

ϖ ((xα)) = (xα − ϕα+1,α(xα+1)) = (yα),

soϖ is surjective. It follows thatϖ is an isomorphism. Therefore, lim←−Mα
∼= kerϖ = 0

and lim←−
1Mα

∼= cokerϖ = 0.

(ii): First we note that {F(Mα), ψβα := F(ϕαβ)}α∈N is a direct system of R-
modules. Let ψα : F(Mα) → lim−→F(Mα) be the natural injection of direct limit
for every α ∈ N. We know that an arbitrary element of lim−→F(Mα) is of the form
ψt(y) for some t ∈ N and some y ∈ F(Mt). By the trivial Mittag-Leffler condition,
there is an integer s ≥ t such that ϕst = 0, so that ψts = F(ϕst) = 0. Then
ψt(y) = ψs (ψts(y)) = 0. Hence lim−→F(Mα) = 0.

The next proposition collects some information on the homology of limits.

Proposition 12. Let
{
Xα, ϕαβ

}
α∈N be a direct system of R-complexes, and let{

Y α, ψαβ
}
α∈N be an inverse system of R-complexes. Then the following assertions

hold for every i ∈ Z:

(i) There is a natural isomorphism Hi

(
lim−→Xα

) ∼= lim−→Hi(X
α).

(ii) There is a natural isomorphism Hi

(
holim−−−→Xα

) ∼= lim−→Hi(X
α).

(iii) If the inverse system
{
Y α
i , ψ

αβ
i

}
α∈N

of R-modules satisfies the Mittag-Leffler

condition for every i ∈ Z, then there is a short exact sequence

0→ lim←−
1Hi+1(Y

α)→ Hi

(
lim←−Y

α
)
→ lim←−Hi(Y

α)→ 0

of R-modules.

(iv) There is a short exact sequence

0→ lim←−
1Hi+1(Y

α)→ Hi

(
holim←−−−Y

α
)
→ lim←−Hi(Y

α)→ 0

of R-modules.

Proof. (i): See [16, Theorem 4.2.4].

(ii): See the paragraph before [7, Lemma 0.1].

(iii): See [21, Theorem 3.5.8].

(iv): See the paragraph after [7, Lemma 0.1].

Now we are ready to present the following definitions.

Definition 13. Let a = a1, ..., an ∈ R. Then:
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(i) Define the Čech complex on the elements a to be Č(a) := lim−→Σ−nKR(ak).

(ii) Define the stable Čech complex on the elements a to be

Č∞(a) := holim−−−→Σ−nKR(ak).

We note that Č(a) is a bounded R-complex of flat modules concentrated in degrees
0,−1, ...,−n, and Č∞(a) is a bounded R-complex of free modules concentrated in
degrees 1, 0, ...,−n. Moreover, it can be shown that there is a quasi-isomorphism
Č∞(a)

≃−→ Č(a), which in turn implies that Č∞(a) ≃ Č(a) in D(R). Therefore,
Č∞(a) is a semi-projective approximation of the semi-flat R-complex Č(a).

The next proposition investigates the relation between local cohomology and
local homology with Čech complex and stable Čech complex, and provides the first
essential step towards the Greenlees-May Duality.

Proposition 14. Let a = (a1, ..., an) be an ideal of R, a = a1, ..., an, and M an
R-module. Then there are natural isomorphisms for every i ≥ 0:

(i) H i
a(M) ∼= H−i

(
Č(a)⊗R M

) ∼= H−i

(
Č∞(a)⊗R M

)
.

(ii) Ha
i (M) ∼= Hi

(
HomR

(
Č∞(a),M

))
.

Proof. (i): Let F i = H−i

(
Č(a)⊗R −

)
:M(R) →M(R) for every i ≥ 0. Given a

short exact sequence
0→M ′ →M →M ′′ → 0

of R-modules, since Č(a) is an R-complex of flat modules, the functor

Č(a)⊗R − : C(R)→ C(R)

is exact, whence we get a short exact sequence

0→ Č(a)⊗R M
′ → Č(a)⊗R M → Č(a)⊗R M

′′ → 0

of R-complexes, which in turn yields a long exact homology sequence in a functorial
way. This shows that

(
F i :M(R)→M(R)

)
i≥0

is a cohomological covariant δ-

functor. Moreover, using Proposition 12 (i), we have

F i = H−i

(
Č(a)⊗R −

)
= H−i

((
lim−→Σ−nKR(ak)

)
⊗R −

)
∼= lim−→Hn−i

(
KR(ak)⊗R −

)
∼= lim−→Hn−i

(
ak;−

)
(2.3)

for every i ≥ 0.
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Let I be an injective R-module. Then by the display (2.3), we have

F i(I) = lim−→Hn−i

(
ak; I

)
∼= lim−→H−i

(
HomR

(
KR(ak), I

))
∼= lim−→HomR

(
Hi

(
KR(ak)

)
, I
)

∼= lim−→HomR

(
Hi

(
ak;R

)
, I
)
.

(2.4)

By Lemma 9, the inverse system
{
Hi

(
ak;R

)}
k∈N satisfies the trivial Mittag-Leffler

condition for every i ≥ 1. Now Lemma 11 (ii) implies that lim−→HomR

(
Hi

(
ak;R

)
, I
)
=

0, thereby the display (2.4) shows that F i(I) = 0 for every i ≥ 1.
Let M be an R-module. Then by the display (2.3), we have the natural

isomorphisms

F0(M) ∼= lim−→Hn

(
ak;M

)
∼= lim−→

(
0 :M (ak)

)
∼= lim−→HomR

(
R/(ak),M

)
∼= lim−→HomR

(
R/ak,M

)
∼= Γa(M)

∼= H0
a (M).

It follows from Corollary 7 (ii) that H i
a(−) ∼= F i for every i ≥ 0.

For the second isomorphism, using the display (2.3) and Proposition 12 (ii), we
have the natural isomorphisms

H i
a(M) ∼= F i(M)

∼= lim−→Hn−i

(
ak;M

)
∼= lim−→Hn−i

(
KR(ak)⊗R M

)
∼= Hn−i

(
holim−−−→

(
KR(ak)⊗R M

))
∼= H−i

((
holim−−−→Σ−nKR(a)

)
⊗R M

)
∼= H−i

(
Č∞(a)⊗R M

)
for every i ≥ 0.

(ii): Let Fi = Hi

(
HomR

(
Č∞(a),−

))
:M(R)→M(R) for every i ≥ 0. Given a

short exact sequence
0→M ′ →M →M ′′ → 0
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R-modules, since Č∞(a) is an R-complex of free modules, the functor

HomR

(
Č∞(a),−

)
: C(R)→ C(R)

is exact, whence we get a short exact sequence

0→ HomR

(
Č∞(a),M ′)→ HomR

(
Č∞(a),M

)
→ HomR

(
Č∞(a),M ′′)→ 0

of R-complexes, which in turn yields a long exact homology sequence in a functorial
way. It follows that (Fi :M(R)→M(R))i≥0 is a homological covariant δ-functor.
Moreover, using the self-duality property of Koszul complex, we have

Fi = Hi

(
HomR

(
Č∞(a),−

))
= Hi

(
HomR

(
holim−−−→Σ−nKR(ak),−

))
∼= Hi

(
holim←−−−ΣnHomR

(
KR(ak),−

))
∼= Hi

(
holim←−−−

(
KR(ak)⊗R −

)) (2.5)

for every i ≥ 0.

Let M be an R-module. By Proposition 12 (iv), we get a short exact sequence

0→ lim←−
1Hi+1

(
KR(ak)⊗R M

)
→ Hi

(
holim←−−−

(
KR(ak)⊗R M

))
→

lim←−Hi

(
KR(ak)⊗R M

)
→ 0,

which implies the short exact sequence

0→ lim←−
1Hi+1

(
ak;M

)
→ Fi(M)→ lim←−Hi

(
ak;M

)
→ 0

of R-modules for every i ≥ 0.

Let F be a free R-module. If i ≥ 1, then the inverse system
{
Hi

(
ak;R

)}
k∈N

satisfies the trivial Mittag-Leffler condition by Lemma 9. But

Hi

(
ak;F

)
∼= Hi

(
ak;R

)
⊗R F ,

so it straightforward to see that the inverse system
{
Hi

(
ak;F

)}
k∈N satisfies the

trivial Mittag-Leffler condition for every i ≥ 1. Therefore, Lemma 11 (i) implies that

lim←−
1Hi

(
ak;F

)
= 0 = lim←−Hi

(
ak;F

)
for every i ≥ 1. It follows from the above short exact sequence that Fi(F ) = 0 for
every i ≥ 1.

Upon setting i = 0, the above short exact sequence yields

0 = lim←−
1H1

(
ak;F

)
→ F0(F )→ lim←−H0

(
ak;F

)
→ 0.
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Thus we get the natural isomorphisms

F0(F ) ∼= lim←−H0

(
ak;F

)
∼= lim←−F/(a

k)F

∼= lim←−F/a
kF

= F̂ a

∼= Ha
0(F ).

It now follows from Corollary 7 (i) that Ha
i (−) ∼= Fi for every i ≥ 0.

Remark 15. One should note that Ha
i (M) � Hi

(
HomR

(
Č(a),M

))
.

3 Complex Prerequisites

In this section, we commence on developing the requisite tools on complexes which
are to be deployed in Section 4. For more information on the material in this section,
refer to [1], [8], [5], [11], and [19].

The derived category D(R) is defined as the localization of the homotopy category
K(R) with respect to the multiplicative system of quasi-isomorphisms. Simply put,
an object in D(R) is an R-complex X displayed in the standard homological style

X = · · · → Xi+1

∂X
i+1−−−→ Xi

∂X
i−−→ Xi−1 → · · · ,

and a morphism ϕ : X → Y in D(R) is given by the equivalence class of a pair

(f, g) of morphisms X
g←− U

f−→ Y in C(R) with g a quasi-isomorphism, under the
equivalence relation that identifies two such pairs (f, g) and (f ′, g′), whenever there
is a diagram in C(R) as follows which commutes up to homotopy:

U

X V Y

U ′

g
≃

f

g′
≃

f ′

≃

The isomorphisms in D(R) are marked by the symbol ≃.
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The derived category D(R) is triangulated. A distinguished triangle in D(R) is a
triangle that is isomorphic to a triangle of the form

X
L(f)−−−→ Y

L(ε)−−→ Cone(f)
L(ϖ)−−−→ ΣX,

for some morphism f : X → Y in C(R) with the mapping cone sequence

0→ Y
ε−→ Cone(f)

ϖ−→ ΣX → 0,

in which L : C(R) → D(R) is the canonical functor that is defined as L(X) = X
for every R-complex X, and L(f) = ϕ where ϕ is represented by the morphisms

X
1X←−− X f−→ Y in C(R). We note that if f is a quasi-isomorphism in C(R), then L(f)

is an isomorphism in D(R). We sometimes use the shorthand notation

X → Y → Z →

for a distinguished triangle.
We let D⊏(R) (res. D⊐(R)) denote the full subcategory of D(R) consisting of

R-complexes X with Hi(X) = 0 for sufficiently large (res. small) i, and D�(R) :=
D⊏(R)∩D⊐(R). We further let Df (R) denote the full subcategory of D(R) consisting
of R-complexes X with finitely generated homology modules. We also feel free to use
any combination of the subscripts and the superscript as in Df

�(R), with the obvious
meaning of the intersection of the two subcategories involved.

We recall the resolutions of complexes.

Definition 16. We have:

(i) An R-complex P of projective modules is said to be semi-projective if the functor
HomR(P,−) preserves quasi-isomorphisms. By a semi-projective resolution

of an R-complex X, we mean a quasi-isomorphism P
≃−→ X in which P is a

semi-projective R-complex.

(ii) An R-complex I of injective modules is said to be semi-injective if the functor
HomR(−, I) preserves quasi-isomorphisms. By a semi-injective resolution of

an R-complex X, we mean a quasi-isomorphism X
≃−→ I in which I is a

semi-injective R-complex.

(iii) An R-complex F of flat modules is said to be semi-flat if the functor F ⊗R −
preserves quasi-isomorphisms. By a semi-flat resolution of an R-complex X,
we mean a quasi-isomorphism F

≃−→ X in which F is a semi-flat R-complex.

Semi-projective, semi-injective, and semi-flat resolutions exist for any R-complex.
Moreover, any right-bounded R-complex of projective (flat) modules is semi-projective
(semi-flat), and any left-bounded R-complex of injective modules is semi-injective.

We now remind the total derived functors that we need.
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Remark 17. Let a be an ideal of R, and X and Y two R-complexes. Then we have:

(i) Each of the functors HomR(X,−) and HomR(−, Y ) on C(R) enjoys a right
total derived functor on D(R), together with a balance property, in the sense
that RHomR(X,Y ) can be computed by

RHomR(X,Y ) ≃ HomR(P, Y ) ≃ HomR(X, I),

where P
≃−→ X is any semi-projective resolution of X, and Y

≃−→ I is any semi-
injective resolution of Y . In addition, these functors turn out to be triangulated,
in the sense that they preserve shifts and distinguished triangles. Moreover, we
let

ExtiR(X,Y ) := H−i (RHomR(X,Y ))

for every i ∈ Z.

(ii) Each of the functors X ⊗R − and −⊗R Y on C(R) enjoys a left total derived
functor on D(R), together with a balance property, in the sense that X ⊗L

R Y
can be computed by

X ⊗L
R Y ≃ P ⊗R Y ≃ X ⊗R Q,

where P
≃−→ X is any semi-projective resolution of X, and Q

≃−→ Y is any semi-
projective resolution of Y . Besides, these functors turn out to be triangulated.
Moreover, we let

TorRi (X,Y ) := Hi

(
X ⊗L

R Y
)

for every i ∈ Z.

(iii) The functor Γa(−) on M(R) extends naturally to a functor on C(R). The
extended functor enjoys a right total derived functor RΓa(−) : D(R)→ D(R),
that can be computed by RΓa(X) ≃ Γa(I), where X

≃−→ I is any semi-injective
resolution of X. Besides, we define the ith local cohomology module of X to be

H i
a(X) := H−i (RΓa(X))

for every i ∈ Z. The functor RΓa(−) turns out to be triangulated.

(iv) The functor Λa(−) on M(R) extends naturally to a functor on C(R). The
extended functor enjoys a left total derived functor LΛa(−) : D(R) → D(R),
that can be computed by LΛa(X) ≃ Λa(P ), where P

≃−→ X is any semi-projective
resolution of X. Moreover, we define the ith local homology module of X to be

Ha
i (X) := Hi (LΛ

a(X))

for every i ∈ Z. The functor LΛa(−) turns out to be triangulated.
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We further need the notion of way-out functors for functors between the category
of complexes.

Definition 18. Let R and S be two rings, and F : C(R)→ C(S) a covariant functor.
Then:

(i) F is said to be way-out left if for every n ∈ Z, there is an m ∈ Z, such that for
any R-complex X with Xi = 0 for every i > m, we have F(X)i = 0 for every
i > n.

(ii) F is said to be way-out right if for every n ∈ Z, there is an m ∈ Z, such that
for any R-complex X with Xi = 0 for every i < m, we have F(X)i = 0 for
every i < n.

(iii) F is said to be way-out if it is both way-out left and way-out right.

The following lemma is the Way-out Lemma for functors between the category
of complexes. We include a proof since there is no account of this version in the
literature.

Lemma 19. Let R and S be two rings, and F ,G : C(R) → C(S) two additive
covariant functors that commute with shift and preserve the exactness of degreewise
split short exact sequences of R-complexes. Let σ : F → G be a natural transformation
of functors. Then the following assertions hold:

(i) If X is a bounded R-complex such that σXi : F(Xi) → G(Xi) is a quasi-
isomorphism for every i ∈ Z, then σX : F(X)→ G(X) is a quasi-isomorphism.

(ii) If F and G are way-out left, and X is a left-bounded R-complex such that
σXi : F(Xi) → G(Xi) is a quasi-isomorphism for every i ∈ Z, then σX :
F(X)→ G(X) is a quasi-isomorphism.

(iii) If F and G are way-out right, and X is a right-bounded R-complex such
that σXi : F(Xi) → G(Xi) is a quasi-isomorphism for every i ∈ Z, then
σX : F(X)→ G(X) is a quasi-isomorphism.

(iv) If F and G are way-out, and X is an R-complex such that σXi : F(Xi)→ G(Xi)
is a quasi-isomorphism for every i ∈ Z, then σX : F(X) → G(X) is a quasi-
isomorphism.

Proof. (i): Without loss of generality we may assume that

X : 0→ Xn
∂X
n−−→ Xn−1 → · · · → X1

∂X
1−−→ X0 → 0.

Let

Y : 0→ Xn−1

∂X
n−1−−−→ Xn−2 → · · · → X1

∂X
1−−→ X0 → 0.
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Consider the degreewise split short exact sequence

0→ Y → X → ΣnXn → 0

of R-complexes, and apply F and G to get the following commutative diagram of
S-complexes with exact rows:

0 F(Y ) F(X) ΣnF(Xn) 0

0 G(Y ) G(X) ΣnG(Xn) 0

ΣnσXn
σXσY

Note that ΣnσXn is a quasi-isomorphism by the assumption. Hence to prove that σX
is a quasi-isomorphism, it suffices to show that σY is a quasi-isomorphism. Since Y
is bounded, by continuing this process with Y , we reach at a level that we need σX0

to be a quasi-isomorphism, which holds by the assumption. Therefore, we are done.

(ii): Without loss of generality we may assume that

X : 0→ Xn
∂X
n−−→ Xn−1 → · · · .

Let i ∈ Z. We show that Hi(σX) : Hi (F(X))→ Hi (G(X)) is an isomorphism. Since
F and G are way-out left, we can choose an integer j ∈ Z corresponding to i− 2. Let

Z : 0→ Xn
∂X
n−−→ Xn−1 → · · · → Xj+1

∂X
j+1−−−→ Xj → 0

and

Y : 0→ Xj−1

∂X
j−1−−−→ Xj−2 → · · · .

Then there is a degreewise split short exact sequence

0→ Y → X → Z → 0

of R-complexes. Apply F and G to get the following commutative diagram with
exact rows:

0 F(Y ) F(X) F(Z) 0

0 G(Y ) G(X) G(Z) 0

σZσXσY
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From the above diagram, we get the following commutative diagram of S-modules
with exact rows:

0 = Hi (F(Y )) Hi (F(X)) Hi (F(Z)) Hi−1 (F(Y )) = 0

0 = Hi (G(Y )) Hi (G(X)) Hi (G(Z)) Hi−1 (G(Y )) = 0

Hi(σX) Hi(σZ)

where the vanishing is due to the choice of j. Since Z is bounded, it follows from (i)
that Hi(σZ) is an isomorphism, and as a consequence, Hi(σX) is an isomorphism.

(iii): Without loss of generality we may assume that

X : · · · → Xn+1

∂X
n+1−−−→ Xn → 0.

Let i ∈ Z. We show that Hi(σX) : Hi (F(X))→ Hi (G(X)) is an isomorphism. Since
F and G are way-out right, we can choose an integer j ∈ Z corresponding to i+ 2.
Let

Y : 0→ Xj−1

∂X
j−1−−−→ Xj−2 → · · · → Xn+1

∂X
n+1−−−→ Xn → 0

and

Z : · · · → Xj+1

∂X
j+1−−−→ Xj → 0.

Then there is a degreewise split short exact sequence

0→ Y → X → Z → 0

of R-complexes. Apply F and G to get the following commutative diagram of
S-complexes with exact rows:

0 F(Y ) F(X) F(Z) 0

0 G(Y ) G(X) G(Z) 0

σZσXσY

From the above diagram, we get the following commutative diagram of S-modules
with exact rows:

0 = Hi+1 (F(Z)) Hi (F(Y )) Hi (F(X)) Hi (F(Z)) = 0

0 = Hi+1 (G(Z)) Hi (G(Y )) Hi (G(X)) Hi (G(Z)) = 0

Hi(σY ) Hi(σX)
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where the vanishing is due to the choice of j. Since Y is bounded, it follows from (i)
that Hi(σY ) is an isomorphism, and as a consequence, Hi(σX) is an isomorphism.

(iv): Let

Y : 0→ X0
∂X
0−−→ X−1 → · · ·

and

Z : · · · → X2
∂X
2−−→ X1 → 0.

Then there is a degreewise split short exact sequence

0→ Y → X → Z → 0

of R-complexes. Applying F and G, we get the following commutative diagram of
S-complexes with exact rows:

0 F(Y ) F(X) F(Z) 0

0 G(Y ) G(X) G(Z) 0

σZσXσY

Since Y is left-bounded, σY is a quasi-isomorphism by (ii), and since Z is right-
bounded, σZ is a quasi-isomorphism by (iii). Therefore, σX is a quasi-isomorphism.

Although Č∞(a) is suitable in Proposition 14, it is not applicable in the next
proposition due to the fact that it is concentrated in degrees 1, 0, ...,−n. What we
really need here is a semi-projective approximation of Č(a) of the same length, i.e.
concentrated in degrees 0,−1, ...,−n. We proceed as follows.

Given an element a ∈ R, consider the following commutative diagram:

0 R[X]⊕R R[X] 0

0 R Ra 0

fa

λaR

π ga

in which, fa (p(X), b) = (aX − 1)p(X) + b, π (p(X), b) = b, λaR is the localization

map, and ga (p(X)) = bk
ak

+ · · ·+ b1
a + b0

1 where p(X) = bkX
k + · · ·+ b1X + b0 ∈ R[X].

Let LR(a) denote the R-complex in the first row of the diagram above concentrated
in degrees 0,−1. Since the second row is isomorphic to Č(a), it can be seen that the
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diagram above provides a quasi-isomorphism LR(a)
≃−→ Č(a). Hence LR(a)

≃−→ Č(a)
is a semi-projective resolution of Č(a). Now for the elements a = a1, ..., an ∈ R, let

LR(a) = LR(a1)⊗R · · · ⊗R L
R(an).

Then LR(a) is an R-complex of free modules concentrated in degrees 0,−1, ...,−n,
and LR(a)

≃−→ Č(a) is a semi-projective resolution of Č(a).
The next proposition inspects the relation between derived torsion functor and

derived completion functor with Čech complex, and provides the second crucial step
towards the Greenlees-May Duality.

Proposition 20. Let a = (a1, ..., an) be an ideal of R, a = a1, ..., an, and X ∈ D(R).
Then there are natural isomorphisms in D(R):

(i) RΓa(X) ≃ Č(a)⊗L
R X ≃ Č∞(a)⊗L

R X.

(ii) LΛa(X) ≃ RHomR

(
Č(a), X

)
≃ RHomR

(
Č∞(a), X

)
.

Proof. (i): Let X
≃−→ I be a semi-injective resolution of X. Then RΓa(X) ≃ Γa(I),

and
Č(a)⊗L

R X ≃ Č(a)⊗L
R I ≃ Č(a)⊗R I,

since Č(a) is a semi-flat R-complex. Hence it suffices to establish a quasi-isomorphism
Γa(I)→ Č(a)⊗R I.

Let Y be an R-complex and i ∈ Z. Let σYi : Γa(Y )i →
(
Č(a)⊗R Y

)
i
be the

composition of the following natural R-homomorphisms:

Γa(Y )i = Γa(Yi)
∼=−→ H0

a (Yi)
∼=−→ H0

(
Č(a)⊗R Yi

)
= ker

(
∂
Č(a)
0 ⊗R Yi

)
→ Č(a)0⊗R Yi

→
⨁
s+t=i

(
Č(a)s ⊗R Yt

)
=

(
Č(a)⊗R Y

)
i

We note that the second isomorphism above comes from Proposition 14 (i). One
can easily see that σY = (σYi )i∈Z : Γa(Y ) → Č(a) ⊗R Y is a natural morphism of
R-complexes.

Since Ii is an injective R-module for any i ∈ Z, using Proposition 14 (i), we get

H−j

(
Č(a)⊗R Ii

) ∼= Hj
a (Ii) = 0

for every j ≥ 1. It follows that σIi : Γa(Ii)→ Č(a)⊗R Ii is a quasi-isomorphism:

0 Γa(Ii) 0 · · · 0 0

0 Č(a)0 ⊗R Ii Č(a)−1 ⊗R Ii · · · Č(a)−n ⊗R Ii 0

σIi0
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In addition, it is easily seen that the functors Γa(−) : C(R)→ C(R) and Č(a)⊗R − :
C(R)→ C(R) are additive way-out functors that commute with shift and preserve
the exactness of degreewise split short exact sequences of R-complexes. Hence by
Lemma 19 (iv), we conclude that σI : Γa(I)→ Č(a)⊗R I is a quasi-isomorphism.

The second isomorphism is immediate since Č(a) ≃ Č∞(a) and − ⊗L
R X is a

functor on D(R).
(ii): We know that LR(a) ≃ Č(a) ≃ Č∞(a). Let P

≃−→ X be a semi-projective
resolution of X. Then LΛa(X) ≃ Λa(P ), and

RHomR

(
Č(a), X

)
≃ RHomR

(
LR(a), P

)
≃ HomR

(
LR(a), P

)
,

since LR(a) is a semi-projective R-complex. Moreover, we have

HomR

(
LR(a), P

)
≃ RHomR

(
LR(a), P

)
≃ RHomR

(
Č∞(a), P

)
≃ HomR

(
Č∞(a), P

)
,

since Č∞(a) is a semi-projective R-complex. In particular, we get

Hi

(
HomR

(
LR(a), P

)) ∼= Hi

(
HomR

(
Č∞(a), P

))
(3.1)

for every i ∈ Z. Now it suffices to establish a natural quasi-isomorphism

HomR

(
LR(a), P

)
→ Λa(P ).

Let Y be an R-complex and i ∈ Z. Let ςYi : HomR

(
LR(a), Y

)
i
→ Λa(Y )i be the

composition of the following natural R-homomorphisms:

HomR

(
LR(a), Y

)
i
=

∏
s∈Z

HomR

(
LR(a)s, Ys+i

)
→ HomR

(
LR(a)0, Yi

)

→
HomR

(
LR(a)0, Yi

)
im

(
HomR

(
∂
LR(a)
0 , Yi

)) = H0

(
HomR

(
LR(a), Yi

)) ∼=−→ H0

(
HomR

(
Č∞(a), Yi

))
∼=−→ Ha

0(Yi)→ Λa(Yi) = Λa(Y )i

We note that the first isomorphism above comes from the isomorphism (3.1) and
the second comes from Proposition 14 (ii). One can easily see that ςY = (ςYi )i∈Z :
HomR

(
LR(a), Y

)
→ Λa(Y ) is a natural morphism of R-complexes.

Since Pi is a projective R-module for any i ∈ Z, using the isomorphism (3.1) and
Proposition 14 (ii), we get

Hj

(
HomR

(
LR(a), Pi

)) ∼= Hj

(
HomR

(
Č∞(a), Pi

)) ∼= Ha
j (Pi) = 0
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for every j ≥ 1. It follows that ςPi : HomR

(
LR(a), Pi

)
→ Λa(Pi) is a quasi-

isomorphism:

0 HomR

(
LR(a)−n, Pi

)
· · · HomR

(
LR(a)−1, Pi

)
HomR

(
LR(a)0, Pi

)
0

0 0 · · · 0 Λa(Pi) 0

ςPi
0

In addition, it is easily seen that the functors HomR

(
LR(a),−

)
: C(R)→ C(R) and

Λa(−) : C(R) → C(R) are additive way-out functors that commute with shift and
preserve the exactness of degreewise split short exact sequences of R-complexes.
Hence by Lemma 19 (iv), we conclude that ςP : HomR

(
LR(a), P

)
→ Λa(P ) is a

quasi-isomorphism.
The second isomorphism is immediate since Č(a) ≃ Č∞(a) and RHomR(−, X)

is a functor on D(R).

We note that if a = ⟨a1, ..., an⟩ is an ideal of R and a = a1, ..., an, then Č(a) as
an element of C(R) depends on the generators a. However, the proof of the next
corollary shows that Č(a) as an element of D(R) is independent of the generators a.

Corollary 21. Let a be an ideal of R. Then there are natural isomorphisms in
D(R):

(i) RΓa(X) ≃ RΓa(R)⊗L
R X.

(ii) LΛa(X) ≃ RHomR (RΓa(R), X).

Proof. Suppose that a = (a1, ..., an), and a = a1, ..., an. By Proposition 20 (i), we
have

RΓa(R) ≃ Č(a)⊗L
R R ≃ Č(a).

Now (i) and (ii) follow from Proposition 20.

4 Greenlees-May Duality

Having the material developed in Sections 2 and 3 at our disposal, we are fully
prepared to prove the celebrated Greenlees-May Duality Theorem.

Theorem 22. Let a be an ideal of R, and X,Y ∈ D(R). Then there is a natural
isomorphism

RHomR (RΓa(X), Y ) ≃ RHomR (X,LΛa(Y ))

in D(R).
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Proof. Using Corollary 21 and the Adjointness Isomorphism, we have

RHomR (RΓa(X), Y ) ≃ RHomR

(
RΓa(R)⊗L

R X,Y
)

≃ RHomR (X,RHomR (RΓa(R), X))

≃ RHomR (X,LΛa(Y )) .

Corollary 23. Let a be an ideal of R, and X,Y ∈ D(R). Then there are natural
isomorphisms:

LΛa (RHomR(X,Y )) ≃ RHomR (LΛa(X),LΛa(Y ))

≃ RHomR (X,LΛa(Y ))

≃ RHomR (RΓa(X),LΛa(Y ))

≃ RHomR (RΓa(X), Y )

≃ RHomR (RΓa(X),RΓa(Y )) .

Proof. By Corollary 21, Adjointness Isomorphism, and Theorem 22, we have

LΛa (RHomR(X,Y )) ≃ RHomR (RΓa(R),RHomR(X,Y ))

≃ RHomR

(
RΓa(R)⊗L

R X,Y
)

≃ RHomR (RΓa(X), Y )

≃ RHomR (X,LΛa(Y )) .

(4.1)

Further, by Theorem 22, [2, Corollary on Page 6], and [11, Proposition 3.2.2], we
have

RHomR (RΓa(X),LΛa(Y )) ≃ RHomR (RΓa (RΓa(X)) , Y )

≃ RHomR (RΓa(X), Y )

≃ RHomR (RΓa(X),RΓa(Y )) .

(4.2)

Moreover, by Theorem 22 and [2, Corollary on Page 6], we have

RHomR (LΛa(X),LΛa(Y )) ≃ RHomR (RΓa (LΛ
a(X)) , Y )

≃ RHomR (RΓa(X), Y ) .
(4.3)

Combining the isomorphisms (4.1), (4.2), and (4.3), we get all the desired isomorphisms.

Now we turn our attention to the Grothendieck’s Local Duality, and demonstrate
how to derive it from the Greenlees-May Duality.

We need the definition of a dualizing complex.
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Definition 24. A dualizing complex for R is an R-complex D ∈ Df
�(R) that satisfies

the following conditions:

(i) The homothety morphism χD
R : R → RHomR(D,D) is an isomorphism in

D(R).

(ii) idR(D) <∞.

Moreover, if R is local, then a dualizing complex D is said to be normalized if
sup(D) = dim(R).

It is clear that if D is a dualizing complex for R, then so is ΣsD for every
s ∈ Z, which accounts for the non-uniqueness of dualizing complexes. Further,
Σdim(R)−sup(D)D is a normalized dualizing complex.

Example 25. Let (R,m, k) be a local ring with a normalized dualizing complex D.
Then RΓm(D) ≃ ER(k). For a proof, refer to [8, Proposition 6.1].

The next theorem determines precisely when a ring enjoys a dualizing complex.

Theorem 26. The the following assertions are equivalent:

(i) R has a dualizing complex.

(ii) R is a homomorphic image of a Gorenstein ring of finite Krull dimension.

Proof. See [8, Page 299] and [10, Corollary 1.4].

Now we prove the Local Duality Theorem for complexes. We recall that given a
local ring (R,m, k), we let (−)∨ := HomR (−, ER(k)), where ER(k) is the injective
envelope of k.

Theorem 27. Let (R,m) be a local ring with a dualizing complex D, and X ∈ Df
�(R).

Then
H i

m(X) ∼= Ext
dim(R)−i−sup(D)
R (X,D)∨

for every i ∈ Z.

Proof. Clearly, we have

Ext
dim(R)−i−sup(D)
R (X,D) ∼= Ext−i

R

(
X,Σdim(R)−sup(D)D

)
for every i ∈ Z, and Σdim(R)−sup(D)D is a normalized dualizing for R. Hence by
replacing D with Σdim(R)−sup(D)D, it suffices to assume that D is a normalized
dualizing complex and prove the isomorphism H i

m(X) ∼= Ext−i
R (X,D)∨ for every

i ∈ Z. By Theorem 22, we have

RHomR (RΓm(X), ER(k)) ≃ RHomR (X,LΛm (ER(k))) . (4.4)
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But since ER(k) is injective, it provides a semi-injective resolution of itself, so we
have

RHomR (RΓm(X), ER(k)) ≃ HomR (RΓm(X), ER(k)) . (4.5)

Besides, by Example 25, [2, Corollary on Page 6], and [6, Proposition 2.7], we have

LΛm (ER(k)) ≃ LΛm (RΓm(D))

≃ LΛm(D)

≃ D ⊗L
R R̂

m

≃ D ⊗R R̂
m.

(4.6)

Combining (4.4), (4.5), and (4.6), we get

HomR (RΓm(X), ER(k)) ≃ RHomR

(
X,D ⊗R R̂

m
)
.

Taking Homology, we obtain

HomR

(
H i

m(X), ER(k)
) ∼= HomR (H−i (RΓm(X)) , ER(k))
∼= Hi (HomR (RΓm(X), ER(k)))

∼= Hi

(
RHomR

(
X,D ⊗R R̂

m
))

∼= Ext−i
R

(
X,D ⊗R R̂

m
) (4.7)

for every i ∈ Z.
Since X ∈ Df

�(R), we have X ⊗R R̂
m ∈ Df

�

(
R̂m

)
, so H i

mR̂m

(
X ⊗R R̂

m
)
is an

artinian R̂m-module by [9, Proposition 2.1], and thus Matlis reflexive for every i ∈ Z.
Moreover, D ⊗R R̂

m is a normalized dualizing complex for R̂m. Therefore, using the
isomorphism (4.7) over the m-adically complete ring R̂m, we obtain

H i
m(X) ∼= H i

m(X)⊗R R̂
m

∼= H i
mR̂m

(
X ⊗R R̂

m
)

∼= Hom
R̂m

(
Hom

R̂m

(
H i

mR̂m

(
X ⊗R R̂

m
)
, E

R̂m(k)
)
, E

R̂m(k)
)

∼= Hom
R̂m

(
Ext−i

R̂m

(
X ⊗R R̂

m, D ⊗R R̂
m
)
, E

R̂m(k)
)

∼= Hom
R̂m

(
Ext−i

R (X,D)⊗R R̂
m, E

R̂m(k)
)

(4.8)

for every i ∈ Z. However, RHomR(X,D) ∈ Df
⊏(R), so Ext−i

R (X,D) is a finitely
generated R-module for every i ∈ Z. It follows that

Hom
R̂m

(
Ext−i

R (X,D)⊗R R̂
m, E

R̂m(k)
)
∼= HomR

(
Ext−i

R (X,D), ER(k)
)

(4.9)
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for every i ∈ Z. Combining (4.8) and (4.9), we obtain

H i
m(X) ∼= HomR

(
Ext−i

R (X,D), ER(k)
)

for every i ∈ Z as desired.

Our next goal is to obtain the Local Duality Theorem for modules. But first we
need the definition of a dualizing module.

Definition 28. Let (R,m) be a local ring. A dualizing module for R is a finitely
generated R-module ω that satisfies the following conditions:

(i) The homothety map χω
R : R → HomR(ω, ω), given by χω

R(a) = a1ω for every
a ∈ R, is an isomorphism.

(ii) ExtiR(ω, ω) = 0 for every i ≥ 1.

(iii) idR(ω) <∞.

The next theorem determines precisely when a ring enjoys a dualizing module.

Theorem 29. Let (R,m) be a local ring. Then the following assertions are equivalent:

(i) R has a dualizing module.

(ii) R is a Cohen-Macaulay local ring which is a homomorphic image of a Gorenstein
local ring.

Moreover in this case, the dualizing module is unique up to isomorphism.

Proof. See [20, Corollary 2.2.13] and [3, Theorem 3.3.6].

Since the dualizing module for R is unique whenever it exists, we denote a choice
of the dualizing module by ωR. It can be seen that R is Gorenstein if and only if
ωR
∼= R.

Proposition 30. Let (R,m) be a Cohen-Macaulay local ring, and ω a finitely
generated R-module. Then the following assertions are equivalent:

(i) ω is a dualizing module for R.

(ii) ω∨ ∼= H
dim(R)
m (R).

Proof. See [4, Definition 12.1.2, Exercises 12.1.23 and 12.1.25, and Remark 12.1.26],
and [3, Definition 3.3.1].

We can now derive the Local Duality Theorem for modules.
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Theorem 31. Let (R,m) be a local ring with a dualizing module ωR, and M a
finitely generated R-module. Then

H i
m(M) ∼= Ext

dim(R)−i
R (M,ωR)

∨

for every i ≥ 0.

Proof. By Theorem 29, R is a Cohen-Macaulay local ring which is a homomorphic
image of a Gorenstein local ring S. Since S is local, we have dim(S) < ∞. Hence
Theorem 26 implies that R has a dualizing complex D. Since R is Cohen-Macaulay,
we have H i

m(R) = 0 for every i ̸= dim(R). On the other hand, by Theorem 27, we
have

H i
m(R)

∼= Ext
dim(R)−i−sup(D)
R (R,D)∨

∼= H− dim(R)+i+sup(D) (RHomR(R,D))∨

∼= H− dim(R)+i+sup(D)(D)∨.

(4.10)

It follows from the display (4.10) that H−dim(R)+i+sup(D)(D) = 0 for every i ̸=
dim(R), i.e. Hi(D) = 0 for every i ̸= sup(D). Therefore, we have

D ≃ Σsup(D)Hsup(D)(D).

In addition, letting i = dim(R) in the display (4.10), we getH
dim(R)
m (R) ∼= Hsup(D)(D)∨,

which implies that ωR
∼= Hsup(D)(D) by Proposition 30. It follows that D ≃

Σsup(D)ωR.
Now let M be a finitely generated R-module. Then by Theorem 27, we have

H i
m(M) ∼= Ext

dim(R)−i−sup(D)
R (M,D)∨

∼= H− dim(R)+i+sup(D) (RHomR (M,D))∨

∼= H− dim(R)+i+sup(D)

(
RHomR

(
M,Σsup(D)ωR

))∨

∼= H− dim(R)+i (RHomR (M,ωR))
∨

∼= Ext
dim(R)−i
R (M,ωR)

∨ .
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