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STABILITY IN NONLINEAR NEUTRAL
LEVIN-NOHEL INTEGRO-DYNAMIC EQUATIONS

Kamel Ali Khelil, Abdelouaheb Ardjouni and Ahcene Djoudi

Abstract. In this paper we use the Krasnoselskii-Burton’s fixed point theorem to obtain
asymptotic stability and stability results about the zero solution for the following nonlinear neutral
Levin-Nohel integro-dynamic equation

x∆(t) +

∫ t

t−τ(t)

a(t, s)g (x(s))∆s+ c(t)x∆̃(t− τ(t)) = 0.

The results obtained here extend the work of Ali Khelil, Ardjouni and Djoudi [5].

1 Introduction

In 1988, Stephan Hilger [24] has initiated the theory of calculus on time scales
to unify discrete and continuous analysis for the aim of combining the study of
differential and difference equations. Hilger’s work has been the foundation of so
many investigations in the theory of dynamic equations and has received much
attention since its publication.

The study of Levin-Nohel equations brings the traditional research areas of
differential and difference equations. It allows researchers to handle these two
research areas at the same time, hence shedding light on the reasons for their seeming
discrepancies. In fact, many new results for the continuous and discrete cases have
been obtained by studying more general time scales cases (see [1]-[6], [10], [28]-[30]).

In particular, the fixed point theorem was applied to deduce stability conditions,
see also the papers ([7]-[19], [22], [23], [25]-[27]) where different techniques are used
to study stability of delay dynamic equations. While, the Lyapunov direct method
has been very effective in establishing stability results and the existence of periodic
solutions for wide variety of ordinary, functional and partial differential equations.
Nevertheless, in the application of Lyapunov’s direct method to problems of stability
in delay differential equations, serious difficulties occur if the delay is unbounded or
if the equation has unbounded terms. In recent years, several investigators have
tried stability by using a new technique. Particularly, Burton, Furumochi, Zhang
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and others began a study in which they noticed that some of this difficulties vanish
or might be overcome by means of fixed point theory (see [21], [32]). The fixed
point theory does not only solve the problem on stability but has other significant
advantage over Lyapunov’s direct method. The conditions of the former are often
average but those of the latter are usually pointwise (see [20]).

In [5], Ali Khelil, Ardjouni and Djoudi have used the Krasnoselskii-Burton’s fixed
point theorem to obtain asymptotic stability results about the zero solution for the
following nonlinear neutral Levin-Nohel integro-differential equation

x′(t) +

∫ t

t−τ(t)
a(t, s)g (x(s)) ds+ c(t)x′(t− τ(t)) = 0.

The aim of this paper is to extend the theory established in [5] to neutral Levin-
Nohel integro-dynamic equations on time scales. More precisely, we consider the
equation

x∆(t) +

∫ t

t−τ(t)
a(t, s)g (x(s))∆s+ c(t)x∆̃(t− τ(t)) = 0, t ∈ [t0,∞)T , (1.1)

with an assumed initial condition

x (t) = φ (t) , t ∈ [m (t0) , t0]T ,

where φ ∈ Crd ([m (t0) , t0]T ,R) and

m (t0) = inf {t− τ (t) : t ∈ [t0,∞)T} .

In order for the functions x (t− τ(t)) to be well-defined over [t0,∞)T, we assume that
τ : [t0,∞)T→ T is positive rd-continuous, and that id−τ : [t0,∞)T→ T is increasing
mapping such that (id− τ) ([t0,∞)T) is closed where id is the identity function.
Throughout this paper, we assume that c ∈ C1

rd ([t0,∞)T ,R), a ∈ Crd([t0,∞)T ×
[m (t0) ,∞)T ,R+) and g : R → R is continuous with respect to its argument. We
assume that g (0) = 0 and τ ∈ C2

rd ([t0,∞)T , (0,∞)T) such that

τ∆ (t) ̸= 1, t ∈ [t0,∞)T . (1.2)

Our purpose here is to use the Krasnoselskii-Burton’s fixed point theorem to show
the asymptotic stability and stability of the zero solution for (1.1).

2 Preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers R. Since
we are interested in oscillatory behavior, we suppose that the time scale under
consideration is not bounded above and below. Throughout this paper, intervals
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subscripted with a T represent real intervals intersected with T. For example, a, b ∈
T, [a, b]T = [a, b] ∩ T.

We begin this section by considering some advanced topics in the theory of
dynamic equations on time scales. Most of the following definitions, lemmas and
theorems can be found in [12, 13].

Definition 1. The forward and backward jump operators σ, ρ : T → T and the
graininess function µ : T → [0,∞) are defined, respectively, by

σ(t) = inf {s ∈ T : s > t} , ρ(t) = sup {s ∈ T : s < t} , µ(t) = σ(t)− t.

We make the assumption that inf ∅ = supT and sup ∅ = inf T. A point t ∈ T
is called right-dense if t < supT and σ(t) = t, right-scattered if σ(t) > t, left-dense
if t > inf T and ρ(t) = t, and left-scattered if ρ(t) < t. If T has a left-scattered
maximum m, define Tk = T−{m}. Otherwise, Tk = T. Finally, if f : T → R we
define the function fσ : T → R by

fσ(t) = f(σ(t)) for all t ∈ T.

Definition 2. A function f : T → R is called rd-continuous provided it is continuous
at every right-dense point t ∈ T and its left-sided limits exist, and is finite at every
left-dense point t ∈ T. The set of rd-continuous functions f : T → R will be denoted
by

Crd = Crd(T) =Crd(T,R).

The set of functions f : T → R that are differentiable and whose derivative is rd-
continuous is denoted by

C1
rd = C1

rd(T) =C1
rd(T,R).

Definition 3. For f : T → R, we define f∆(t) to be the number (if it exists) with
the property that for any given ε > 0, there exists a neighborhood U of t such that⏐⏐(f(σ(t))− f(s))− f∆(t) (σ(t)− s)

⏐⏐ < ε |σ(t)− s| for all s ∈ U.

The function f∆ : Tk → R is called the delta (or Hilger) derivative of f on Tk.

Theorem 4. Assume f : T → R is a function and let t ∈ Tk. Then, we have the
following,

(i) if f is differentiable at t, then f is continuous at t,
(ii) if f is continuous at t and t is right-scattered, then f is differentiable at t

with

f∆(t) =
f(σ(t))− f(t)

µ(t)
;

(iii) if t is right-dense, then f is differentiable at t with

f∆(t) = lim
s→t

f(t)− f(s)

t− s
.
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Theorem 5. Assume f, g : T → R at t ∈ Tk. Then
(i) (f + g)∆ (t) = f∆ (t) + g∆ (t) .
(ii) (αf)∆ (t) = αf∆ (t) , for any constant α.
(iii) If g (t) g (σ (t)) ̸= 0, then(

f

g

)∆

(t) =
f∆ (t) g (t)− f (t) g∆ (t)

g (t) g (σ (t))
.

The next theorem is the integration by parts.

Theorem 6. If a, b ∈ T and f, g ∈ Crd then,
(i)
∫ b
a f (σ (t)) g

∆ (t)∆t = (fg) (b)− (fg) (a)−
∫ b
a f

∆ (t) g (t)∆t,

(ii)
∫ b
a f (t) g

∆ (t)∆t = (fg) (b)− (fg) (a)−
∫ b
a f

∆ (t) g (σ (t))∆t.

The next theorem is the chain rule on time scales [13, Theorem 1.93]

Theorem 7 (Chain rule). Assume that ν : T → R is strictly increasing and T̃ :=

ν (T) is a time scale. Let ω : T̃ → R. If ν∆ (t) and ω∆̃ (ν (t)) exist for t ∈ Tk, then
(ω ◦ ν)∆ =

(
ω∆̃ ◦ ν

)
ν∆.

In the sequel we will need to differentiate and integrate functions of the form
f (t− τ (t)) = f (ν (t)) , where ν (t) := t−τ (t). Our next theorem is the substitution
rule [13, Theorem 1.98]

Theorem 8 (Substitution). Assume that ν : T → R is strictly increasing and T̃ :=
ν (T) is a time scale. If f : T → R is rd-continuous function and ν is differentiable
with rd-continuous derivative, then, for a, b ∈ T,∫ b

a
f (t) ν∆ (t)∆t =

∫ ν(b)

ν(a)

(
f ◦ ν−1

)
∆̃s.

Definition 9. A function p : T → R is called regressive provided 1 + µ(t)p(t) ̸= 0
for all t ∈ T. The set of all regressive and rd-continuous functions p : T → R will be
denoted by R = R(T,R). We define the set R+ of all positively regressive elements
of R by

R+ = R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0, ∀t ∈ T}.

Definition 10. Let p ∈ R, then the generalized exponential function ep is defined
as the unique solution of the initial value problem

x∆(t) = p(t)x(t), x(s) = 1, where s ∈ T.

An explicit formula for ep(t, s) is given by

ep(t, s) = exp

(∫ t

s
ζµ(τ)(p(τ))∆τ

)
, for all s, t ∈ T,
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with

ζh(τ) =

{
log(1+hτ)

h if h ̸= 0,
τ if h = 0,

where log is the principal logarithm function.

Lemma 11. Let p ∈ R, then
(i) e0(t, s) = 1 and ep(t, t) = 1,
(ii) ep(σ (t) , s) = (1 + µ(t)p(t)) ep(t, s),
(iii) e∆p (t, s) = p(t)ep(t, s),

(iv) 1
ep(t,s)

= e⊖p(t, s) with ⊖p = − p
1+µp ,

(v) ep(t, s) =
1

ep(s,t)
= e⊖p(s, t),

(vi) ep(t, s)ep(s, r) = ep(t, r).

Lemma 12. If p ∈ R+, then

0 < ep(t, s) ≤ exp

(∫ t

s
p(τ)∆τ

)
,

for all t ∈ [s,∞)T.

Theorem 13 (Variation of constants). Let t0 ∈ T, p ∈ R and x0 ∈ R. The unique
solution of the initial value problem

x∆ (t) = −p (t)xσ (t) + f (t) , x (t0) = x0

is given by

x (t) = e⊖p(t, t0)x0 +

∫ t

t0

e⊖p(t, s)f (s)∆s.

3 The inversion and the fixed point theorems

One crucial step in the investigation of an equation using fixed point theory involves
the construction of a suitable fixed point mapping. For that end we must invert (1.1)
to obtain an equivalent integral equation from which we derive the needed mapping.
During the process, an integration by parts has to be performed on the neutral term

x∆̃(t− τ(t)).

Lemma 14. Suppose that (1.2) holds. Then x is a solution of equation (1.1) if and
only if

x(t) = (φ(t0) + γ(t0)φ(t0 − τ(t0))) e⊖A (t, t0)

+

∫ t

t0

(∫ s

s−τ(s)
a(s, u) (Gx) (u)du

)
e⊖A (t, s)∆s− γ(t)x(t− τ(t))

−
∫ t

t0

[Lx(s)− ϱ(s)xσ(s− τ(s))] e⊖A (t, s)∆s, t ∈ [t0,∞)T , (3.1)

******************************************************************************
Surveys in Mathematics and its Applications 14 (2019), 173 – 193

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v14/v14.html
http://www.utgjiu.ro/math/sma


178 K. Ali Khelil, A. Ardjouni and A. Djoudi

where

Lx(t) =

∫ t

t−τ(t)
a(t, s)

(∫ σ(t)

s

(∫ u

u−τ(u)
a(u, v)x(v)dv − r(u)xσ(u− τ(u))

)
∆u

+γσ (t)x(σ (t)− τσ(t))− γ (s)x(s− τ(s)))∆s (3.2)

r(t) =
c∆(t)(1− τ∆(t)) + τ∆∆(t)c(t)

(1− τ∆(t)) (1− τ∆(σ (t)))
, γ(t) =

c(t)

1− τ∆(t)
, (3.3)

(Gx)(t) = x(t)− g(x(t)), (3.4)

and

ϱ(t) =
(c∆(t) + cσ(t)A(t))(1− τ∆(t)) + τ∆∆(t)c(t)

(1− τ∆(t)) (1− τ∆(σ (t)))
, A(t) =

∫ t

t−τ(t)
a(t, s)∆s. (3.5)

Proof. Let x be a solution of (1.1). Rewrite (1.1) as

x∆(t) +

∫ t

t−τ(t)
a(t, s)x(s)∆s

−
∫ t

t−τ(t)
a(t, s) (x(s)− g(x(s)))∆s+ c(t)x∆̃(t− τ(t)) = 0, t ∈ [t0,∞)T .

Obviously, we have

x(s) = xσ(t)−
∫ σ(t)

s
x∆(u)∆u.

Inserting this relation into (1.1), we get

x∆(t) +

∫ t

t−r(t)
a(t, s)

(
xσ(t)−

∫ σ(t)

s
x∆(u)∆u

)
∆s

−
∫ t

t−τ(t)
a(t, s)(Gx) (s)∆s+ c(t)x∆̃(t− τ(t)) = 0, t ∈ [t0,∞)T ,

or equivalently

x∆(t) + xσ(t)

∫ t

t−τ(t)
a(t, s)∆s−

∫ t

t−τ(t)
a(t, s)

(∫ σ(t)

s
x∆(u)∆u

)
∆s

−
∫ t

t−τ(t)
a(t, s)(Gx) (s)∆s+ c(t)x∆̃(t− τ(t))) = 0, t ∈ [t0,∞)T .
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After substituting x∆ from (1.1), we obtain

x∆(t) + xσ(t)

∫ t

t−τ(t)
a(t, s)∆s

+

∫ t

t−τ(t)
a(t, s)

(∫ σ(t)

s

(∫ u

u−τ(u)
a(u, v)x(v)∆v + c(u)x∆̃(u− τ(u))

)
∆u

)
∆s

−
∫ t

t−τ(t)
a(t, s)(Gx) (s)∆s+ c(t)x∆̃(t− τ(t)) = 0, t ∈ [t0,∞)T . (3.6)

By performing the integration by parts, we have∫ σ(t)

s
c(u)x∆̃(u− τ(u))∆u

=

∫ σ(t)

s

c(u)

1− τ∆(u)

(
1− τ∆(u)

)
x∆̃(u− τ(u))∆u

= γσ (t)x(σ (t)− τσ(t))− γ (s)x(s− τ(s))−
∫ σ(t)

s
r(u)xσ(u− τ(u))∆u, (3.7)

where r and γ are given by (3.3). After substituting (3.7) into (3.6), we have

x∆(t) +A(t)xσ(t) + Lx(t)

−
∫ t

t−τ(t)
a(t, s)(Gx) (s)∆s+ c(t)x∆̃(t− τ(t)) = 0, t ∈ [t0,∞)T ,

where A and Lx are given by (3.5) and (3.2), respectively. By the variation of
constants formula, we get

x(t)

= φ(t0)e⊖A (t, t0) +

∫ t

t0

(∫ s

s−τ(s)
a(s, u) (Gx) (u)∆u

)
e⊖A (t, s)∆s

−
∫ t

t0

[
Lx(s) + c(s)x∆̃(s− τ(s))

]
e⊖A (t, s)∆s, t ∈ [t0,∞)T . (3.8)

Letting ∫ t

t0

c(s)x∆̃(s− τ(s))e⊖A (t, s)∆s

=

∫ t

t0

c(s)e⊖A (t, s)

1− τ∆(s)

(
1− τ∆(s)

)
x∆̃(s− τ(s))∆s.
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By using the integration by parts, we obtain∫ t

t0

c(s)x∆̃(s− τ(s))e⊖A (t, s)∆s

=
c(t)

1− τ∆(t)
x(t− τ(t))− c(t0)

1− τ∆(t0)
x(t0 − τ(t0))e⊖A (t, t0)

−
∫ t

t0

ϱ(s)xσ(s− τ(s))e⊖A (t, s)∆s, (3.9)

where ϱ is given by (3.5). Finally, we obtain (3.1) by substituting (3.9) in (3.8). Since
each step is reversible, the converse follows easily. This completes the proof.

Burton studied the theorem of Krasnoselskii and observed (see [14]) that Krasnoselskii
result can be more interesting in applications with certain changes and formulated
the Theorem 17 below (see [14] for its proof).

Definition 15. Let (M,d) be a metric space and F : M → M . F is said to be a
large contraction if ϕ,ψ ∈ M with ϕ ̸= ψ, then d(Fϕ, Fψ) < d(ϕ,ψ), and if for all
ε > 0, there exists η < 1 such that

[ϕ,ψ ∈M, d(ϕ,ψ) ≥ ε] ⇒ d(Fϕ, Fψ) ≤ ηd(ϕ,ψ).

Theorem 16 (Burton). Let (M,d) be a complete metric space and F be a large
contraction. Suppose there is x ∈ M and ρ > 0 such that d(x, Fnx) ≤ ρ for all
n ≥ 1. Then F has a unique fixed point in M .

Below, we state Krasnoselskii-Burton’s hybrid fixed point theorem which enables
us to establish a stability result of the trivial solution of (1.1). For more details on
Krasnoselskii’s captivating theorem we refer to Smart [31] or [20].

Theorem 17 (Krasnoselskii-Burton). Let M be a closed bounded convex nonempty
subset of a Banach space (S, ∥.∥). Suppose that A, B map M into M and that

(i) for all x, y ∈M ⇒ Ax+ By ∈M ,
(ii) A is continuous and AM is contained in a compact subset of M ,
(iii) B is a large contraction.

Then there is z ∈M with z = Az + Bz.

Here we manipulate function spaces defined on infinite t-intervals. So for compactness,
we need an extension of Arzela-Ascoli theorem. This extension is taken from [[20],
Theorem 1.2.2, p. 20 ] and is as follows.

Theorem 18. Let q : R+ → R+ be a continuous function such that q(t) → 0 as
t → ∞. If {ϕn(t)} is an equicontinuous sequence of Rm-valued functions on R+

with |ϕn(t)| ≤ q(t) for t ∈ R+, then there is a subsequence that converges uniformly
on R+ to a continuous function ϕ(t) with |ϕ(t)| ≤ q(t) for t ∈ R+, where |.| denotes
the Euclidean norm on Rm.

******************************************************************************
Surveys in Mathematics and its Applications 14 (2019), 173 – 193

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v14/v14.html
http://www.utgjiu.ro/math/sma


Stability in nonlinear neutral Levin-Nohel integro-dynamic equations 181

4 Stability by Krasnoselskii-Burton’s theorem

From the existence theory which can be found in [20], we conclude that for each rd-
continuous initial function φ : [m0, t0]T → R, there exists a rd-continuous solution
x(t, t0, φ) which satisfies (1.1) on an interval [0, β) for some β > 0 and x(t, t0, φ) =
φ(t) for t ∈ [m0, t0]T.

We need the following stability definitions taken from [20].

Definition 19. The zero solution of (1.1) is said to be stable at t = t0 if for
each ε > 0, there exists a δ > 0 such that φ : [m0, t0]T → (−δ, δ) implies that
|x(t, t0, φ)| < ε for all t ≥ m0.

Definition 20. The zero solution of (1.1) is said to be asymptotically stable if it
is stable at t = t0 and δ > 0 exists such that for any continuous function φ :
[m0, t0]T → (−δ, δ) the solution x(t, t0, φ) with x(t, t0, φ) = φ(t) on [m0, t0]T tends
to zero as t→ ∞.

To apply Theorem 17, we have to choose carefully a Banach space depending on
the initial function φ and construct two mappings, a large contraction and a compact
operator which obey the conditions of the theorem. So let S be the Banach space of
rd-continuous bounded functions ϕ : [m0,∞]T → R with the supremum norm ∥.∥.
Let L > 0 and define the set

Sφ = {ϕ ∈ S : ϕ is k-Lipschitzian, |ϕ(t)| ≤ L, t ∈ [m0,∞)T,

ϕ(t) = φ(t) if t ∈ [m0, t0]T and ϕ(t) → 0 as t→ ∞} .

Clearly, if {ϕn} is a sequence of k-Lipschitzian functions converging to a function ϕ
then

|ϕ(u)− ϕ(v)| ≤ |ϕ(u)− ϕn(u)|+ |ϕn(u)− ϕn(v)|+ |ϕn(v)− ϕ(v)|
≤ ∥ϕ− ϕn∥+ k |u− v|+ ∥ϕ− ϕn∥ .

Consequently, as n → ∞, we see that ϕ is k-Lipschitzian. It is clear that Sφ is
convex, bounded and complete endowed with ∥.∥.

For ϕ ∈ Sφ and t ≥ t0, define the maps A, B and H on Sφ as follows

(Aϕ)(t) = −γ(t)ϕ(t− τ(t))−
∫ t

t0

Lx(s)e⊖A (t, s)∆s

+

∫ t

t0

ϱ(s)ϕσ(s− τ(s))e⊖A (t, s)∆s, (4.1)

(Bϕ)(t) = (φ(t0) + γ(t0)φ(t0 − τ(t0))) e⊖A (t, t0)∆s

+

∫ t

t0

(∫ s

s−τ(s)
a(s, u) (Gϕ) (u)∆u

)
e⊖A (t, s)∆s, (4.2)
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and

(Hϕ)(t) = (Aϕ)(t) + (Bϕ)(t). (4.3)

If we are able to prove that H possesses a fixed point ϕ on the set Sφ, then
x(t, t0, φ) = ϕ(t) for t ≥ t0, x(t, t0, φ) = φ(t) on [m0, t0]T, x(t, t0, φ) satisfies (1.1)
when its derivative exists and x(t, t0, φ) → 0 as t→ ∞.

Let

ω(t) =

∫ t

t−τ(t)
|a(t, s)|

(∫ σ(t)

s

(∫ u

u−τ(u)
|a(u, v)|∆v + |r(u)|

)
∆u

+ |γσ(t)|+ |γ(s)|)∆s,

and assume that there are constants k1, k2, k3 > 0 such that for t0 ≤ t1 ≤ t2,⏐⏐⏐⏐∫ t2

t1

A(z)∆z

⏐⏐⏐⏐ ≤ k1 |t2 − t1| , (4.4)

|τ(t2)− τ(t1)| ≤ k2 |t2 − t1| , (4.5)

and

|γ(t2)− γ(t1)| ≤ k3 |t2 − t1| . (4.6)

Suppose for t ≥ t0,

|ϱ(t)| ≤ δA(t), (4.7)

ω(t) ≤ λA(t), (4.8)

sup
t≥t0

|γ(t)| = α0, (4.9)

and that

J(α0 + λ+ δ) < 1, (4.10)

max (|G(−L)| , |G(L)|) ≤ 2L

J
, (4.11)

(α0 + α0k2) k + Lk3 + 3L

(
δ + λ+

2

J

)
k1 < k, (4.12)

where α0, δ, λ, J are positive constants with J > 3.

Choose θ > 0 small enough and such that

(1 + γ(t0))θ + (α0 + α0k2) k + Lk3 + 3L

(
δ + λ+

2

J

)
k1 ≤ k, (4.13)

and

(1 + γ(t0))θ +
3L

J
≤ L. (4.14)
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The chosen θ in the relation (4.14) is used below in Lemma 23 to show that if ε = L
and if ∥φ∥ < θ, then the solutions satisfy x(t, t0, φ) < ε.

Assume further that

t− τ(t) → ∞ as t→ ∞ and

∫ t

0
A(z)∆z → ∞ as t→ ∞, (4.15)

γ(t) → 0 as t→ ∞, (4.16)

ϱ(t)

A(t)
→ 0 as t→ ∞, (4.17)

and
ω(t)

A(t)
→ 0 as t→ ∞. (4.18)

We begin by showing that G given by (3.4) is a large contraction on the set Sφ.
So, we suppose that g : R → R satisfying the following conditions.

(H1) g : R → R is continuous on [−L,L] and differentiable on (−L,L),
(H2) the function g is strictly increasing on [−L,L],
(H3) supt∈(−L,L) g

′(t) ≤ 1.

Theorem 21 ([2]). Let g : R → R be a function satisfying (H1)− (H3). Then the
mapping G in (3.4) is a large contraction on the set Sφ.

By step we will prove the fulfillment of (i), (ii) and (iii) in Theorem 17.

Lemma 22. Suppose that (4.7)–(4.10) and (4.15) hold. For A defined in (4.1), if
ϕ ∈ Sφ, then |(Aϕ) (t)| ≤ L/J ≤ L. Moreover, (Aϕ) (t) → 0 as t→ ∞.

Proof. Using the conditions (4.7)–(4.10) and the expression (4.1) of the map A, we
get

|(Aϕ) (t)| ≤ |γ(t)| |ϕ(t− τ(t))|+
∫ t

t0

|Lϕ(s)| e⊖A (t, s)∆s

+

∫ t

t0

|ϱ(s)| |ϕ(s− τ(s))| e⊖A (t, s)∆s

≤ α0L+ L

∫ t

t0

ω(s)e⊖A (t, s)∆s+ L

∫ t

t0

|ϱ(s)| e⊖A (t, s)∆s

≤ α0L+ λL

∫ t

t0

A(s)e⊖A (t, s)∆s+ δL

∫ t

t0

A(s)e⊖A (t, s)∆s

≤ (α0 + λ+ δ)L ≤ L

J
< L.

So ASφ is bounded by L as required.
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Let ϕ ∈ Sφ be fixed. We will prove that (Aϕ) (t) → 0 as t → ∞. Due to the
conditions t − τ(t) → ∞ as t → ∞ in (4.15) and (4.9), it is obvious that the first
term on the right hand side of A tends to 0 as t→ ∞. That is

|γ(t)ϕ(t− τ(t))| ≤ α0 |ϕ(t− τ(t))| → 0 as t→ ∞.

It is left to show that the two remaining integral terms of A go to zero as t → ∞.
Let ε > 0 be given. Find T such that |ϕ(t− τ(t))| < ε for t ≥ T . Then we have⏐⏐⏐⏐∫ t

t0

Lϕ(s)e⊖A (t, s)∆s

⏐⏐⏐⏐
≤
∫ T

t0

|Lϕ(s)| e⊖A (t, s)∆s+

∫ t

T
|Lϕ(s)| e⊖A (t, s)∆s

≤ Le⊖A (t, T )

∫ T

t0

ω(s)e⊖A (T, s)∆s+ ε

∫ t

T
ω(s)e⊖A (t, s)∆s

≤ Lλe⊖A (t, T ) + ελ,

and ⏐⏐⏐⏐∫ t

t0

ϱ(s)ϕσ(s− τ(s))e⊖A (t, s)∆s

⏐⏐⏐⏐
≤
∫ T

t0

|ϱ(s)| |ϕσ(s− τ(s))| e⊖A (t, s)∆s

+

∫ t

T
|ϱ(s)| |ϕσ(s− τ(s))| e⊖A (t, s)∆s

≤ Le⊖A (t, T )

∫ T

t0

|ϱ(s)| e⊖A (T, s)∆s+ ε

∫ t

T
|ϱ(s)| e⊖A (t, s)∆s

≤ Lδe⊖A (t, T ) + εδ.

The terms Lλe⊖A (t, T ) and Lδe⊖A (t, T ) are arbitrarily smalls as t → ∞, because
of (4.15). This ends the proof.

Lemma 23. Let (4.7)–(4.12) and (4.15) hold. For A and B defined in (4.1) and
(4.2), if ϕ,ψ ∈ Sφ are arbitrary, then

∥Aϕ+ Bψ∥ ≤ L.

Moreover, B is a large contraction on Sφ with a unique fixed point in Sφ and
(Bψ) (t) → 0 as t→ ∞.
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Proof. Using the definitions (4.1), (4.2) of A and B and applying (4.7)–(4.11), we
obtain

|(Aϕ) (t) + (Bψ) (t)|
≤ |(Aϕ) (t)|+ |(Bψ) (t)|

≤ α0L+ λL

∫ t

t0

A(s)e⊖A (t, s)∆s+ L

∫ t

t0

|ϱ(s)| e⊖A (t, s)∆s

+ (1 + γ(t0)) ∥φ∥ e⊖A (t, t0) +
2L

J

∫ t

t0

A(s)e⊖A (t, s)∆s

≤ (1 + γ(t0)) ∥φ∥+ (α0 + λ+ δ)L+
2L

J

≤ (1 + γ(t0)) ∥φ∥+
L

J
+

2L

J
,

by the monotonicity of the mapping G. So from the above inequality, by choosing
the initial function φ having small norm, say ∥φ∥ ≤ θ, then, and referring to (4.14),
we obtain

∥Aϕ+ Bψ∥ ≤ (1 + γ(t0))θ +
3L

J
≤ L.

Since 0 ∈ Sφ, we have also proved that |(Bψ)(t)| ≤ L. The proof that Bψ is
k-Lipschitzian is similar to that of the map Aϕ below. To see that B is a large
contraction on Sφ with a unique fixed point, we know from Theorem 21 that G(ϕ) =
ϕ−g(ϕ) is a large contraction within the integrand. Thus, for any ε, from the proof
of that Theorem 21, we have found η < 1 such that

|(Bϕ) (t)− (Bψ) (t)|

≤
∫ t

t0

(∫ s

s−τ(s)
|a(s, u)| |(Gϕ) (u)− (Gψ) (u)| du

)
e⊖A (t, s)∆s

≤ η

∫ t

t0

(∫ s

s−τ(s)
a(s, u) ∥ϕ− ψ∥∆u

)
e⊖A (t, s)∆s

≤ η

∫ t

t0

A(s) ∥ϕ− ψ∥ e⊖A (t, s)∆s

≤ η ∥ϕ− ψ∥ .

To prove that (Bψ) (t) → 0 as t → ∞, we use (4.15) for the first term, and for the
second term, we argue as above for the map A.

Lemma 24. Suppose (4.7)–(4.10) hold. Then the mapping A is continuous on Sφ.

******************************************************************************
Surveys in Mathematics and its Applications 14 (2019), 173 – 193

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v14/v14.html
http://www.utgjiu.ro/math/sma


186 K. Ali Khelil, A. Ardjouni and A. Djoudi

Proof. Let ϕ,ψ ∈ Sφ, then

|(Aϕ)(t)− (Aψ)(t)|

≤ α0 |ϕ(t− τ(t))− ψ(t− τ(t))|+
∫ t

t0

|Lϕ(s)− Lψ(s)| e⊖A (t, s)∆s

+

∫ t

t0

|ϱ(s)| |ϕ(s− τ(s))− ψ(s− τ(s))| e⊖A (t, s)∆s

≤ α0 ∥ϕ− ψ∥+ ∥ϕ− ψ∥
∫ t

t0

ω(s)e⊖A (t, s)∆s

+ ∥ϕ− ψ∥
∫ t

t0

|ϱ(s)| e⊖A (t, s)∆s

≤ α0 ∥ϕ− ψ∥+ λ ∥ϕ− ψ∥
∫ t

t0

A(s)e⊖A (t, s)∆s

+ δ ∥ϕ− ψ∥
∫ t

t0

A(s)e⊖A (t, s)∆s

≤ (α0 + λ+ δ) ∥ϕ− ψ∥ ≤ 1

J
∥ϕ− ψ∥ .

Let ε > 0 be arbitrary. Define η = εJ . Then for ∥ϕ− ψ∥ ≤ η, we obtain

∥Aϕ−Aψ∥ ≤ 1

J
∥ϕ− ψ∥ ≤ ε.

Therefore, A is continuous.

Lemma 25. Let (4.4)–(4.12) and (4.16)–(4.18) hold. The function Aϕ is k-Lipschitzian
and the operator A maps Sφ into a compact subset of Sφ.

Proof. Let ϕ ∈ Sφ and let 0 ≤ t1 < t2. Then

|(Aϕ)(t2)− (Aϕ)(t1)|
≤ |γ(t2)ϕ(t2 − τ(t2))− γ(t1)ϕ(t1 − τ(t1))|

+

⏐⏐⏐⏐∫ t2

t0

Lϕ(s)e⊖A (t2, s)∆s−
∫ t1

t0

Lϕ(s)e⊖A (t1, s)∆s

⏐⏐⏐⏐
+

⏐⏐⏐⏐∫ t2

t0

ϱ(s)ϕσ(s− τ(s))e⊖A (t2, s)∆s−
∫ t1

t0

ϱ(s)ϕσ(s− τ(s))e⊖A (t1, s)∆s

⏐⏐⏐⏐ .
(4.19)

By hypotheses (4.5)–(4.6), we have

|γ(t2)ϕ(t2 − τ(t2))− γ(t1)ϕ(t1 − τ(t1))|
≤ |γ(t2)| |ϕ(t2 − τ(t2))− ϕ(t1 − τ(t1))|+ |ϕ(t1 − τ(t1))| |γ(t2)− γ(t1)|
≤ α0k |(t2 − t1)− (τ(t2)− τ(t1))|+ Lk3 |t2 − t1|
≤ (α0k + α0kk2 + Lk3) |t2 − t1| , (4.20)
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where k is the Lipschitz constant of ϕ. By hypotheses (4.4) and (4.7), we have⏐⏐⏐⏐∫ t2

t0

ϱ(s)ϕσ(s− τ(s))e⊖A (t2, s)∆s−
∫ t1

t0

ϱ(s)ϕσ(s− τ(s))e⊖A (t1, s)∆s

⏐⏐⏐⏐
≤ L |e⊖A (t2, t1)− 1|

∫ t1

t0

δA(s)e⊖A (t1, s)∆s+ L

∫ t2

t1

|ϱ(s)| e⊖A (t2, s)∆s

≤ Lδ

∫ t2

t1

A(s)∆s+ L

∫ t2

t1

e⊖A (t2, s)

(∫ s

t1

|ϱ(v)|∆v
)∆

∆s

≤ Lδ

∫ t2

t1

A(s)∆s+ L

∫ t2

t1

|ϱ(v)|∆v
(
1 +

∫ t2

t1

A(s)e⊖A (t2, s)∆s

)
≤ Lδ

∫ t2

t1

A(s)∆s+ 2L

∫ t2

t1

|ϱ(v)|∆v

≤ Lδ

∫ t2

t1

A(s)∆s+ 2Lδ

∫ t2

t1

A(v)∆v

≤ 3Lδk1 |t2 − t1| . (4.21)

Similarly, by (4.4) and (4.8), we deduce⏐⏐⏐⏐∫ t2

t0

Lϕ(s)e⊖A (t2, s)∆s−
∫ t1

t0

Lϕ(s)e⊖A (t1, s)∆s

⏐⏐⏐⏐
≤ L |e⊖A (t2, t1)− 1|

∫ t1

t0

ω(s)e⊖A (t1, s)∆s+ L

∫ t2

t1

ω(s)e⊖A (t2, s)∆s

≤ L |e⊖A (t2, t1)− 1|
∫ t1

t0

λA(s)e⊖A (t1, s)∆s+ L

∫ t2

t1

ω(s)e⊖A (t2, s)∆s

≤ λL

∫ t2

t1

A(z)dz + L

∫ t2

t1

e⊖A (t2, s)

(∫ s

t1

ω(v)∆v

)∆

∆s

≤ λL

∫ t2

t1

A(z)dz + L

∫ t2

t1

ω(v)∆v

(
1 +

∫ t2

t1

A(s)e⊖A (t2, s)∆s

)
≤ λL

∫ t2

t1

A(z)dz + 2L

∫ t2

t1

ω(v)∆v

≤ λL

∫ t2

t1

A(z)dz + 2Lλ

∫ t2

t1

A(v)∆v

≤ 3λLk1 |t2 − t1| . (4.22)

Thus, by substituting (4.20)–(4.22) in (4.19), we obtain

|(Aϕ)(t2)− (Aϕ)(t1)|
≤ (α0k + α0kk2 + Lk3) |t2 − t1|+ 3Lδk1 |t2 − t1|+ 3Lλk1 |t2 − t1|
≤ k |t2 − t1| . (4.23)
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This shows Aϕ that is k-Lipschitzian if ϕ is and that ASφ is equicontinuous. Next,
we notice that for arbitrary ϕ ∈ Sφ, we have

|(Aϕ)(t)|

≤ |γ(t)ϕ(t− τ(t))|+
∫ t

t0

|Lϕ(s)| e⊖A (t, s)∆s

+

∫ t

t0

|ϱ(s)| |ϕ(s− τ(s))| e⊖A (t, s)∆s

≤ L |γ(t)|+ L

∫ t

t0

ω(s)e⊖A (t, s)∆s+ L

∫ t

t0

|ϱ(s)| e⊖A (t, s)∆s

≤ L |γ(t)|+ L

∫ t

t0

A(s)
ω(s)

A(s)
e⊖A (t, s)∆s+ L

∫ t

t0

A(s)
|ϱ(s)|
A(s)

e⊖A (t, s)∆s

:= q(t),

because of (4.16)–(4.18). Using a method like the one used for the map A, we see
that q(t) → 0 as t→ ∞. By Theorem 18, we conclude that the set ASφ resides in a
compact set.

Theorem 26. Let L > 0. Suppose that the conditions (H1) − (H3), (1.2), (4.4)–
(4.12) and (4.16)–(4.18) hold. If φ is a given initial function which is sufficiently
small, then there is a solution x(t, t0, φ) of (1.1) with |x(t, t0, φ)| ≤ L and x(t, t0, φ) →
0 as t→ ∞.

Proof. From Lemmas 22 and 25 we have A is bounded by L, k-Lipschitzian and
(Aϕ)(t) → 0 as t → ∞. So A maps Sφ into Sφ. From Lemmas 23 and 25 for
arbitrary, we have ϕ,ψ ∈ Sφ, Aϕ + Bψ ∈ Sφ since Aϕ + Bψ is k-Lipschitzian
bounded by L and (Bψ)(t) → 0 as t → ∞. From Lemmas 23–25, we have proved
that B is large contraction, A is continuous and ASφ resides in a compact set. Thus,
all the conditions of Theorem 17 are satisfied. Therefore, there exists a solution of
(1.1) with |x(t, t0, φ)| ≤ L and x(t, t0, φ) → 0 as t→ ∞.

5 Stability in weighted Banach spaces

Referring to Burton [20], except for the fixed point method, we know of no other
way proving that solutions of (1.1) converge to zero. Nevertheless, if all we need
is stability and not asymptotic stability, then we can avoid conditions (4.16)–(4.18)
and still use Krasnoselskii-Burton’s theorem on a Banach space endowed with a
weighted norm.

Let h : [m0,∞)T → [1,∞) be any strictly increasing and continuous function with
h(m0) = 1, h(s) → ∞ as s → ∞. Let (S, |.|h) be the Banach space of continuous
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ϕ : [m0,∞)T → R for which

|ϕ|h = sup
t≥m0

⏐⏐⏐⏐ϕ(t)h(t)

⏐⏐⏐⏐ <∞,

exists. We continue to use ∥.∥ as the supremum norm of any ϕ ∈ S provided ϕ
bounded. Also, we use ∥φ∥ as the bound of the initial function. Further, in a similar
way as Theorem 21, we can prove that the function G(ϕ) = ϕ− g(ϕ) is still a large
contraction with the norm |.|h.

Theorem 27. If the conditions of Theorem 26 hold, except for (4.16)–(4.18), then
the zero solution of (1.1) is stable.

Proof. We prove the stability starting at t0. Let ε > 0 be given such that 0 < ε < L,
then for |x| ≤ ε, find α∗ with |x− g(x)| ≤ α∗ and choose a number α such that

α+ α∗ +
ε

J
≤ ε. (5.1)

In fact, since x−g(x) is increasing on (−L,L), we may take α∗ = 2ε
J . Thus, inequality

(5.1) allows α > 0. Now, remove the condition ϕ(t) → 0 as t→ ∞ from Sφ defined
previously and consider the set

Eφ = {ϕ ∈ S : ϕ k-Lipshitzian, |ϕ(t)| ≤ ε, t ∈ [m0,∞)T
and ϕ(t) = φ(t) for t ∈ [m0, t0]T} .

Define A and B on Eφ as before by (4.1), (4.2). We easily check that if ϕ ∈ Eφ,
then |(Aϕ)(t)| ≤ ε, and B is a large contraction on Eφ. Also, by choosing ∥φ∥ ≤ α
and referring to (5.1), we verify that for ϕ,ψ ∈ Eφ, |(Aϕ)(t) + (Bψ)(t)| ≤ ε and
|(Bψ)(t)| ≤ ε. AEφ is an equicontinuous set. According to [[20], Theorem 4.0.1],
in the space (S, |.|h) the set AEφ resides in a compact subset of Eφ. Moreover, the
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operator A : Eφ → Eφ is continuous. Indeed, for ϕ,ψ ∈ Sφ,

|(Aϕ)(t)− (Aψ)(t)|
h(t)

≤ 1

h(t)
{|γ(t)| |ϕ(t− τ(t))− ψ(t− τ(t))|

+

⏐⏐⏐⏐∫ t

t0

(Lϕ(s)− Lψ(s)) e⊖A (t, s)∆s

⏐⏐⏐⏐
+

⏐⏐⏐⏐∫ t

t0

ϱ(s) (ϕσ(s− τ(s))− ψσ(s− τ(s))) e⊖A (t, s)∆s

⏐⏐⏐⏐}
≤ α0 |ϕ− ψ|h + |ϕ− ψ|h

∫ t

t0

ω(s)
h(s)

h(t)
e⊖A (t, s)∆s

+ |ϕ− ψ|h
∫ t

t0

|ϱ(s)| h(s− τ(s))

h(t)
e⊖A (t, s)∆s

≤ α0 |ϕ− ψ|h + λ |ϕ− ψ|h
∫ t

t0

A(s)e⊖A (t, s)∆s

+ δ |ϕ− ψ|h
∫ t

t0

A(s)e⊖A (t, s)∆s

≤ (α0 + λ+ δ) |ϕ− ψ|h ≤ 1

J
|ϕ− ψ|h .

The conditions of Theorem 17 are satisfied on Eφ, and so there exists a fixed point
lying in Eφ and solving (1.1).
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Birkhäuser, Boston, 2003. MR1962542. Zbl 1025.34001.

[13] M. Bohner and A. Peterson, Dynamic equations on time scales, An introduction
with applications, Birkhäuser, Boston, 2001. MR1843232.

[14] T. A. Burton, Integral equations, implicit functions and fixed points, Proc.
Amer. Math. Soc. 124 (1996), 2383-2390. MR1346965. Zbl 0873.45003.

[15] T. A. Burton, Liapunov functionals, fixed points, and stability by Krasnoselskii’s
theorem, Nonlinear Studies 9 (2001), 181-190. MR1898587. Zbl 1084.47522.

[16] T. A. Burton, Stability by fixed point theory or Liapunov’s theory, A comparison,
Fixed Point Theory 4 (2003), 15-32. MR2031819. Zbl 1061.47065.

[17] T. A. Burton and T. Furumochi, Asymptotic behavior of solutions of functional
differential equations by fixed point theorems, Dynamic Systems and Applications
11 (2002), 499-519. MR1946140. Zbl 1044.34033.

******************************************************************************
Surveys in Mathematics and its Applications 14 (2019), 173 – 193

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=3713747
http://www.ams.org/mathscinet-getitem?mr=3034097
https://zbmath.org/?q=an:1289.34257
http://www.ams.org/mathscinet-getitem?mr=3147744
https://zbmath.org/?q=an:1298.34134
http://www.ams.org/mathscinet-getitem?mr=2852465
https://zbmath.org/?q=an:1254.34110
http://www.ams.org/mathscinet-getitem?mr=2991406
https://zbmath.org/?q=an:1255.34074
http://www.ams.org/mathscinet-getitem?mr=1864659
https://zbmath.org/?q=an:0998.34040
http://www.ams.org/mathscinet-getitem?mr=2218152
http://www.ams.org/mathscinet-getitem?mr=1962542
https://zbmath.org/?q=an:1025.34001
http://www.ams.org/mathscinet-getitem?mr=1843232
http://www.ams.org/mathscinet-getitem?mr=1346965
https://zbmath.org/?q=an:0873.45003
http://www.ams.org/mathscinet-getitem?mr=1898587
https://zbmath.org/?q=an:1084.47522
http://www.ams.org/mathscinet-getitem?mr=2031819
https://zbmath.org/?q=an:1061.47065
http://www.ams.org/mathscinet-getitem?mr=1946140
https://zbmath.org/?q=an:1044.34033
http://www.utgjiu.ro/math/sma/v14/v14.html
http://www.utgjiu.ro/math/sma


192 K. Ali Khelil, A. Ardjouni and A. Djoudi

[18] T. A. Burton and T. Furumochi, Krasnoselskii’s fixed point theorem and
stability, Nonlinear Analysis 49 (2002), 445-454. MR1886230. Zbl 1015.34046.

[19] T. A. Burton, Fixed points and stability of a nonconvolution equation,
Proceedings of the American Mathematical Society 132 (2004), 3679-3687.
MR2084091. Zbl 1050.34110.

[20] T. A. Burton, Stability by fixed point theory for functional differential equations,
Dover Publications, New York, 2006. MR2281958. Zbl 1160.34001.

[21] T.A. Burton and T. Furumochi, Fixed points and problems in stability theory
for ordinary and functional differential equations, Dynamic Systems and Appl.
10 (2001), 89-116. MR1844329. Zbl 1021.34042.

[22] N. T. Dung, Asymptotic behavior of linear advanved differential equations, Acta
Mathematica Scientia 35B(3) (2015), 610-618.

[23] N. T. Dung, New stability conditions for mixed linear Levin-Nohel integro-
differential equations, Journal of Mathematical Physics 54, (2013), 1-11.
MR3135476. Zbl 1286.45006.

[24] S. Hilger, Ein Maβkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten,
Ph. D. thesis, Universität Würzburg, 1988.

[25] C. H. Jin and J. W. Luo, Stability of an integro-differential equation, Computers
and Mathematics with Applications 57 (2009), 1080-1088. MR2508538. Zbl
1186.45011.

[26] C. H. Jin and J. W. Luo, Stability in functional differential equations established
using fixed point theory, Nonlinear Anal. 68 (2008), 3307-3315. MR2401344. Zbl
1165.34042.

[27] C. H. Jin and J. W. Luo, Fixed points and stability in neutral differential
equations with variable delays, Proceedings of the American Mathematical
Society 136(3) (2008), 909-918. MR2361863. Zbl 1136.34059.

[28] E. R. Kaufmann and Y.N. Raffoul, Periodicity and stability in neutral nonlinear
dynamic equations with functional delay on a time scale, Electron. J. Differential
Equations, 2007(27) (2007), 1-12. MR2299581. Zbl 1118.34058.

[29] E. R. Kaufmann and Y. N. Raffoul, Stability in neutral nonlinear dynamic
equations on a time scale with functional delay, Dynamic Systems and
Applications 16 (2007), 561-570. MR2356339. Zbl 1140.34430.

[30] A. A. Martynyuk, On the exponential stability of a dynamical system on a time
scale, Dokl. Math. 78 (2008), 535-540. MR2464521. Zbl 1234.34056.

******************************************************************************
Surveys in Mathematics and its Applications 14 (2019), 173 – 193

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=1886230
https://zbmath.org/?q=an:1015.34046
http://www.ams.org/mathscinet-getitem?mr=2084091
https://zbmath.org/?q=an:1050.34110
http://www.ams.org/mathscinet-getitem?mr=2281958
https://zbmath.org/?q=an:1160.34001
http://www.ams.org/mathscinet-getitem?mr=1844329
https://zbmath.org/?q=an:1021.34042
http://www.ams.org/mathscinet-getitem?mr=3135476
https://zbmath.org/?q=an:1286.45006
http://www.ams.org/mathscinet-getitem?mr=2508538
https://zbmath.org/?q=an:1186.45011
https://zbmath.org/?q=an:1186.45011
http://www.ams.org/mathscinet-getitem?mr=2401344
https://zbmath.org/?q=an:1165.34042
https://zbmath.org/?q=an:1165.34042
http://www.ams.org/mathscinet-getitem?mr=2361863
https://zbmath.org/?q=an:1136.34059
http://www.ams.org/mathscinet-getitem?mr=2299581
https://zbmath.org/?q=an:1118.34058
http://www.ams.org/mathscinet-getitem?mr=2356339
https://zbmath.org/?q=an:1140.34430
http://www.ams.org/mathscinet-getitem?mr=2464521
https://zbmath.org/?q=an:1234.34056
http://www.utgjiu.ro/math/sma/v14/v14.html
http://www.utgjiu.ro/math/sma


Stability in nonlinear neutral Levin-Nohel integro-dynamic equations 193

[31] D. R. Smart, Fixed point theorems, Cambridge Tracts in Mathematics, No. 66.
Cambridge University Press, London-New York, 1974. MR0467717.

[32] B. Zhang, Fixed points and stability in differential equations with variable
delays, Nonlinear Anal. 63 (2005), e233-e242. Zbl 1159.34348.

Kamel Ali Khelil

High School of Management Sciences Annaba,

Bp 322 Boulevard 24 February 1956, Annaba, 23000, Algeria.

e-mail: k.alikhelil@yahoo.fr

Abdelouaheb Ardjouni

Department of Mathematics and Informatics, University of Souk Ahras,

P.O. Box 1553, Souk Ahras, 41000, Algeria.

e-mail: abd ardjouni@yahoo.fr

Ahcene Djoudi

Applied Mathematics Lab, Department of Mathematics, University of Annaba,

P.O. Box 12, Annaba 23000, Algeria.

e-mail: adjoudi@yahoo.com

License

This work is licensed under a Creative Commons Attribution 4.0 International
License.

******************************************************************************
Surveys in Mathematics and its Applications 14 (2019), 173 – 193

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=0467717
https://zbmath.org/?q=an:1159.34348
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.utgjiu.ro/math/sma/v14/v14.html
http://www.utgjiu.ro/math/sma

	Introduction
	Preliminaries
	The inversion and the fixed point theorems
	Stability by Krasnoselskii-Burton's theorem
	Stability in weighted Banach spaces

