
Surveys in Mathematics and its Applications

ISSN 1842-6298 (electronic), 1843-7265 (print)

Volume 14 (2019), 203 – 217

EXISTENCE THEORY AND HYERS-ULAM
STABILITY FOR A COUPLE SYSTEM OF

FRACTIONAL DIFFERENTIAL EQUATIONS

S. Kouachi and A. Guezane-Lakoud

Abstract. We discuss the existence and uniqueness of solutions for a coupled system of

fractional differential equations by the help of some fixed point theorems. Further, we investigate

the Hyers-Ulam stability results for the proposed problem. An example is also included to illustrate

the established results.

1 Introduction

Fractional differential equations have recently proved to be valuable tools in the
modelling of many phenomena in various fields of science and engineering, physics
and economics. We can find numerous applications in viscoelasticity, electrochemistry,
electrical networks, control theory, biosciences, electromagnetic, signal processes,
mechanics and diffusion processes see [22, 23, 25, 27]. Significant developments
in fractional differential equations can be find in the monographs of Kilbas et
al.[22], Miller and Ross [25], Lakshmikantham et al. [23], Podlubny [27]. Ordinary
differential equations and fractional differential equations have been studied by many
authors, for detail see [1, 2, 3, 4, 5, 6, 7, 8, 32, 34]. In all these articles the concerned
results were obtained via classical fixed point theorems like Banach contraction
principal, Leray-Schauder fixed point theorems....

An other aspect of fractional differential equations that has got attentions from
researchers is committed to the stability analysis of differential equations for classical
and fractional order. Stability analysis plays a significant role in the optimization
and numerical analysis of fractional differential equations. Historically, stability was
importantly given by Ulam (1940) [29], which was formally introduced by Hyers in
1941 [19] using Banach spaces. Obloza [26] was the first to investigate the Ulam-
Hyers stability for linear differential equations. Later, this result was generalized
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and extended by Rassias, Jung and others, for instance see [20, 21, 24, 28, 33].

Urs [30] studied the Hyers-Ulam stability to a system of periodic boundary value
problem of classical differential equations⎧⎪⎨⎪⎩

dα(t)
dt = f (t, α (t)) + g (t, β (t)) , t ∈ [0, T ] ,

dβ(t)
dt = f (t, β (t)) + g (t, α (t)) , t ∈ [0, T ] ,

α (0) = α (T ) , β (0) = β (T ) ,

where the nonlinear function f, g ∈ C ([0, T ]× R,R) .
Motivated by the above works, in this work, we investigate a nonlinear coupled

system of fractional order differential equations⎧⎪⎪⎨⎪⎪⎩
cDq

0+
u(t) = f (t, u(t), v (t)) ,

cDp
0+
v(t) = h (t, u(t), v (t)) ,

u (0) = u′(0) = 0, u′′ (0) = αu (1) ,
v (0) = v′(0) = 0, v′′ (0) = αv (1) ,

t ∈ [0, 1] , (1.1)

where f, h : [0, 1]×R×R → R are continuous functions, 2 < q < 3, 2 < p < 3, cDq
0+

denotes the Caputo’s fractional derivative. We establish some adequate conditions
for the existence and uniqueness of solution to system (1.1) by using Leray-Schauder
fixed point theorem and Banach contraction type. Further, we investigate the Hyers-
Ulam stability results for the proposed problem. An example is given as an applicable
of the obtained results.

2 Preliminaries

In this section, we present some definitions and lemmas from fractional calculus
theory, which will be needed later.

Definition 1. If g ∈ C([a, b]) and α > 0, then the Riemann-Liouville fractional
integral is defined by

Iαa+g(t) =
1

Γ (α)

∫ t

a

g(s)

(t− s)1−α
ds.

Definition 2. Let α ≥ 0, n = [α] + 1. If f ∈ Cn[a, b] then the Caputo fractional

derivative of order α of f defined by cDα
a+g(t) = 1

Γ(n−α)

∫ t
a

gn(s)
(t−s)α−n+1ds exists

almost everywhere on [a, b] ([α] is the entire part of α).

Lemma 3. For α > 0, g ∈ C([0, 1] ,R), the homogenous fractional differential
equation cDα

a+g(t) = 0 has a solution g(t) = c1 + c2t + c3t
2 + ... + cnt

n−1, where,
ci ∈ R, i = 0, ..., n, and n = [α] + 1.
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Hyers-Ulam stability for a couple system of fractional differential equations 205

Lemma 4. Let p, q ≥ 0, f ∈ L1[a, b]. Then Ip
0+
Iq
0+
f(t) = Ip+q

0+
f(t) = Iq

0+
Ip
0+
f(t)

and cDq
a+

Iq
0+
f(t) = f(t), for all t ∈ [a, b].

Now, we present the necessary definition from the theory of cone in Banach
spaces.

Definition 5. A nonempty subset P of a Banach space E is called a cone if P is
convex, closed and satisfies the conditions
(i) αx ∈ P for all x ∈ P and α ∈ R+,
(ii) x,−x ∈ P implies x = 0.

Definition 6. A mapping is called completely continuous if it is continuous and
maps bounded sets into relatively compact sets.

Theorem 7. [15] Consider a Banach space E together with a cone K ⊂ E and if
Ω ⊂ K is relatively open set with 0 ∈ Ω. Let T : Ω → E be a completely continuous
operator. Then either there exists (1) the operator T has a fixed point in Ω, or (2)
there exist u ∈ ∂Ω and λ ∈ (0, 1) such that u = λT (u)

Definition 8. [30, 31] Let E be a Banach space such that T : E → E is a continues
operator. Then the fixed point equation given by

u = T (u) (2.1)

is called Hyers-Ulam stable if for the inequality provided as

|u− T (u)| ≤ ε, t ∈ [0, 1] , (2.2)

there exists a constant β > 0 such that for each solution u ∈ C ([0, 1] ,R) there exists
a unique solution η ∈ C ([0, 1] ,R) of the operator (2.1) with

|u (t)− η (t)| ≤ βε (2.3)

Similarly, the operator equation (2.1) is generalized Hyers-Ulam stable if there
exist a non decreasing mapping ΨT ∈ C (R+,R+) with ΨT (0) = 0, such that for
every solution η ∈ E of the inequality (2.2), there exist a unique solution u ∈ E of
(2.1) which satisfies

|u (t)− η (t)| ≤ ΨT (ε) , t ∈ [0, 1] . (2.4)

3 Existence and Uniqueness Theorems

We start by solving an auxiliary problem which allows us to get the expression of
the solution.
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Lemma 9. Assuming that α ̸= 2 and y ∈ C([0, 1],R). Then the problem{
cDq

0+
u(t) = y(t), 0 < t < 1,

u (0) = u′(0) = 0, u′′ (0) = αu (1) ,
(3.1)

has a unique solution given by:

u(t) =
1

Γ (q)

∫ 1

0
G1 (t, s) y(s)ds, (3.2)

where

G1(t, s) =
1

Γ (q)

{
(t− s)q−1 + α

2−α t
2 (1− s)q−1 , 0 ≤ s ≤ t,

α
2−α t

2 (1− s)q−1 , 0 ≤ t ≤ s ≤ 1.
(3.3)

Proof. Using Lemmas 3 and 4, we get

u(t) = Iq
0+
y(t) + a+ bt+ ct2. (3.4)

The boundary condition u (0) = 0 implies that a = 0. Differentiating both sides
of (1.1) and using the initial condition u′(0) = 0, it yields b = 0. The condition
u′′ (0) = αu(1), u′′ (0) = 2c = αu(1), 2c = α[Iq

0+
y(1) + c], 2c − αc = αIq

0+
y(1), and

c =
α

2− α
Iq
0+
y(1). Substituting a, b and c by their values in (2), we obtain

u (t) = Iq
0+
y(t) +

α

2− α
t2Iq

0+
y(1) (3.5)

u (t) =
1

Γ (q)

∫ t

0
(t− s)q−1y(s)ds+

α

2− α

1

Γ (q)
t2
∫ 1

t
(t− s)q−1y(s)ds (3.6)

then u (t) =
∫ 1
0 G1(t, s)y(s)ds, Where G1(t, s) is the Green’s function given in (1) .

Thank to lemma 9, an equivalent system of Fredholm integral equations to the
proposed system (1.1) is given by{

u (t) =
∫ 1
0 G1(t, s)f (s, u(s), v (s)) ds,

v (t) =
∫ 1
0 G2(t, s)h (s, u(s), v (s)) ds

(3.7)

where

G2(t, s) =
1

Γ (p)

{
(t− s)p−1 + α

2−α t
2 (1− s)p−1 , 0 ≤ s ≤ t,

α
2−α t

2 (1− s)p−1 , 0 ≤ t ≤ s ≤ 1.
(3.8)

Lemma 10. The functions G1(t, s), G2(t, s) satisfy the following properties:
(i) Gi(t, s), i = 1, 2 is continues over [0, 1]× [0, 1] for all t, s ∈ [0, 1] ,

(ii) maxt∈[0,1] |G1(t, s)| = 2
2−α

(1−s)q−1

Γ(q) = G1(1, s), maxt∈[0,1] |G2(t, s)| = 2
2−α

(1−s)p−1

Γ(p) =

G2(1, s), s ∈ [0, 1] ,
(iii) maxt∈[0,1]

∫ 1
0 |G1(t, s)| ds ≤ 2

(2−α)Γ(q+1) , maxt∈[0,1]
∫ 1
0 |G2(t, s)| ds ≤ 2

(2−α)Γ(p+1) .
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Proof. The proof of (i) , (ii) and (iii) is easy, then we omit it.

Define the Banach space E = {u|u ∈ C [0, 1]} equipped with the norm ∥u∥E =
maxt∈[0,1] |u (t)| . Similary, the norm on the product space is define by ∥(u, v)∥E×E =
∥u∥E + ∥v∥E

We define the cone K ⊂ E × E by

K = {(u, v) ∈ E × E : u (t) ≥ 0, v (t) ≥ 0, t ∈ [0, 1]} .

Definition 11. Suppose that f, h ∈ ([0, 1]× R× R,R) are continuous. Then (u, v) ∈
E ×E is a solution of system (1.1) if and only if (u, v) ∈ E ×E satisfies the system
(3.7).

Define the integral operator T : E × E → E × E by

T (u, v)(t) =

(∫ 1

0
G1 (t, s) f (s, u(s), v (s)) ds,

∫ 1

0
G2 (t, s)h (s, u(s), v (s)) ds

)

= (T1u, T2v) (t). (3.9)

Then the fixed point of the operator T coincide with the solution of the coupled
system (1.1) .

Theorem 12. Let f, h : [0, 1]× R× R → R. Then the operator T : K → K defined
in (3.9) is completely continuous.

Proof. It is obvious that T is continuous since f, h,G1 (t, s) , G2 (t, s) are continuous.
Let us prove that T : K → K is completely continuous.

Claim 1. T (Br) is uniformly bounded, where Br = {(u, v) ∈ K, ∥(u, v)∥ ≤ r}.
Since the functions f and h are continuous, then there exist constants c, m

such that maxt∈[0,1] |f(t, u(t), v (t)| = c and maxt∈[0,1] |h(t, u(t), v (t)| = m for any
(u, v) ∈ Br. By virtue of Lemma 10 we obtain

|T1 (t, u(t), v (t))| =
⏐⏐⏐⏐∫ 1

0
G1(t, s)f (s, u(s), v (s)) ds

⏐⏐⏐⏐
≤

∫ 1

0
|G1(t, s)| |f (s, u(s), v (s))| ds ≤ 2c

(2− α) Γ(q + 1)
. (3.10)

and

|T2 (t, u(t), v (t))| =
⏐⏐⏐⏐∫ 1

0
G2(t, s)h (s, u(s), v (s)) ds

⏐⏐⏐⏐
≤

∫ 1

0
|G2(t, s)|h (s, u(s), v (s)) ds ≤

2m

(2− α) Γ(p+ 1)
. (3.11)
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which implies that

∥T1 (u, v)∥E ≤ 2c

(2− α) Γ(q + 1)
(3.12)

and

∥T2 (u, v)∥E ≤ 2m

(2− α) Γ(p+ 1)
. (3.13)

Thus from (3.12) and (3.13), one has

∥T1 (u, v)∥E + ∥T2 (u, v)∥E ≤
2c

(2− α) Γ(q + 1)
+

2m

(2− α) Γ(p+ 1)
= ω

Then
∥T (u, v)∥E×E ≤ ω

Hence T is uniformly bounded.
Claim 2. T is equicontinuous. We have for any (u, v) ∈ Br, and let t1 < t2 ∈

[0, 1],

|T1 (u, v) (t2)− T1 (u, v) (t1)| ≤
∫ 1

0
|G1(t2, s)−G1(t1, s)| |f (s, u(s), v (s))| ds

(3.14)

≤ 2c

(2− α) Γ (q)

(
t22 − t21

) ∫ 1

0
(1− s)q−1ds

+
2c

(2− α) Γ (q)

[∫ t2

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
ds+

∫ t2

t1

(t2 − s)q−1ds

]
≤ c

Γ (q + 1)

[(
t22 − t21

)
+ tq2 − tq1 + (t1 − t2)

q + (t2 − t1)
q] .

Similarly, one can show that

|T2 (u, v) (t2)− T2 (u, v) (t1)| ≤
∫ 1

0
|G2(t2, s)−G2(t1, s)| f (s, u(s), v (s)) ds

≤ 2m

(2− α) Γ (p)

(
t22 − t21

) ∫ 1

0
(1− s)p−1ds

+
2m

(2− α) Γ (p)

[∫ t2

0

[
(t2 − s)p−1 − (t1 − s)p−1

]
ds

+

∫ t2

t1

(t2 − s)p−1ds

]
≤ m

Γ (p+ 1)

[(
t22 − t21

)
+ tp2 − tp1 + (t1 − t2)

p + (t2 − t1)
p] . (3.15)
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The right hand sides of (3.14) and (3.15) tend to zero, when t1 → t2, therefore, we
conclude by Arzela Ascoli theorem, that T is equicontinuous. We deduce then that
T is completely continuous operator.

Theorem 13. Suppose that the following hypotheses hold

(H1)
2

(2−α)

(
Θf

Γ(q+1) +
Θh

Γ(p+1)

)
< 1

(H2) There exist constants Θf , Θh > 0 for all u, v, µ, σ ∈ R such that

|f (t, u, v)− f (t, µ, σ)| ≤ Θf [|u− µ|+ |v − σ|]

|h (t, u, v)− h (t, µ, σ)| ≤ Θh [|u− µ|+ |v − σ|]

then the coupled system (1.1) has a unique solution.

Proof. Let (u, v) , (µ, σ) ∈ K and consider

|T1 (u, v) (t)− T1 (µ, σ) (t)| =

⏐⏐⏐⏐∫ 1

0
G1(t, s) [(f (s, u(s), v (s)))− (f (s, µ(s), σ (s)))] ds

⏐⏐⏐⏐
≤

∫ 1

0
|G1(t, s)| [|(f (s, u(s), v (s)))− (f (s, µ(s), σ (s)))|] ds

∥T1 (u, v)− T1 (µ, σ)∥E ≤ 2

(2− α)

Θf

Γ(q + 1)
. (3.16)

Similarly, we can obtain

∥T2 (u, v)− T2 (µ, σ)∥E ≤ 2

(2− α)

Θh

Γ(p+ 1)
(3.17)

From (3.16) and (3.17), we get

∥T (u, v)− T (µ, σ)∥E×E ≤ 2

(2− α)

(
Θf

Γ(q + 1)
+

Θh

Γ(p+ 1)

)
< 1 (3.18)

Therefore, T is a contraction operator and has a unique fixed point which is the
corresponding unique solution of (1.1).

Theorem 14. Assume that f, h : [0, 1]×R×R → R are continuous and the functions
ϕi, ρi, (i = 0, 1, 2) : (0, 1) → [0,∞) satisfy the following inequalities

(H3)
|f (t, u (t) , v (t))| ≤ ϕ0 (t) + ϕ1 (t) |u (t)|+ ϕ2 (t) |v (t)|

|h (t, u (t) , v (t))| ≤ ρ0 (t) + ρ1 (t) |u (t)|+ ρ2 (t) |v (t)| ;

(H4)

0 <

∫ 1

0
G1(1, s)ϕ0 (s) ds < ∞,

∫ 1

0
G1(1, s) [ϕ1 (s) + ϕ2 (s)] ds < 1;
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0 <

∫ 1

0
G2(1, s)ρ0 (s) ds < ∞,

∫ 1

0
G2(1, s) [ρ1 (s) + ρ2 (s)] ds < 1.

Then the coupled system (1.1) has at least one solution.

Proof. Define the set Br as Br =
{
(u, v) ∈ E × E : ∥(u, v)∥E×E < r

}
,

where max

{(
2
∫ 1
0 G1(1,s)ϕ0(s)ds

1−2
∫ 1
0 G1(1,s)[ϕ1(s)+ϕ2(s)]ds

)
,

(
2
∫ 1
0 G2(1,s)ρ0(s)ds

1−2
∫ 1
0 G2(1,s)[ρ1(s)+ρ2(s)]ds

)}
< r.

Define T : Br → K as in (3.9) which is completely continues. Let (u, v) ∈ Br, so
∥(u, v)∥E×E < r. Then

∥T1 (u, v)∥E ≤ max
t∈[0,1]

∫ 1

0
|G1(t, s)| |f (s, u(s), v (s))| ds

≤ max
t∈[0,1]

∫ 1

0
|G1(t, s)|ϕ0 (s) ds+ max

t∈[0,1]

∫ 1

0
|G1(t, s)| [ϕ1 (s) |u (s)|+ ϕ2 (s) |v (s)|] ds

≤
∫ 1

0
G1(1, s)ϕ0 (s) ds+ r

∫ 1

0
G1(1, s) [ϕ1 (s) + ϕ2 (s)] ds ≤

r

2
. (3.19)

(u, v) = λT (u, v) , λ ∈ (0, 1) . (3.20)

Then in view of (3.20) for λ ∈ (0, 1), we get

∥u∥E = ∥λT1 (u, v)∥E = λ max
t∈[0,1]

⏐⏐⏐⏐∫ 1

0
G1(t, s)f (s, u(s), v (s)) ds

⏐⏐⏐⏐
< max

t∈[0,1]

∫ 1

0
G1(t, s) [ϕ0 (s) + ϕ1 (s) |u (s)|+ ϕ2 (s) |v (s)|] ds

≤
∫ 1

0
G1(1, s)ϕ0 (s) ds+ r

∫ 1

0
G1(1, s) [ϕ1 (s) + ϕ2 (s)] ds ≤

r

2
. (3.21)

Similarly, we can obtain

∥v∥E = λ max
t∈[0,1]

⏐⏐⏐⏐∫ 1

0
G2(t, s)h (s, u(s), v (s)) ds

⏐⏐⏐⏐ ≤ r

2
. (3.22)

Then the coupled system (1.1) has at least one solution.
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4 Hyers-Ulam stability analysis of BVP(1)

Here we study Hyers-Ulam stability for the coupled system of FDEs (1.1).
For some positive φi > 0, i = 1, 2, consider the system of inequalities given by{ ⏐⏐cDq

0+
u(t)− f (t, u(t), v (t))

⏐⏐ ≤ φ1, t ∈ [0, 1] ,⏐⏐cDp
0+
v(t)− h (t, u(t), v (t))

⏐⏐ ≤ φ2, t ∈ [0, 1] .
(4.1)

The coupled system (1) is Hyers-Ulam stable if there exists a non zero positive
real number C such that for each solution (u, v) ∈ C ([0, 1] ,R)×C ([0, 1] ,R) of the
system of inequalities (4.1), there exists a unique solution (µ, σ) ∈ C ([0, 1] ,R) ×
C ([0, 1] ,R) with the assumption (H5)

|(u, v) (t)− (µ, σ) (t)| ≤ Cφ , t ∈ [0, 1] , (4.2)

with C = C1+C2

1−(ΘfC1+ΘhC2)
and φ = max {φ1, φ2} .

Remark 15. We say that (u, v) ∈ C ([0, 1] ,R) × C ([0, 1] ,R) is a solution of the
system of inequalities (4.1) if there exist functions α, β ∈ C ([0, 1] ,R) that depend
upon u, v respectively such that

(i) |α (t)| ≤ φ1, |β (t)| ≤ φ2, t ∈ [0, 1] ,
(ii) and { ⏐⏐cDq

0+
u(t) = f (t, u(t), v (t))

⏐⏐+ α (t) , t ∈ [0, 1] ,⏐⏐cDp
0+
v(t)− h (t, u(t), v (t))

⏐⏐+ β (t) , t ∈ [0, 1] .

Lemma 16. Let (u, v) ∈ C ([0, 1] ,R) × C ([0, 1] ,R) be the solution of the system
of inequalities (4.1). If there exist constants C1 > 0, C2 > 0, then the following
estimates hold⎧⎨⎩

⏐⏐⏐u(t)− ∫ 1
0 G1(t, s)f (s, u(s), v (s)) ds

⏐⏐⏐ ≤ C1φ1, t ∈ [0, 1] ,⏐⏐⏐v(t)− ∫ 1
0 G2(t, s)h (s, u(s), v (s)) ds

⏐⏐⏐ ≤ C2φ2, t ∈ [0, 1] ,

Proof. From (ii) of Remark 15, we have that⎧⎪⎪⎨⎪⎪⎩
cDq

0+
u(t) = f (t, u(t), v (t)) + α (t) , t ∈ [0, 1] ,

cDp
0+
v(t) = h (t, u(t), v (t)) + β (t) , t ∈ [0, 1] ,
u (0) = u′(0) = 0, u′′ (0) = αu (1) ,
v (0) = v′(0) = 0, v′′ (0) = αv (1) ,

(4.3)

Then, in view of Lemma 3, the solution of (4.3) is given by{
u(t) =

∫ 1
0 G1(t, s)f (s, u(s), v (s)) ds+

∫ 1
0 G1(t, s)α (s) ds, t ∈ [0, 1] ,

v(t) =
∫ 1
0 G2(t, s)h (s, u(s), v (s)) ds+

∫ 1
0 G2(t, s)β (s) ds, t ∈ [0, 1] .

(4.4)
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From the first equation of system (4.4), we have⏐⏐⏐⏐u(t)− ∫ 1

0
G1(t, s)f (s, u(s), v (s)) ds

⏐⏐⏐⏐ =

⏐⏐⏐⏐∫ 1

0
G1(t, s)α (s) ds

⏐⏐⏐⏐
≤ max

t∈[0,1]

⏐⏐⏐⏐∫ 1

0
G1(t, s)

⏐⏐⏐⏐ |α (s)| ds

≤ C1φ1, (4.5)

where C1 =
2

(2−α)Γ(q+1)

Similarly, repeating the above procedure for the second equation of (4.4), we get⏐⏐⏐⏐v(t)− ∫ 1

0
G2(t, s)h (s, u(s), v (s)) ds

⏐⏐⏐⏐ ≤ C2φ2, (4.6)

where C2 =
2

(2−α)Γ(p+1) .

Theorem 17. Under the assumption (H5), the coupled system (1) is Hyers-Ulam
stable if

Cφ < 1, with C =
C1 + C2

1− (ΘfC1 +ΘhC2)
, φ = max {φ1, φ2} and (ΘfC1 +ΘhC2) ̸= 1.

Consequently, the coupled system (1.1) is generalized Hyers-Ulam stable.

Proof. Let (u, v) ∈ C ([0, 1] ,R) × C ([0, 1] ,R) be the solution of the system of
inequalities given by⏐⏐cDp

0+
u(t)− f (t, u(t), v (t))

⏐⏐ ≤ φ1, t ∈ [0, 1] , (4.7)

⏐⏐cDp
0+
v(t)− h (t, u(t), v (t))

⏐⏐ ≤ φ2, t ∈ [0, 1] .

and (µ, σ) ∈ C ([0, 1] ,R)×C ([0, 1] ,R) be the unique solution for the system of FDE:⎧⎪⎪⎨⎪⎪⎩
cDp

0+
µ(t)− f (t, µ(t), σ (t)) = 0, t ∈ [0, 1] ,

cDp
0+
σ(t)− h (t, µ(t), σ (t)) = 0, t ∈ [0, 1] ,

µ (0) = µ′(0) = 0, µ′′ (0) = αµ (1) ,
σ (0) = σ′(0) = 0, σ′′ (0) = ασ (1) ,

(4.8)

Then, by Lemma 3, we may write the solution of (4.8) as{
µ(t) =

∫ 1
0 G1(t, s)f (s, µ(s), σ (s)) ds, t ∈ [0, 1] ,

σ(t) =
∫ 1
0 G2(t, s)h (s, µ(s), σ (s)) ds, t ∈ [0, 1] .

(4.9)

Using Lemma 16 and considering
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|u(t)− µ(t)| =

⏐⏐⏐⏐u(t)− ∫ 1

0
G1(t, s)f (s, µ(s), σ (s)) ds

⏐⏐⏐⏐
≤

⏐⏐⏐⏐u(t)− ∫ 1

0
G1(t, s)f (s, u(s), v (s)) ds

⏐⏐⏐⏐
+

⏐⏐⏐⏐∫ 1

0
G1(t, s)f (s, u(s), v (s)) ds−

∫ 1

0
G1(t, s)f (s, µ(s), σ (s)) ds

⏐⏐⏐⏐
≤ C1φ1 +Θf

∫ 1

0
|G1(t, s)| [|u(s)− µ(s)|+ |v (s)− σ (s)|] ds.

From which, we have

∥u− µ∥E ≤ C1φ1 +ΘfC1 [∥u− µ∥E + ∥v − σ∥E ] . (4.10)

Similarly from the second equation of (4.8) and (4.9), we have

∥v − σ∥E ≤ C2φ2 +ΘhC2 [∥u− µ∥E + ∥v − σ∥E ] . (4.11)

Now from (4.10) and (4.11), and taking max {φ1, φ2} = φ, we have

∥u− µ∥E + ∥v − σ∥E ≤ C1φ+ C2φ+ (ΘfC1 +ΘhC2) [∥u− µ∥E + ∥v − σ∥E ]

∥(u, v)− (µ, σ)∥E×E ≤ C1 + C2

1− (ΘfC1 +ΘhC2)
φ = Cφ, where (ΘfC1 +ΘhC2) ̸= 1.

(4.12)
Thus the coupled system (1) has an Hyers-Ulam stable solution.

Example 18. Let us consider the following system of fractional boundary value
problem ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cD
5
2

0+
u(t) = t

2 + e−t
[
1+sin|u(t)|

t+10 + 1+cos|v(t)|
t+10

]
, 0 < t < 1,

cD
5
2

0+
v(t) = 1+t

2 + e−t2
[
1+cos|u(t)|

t+30 + 1+sin|v(t)|
t+30

]
, 0 < t < 1,

u (0) = u′(0) = 0, u′′ (0) = 1
2u (1) ,

v (0) = v′(0) = 0, v′′ (0) = 1
2v (1) ,

where q = p = 5
2 , α = 1

2 , by calculus we obtain

max
t∈[0,1]

∫ 1

0
|G1(t, s)| ds ≤

32

45
√
π
= C1, max

t∈[0,1]

∫ 1

0
|G2(t, s)| ds ≤

32

45
√
π
= C2.

Also Θf = 1
10 , Θh = 1

30 . Therefore, we see that

2

2− α

(
Θf

Γ (q + 1)
+

Θh

Γ (p+ 1)

)
=

4

3

16

225
√
π
=

64

675
√
π
< 1.
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Hence, in view of Theorem 13, the coupled system has a unique solution. Similarly
the conditions of Theorem 17 are easy to verify. Further as

2

2− α

(
Θf

Γ (q + 1)
+

Θh

Γ (p+ 1)

)
= C1Θf + C2Θh =

64

675
√
π
̸= 1

so in view oh Theorem 17, the condition of Hyers-Ulam stability are also satisfied.
So the solution of the coupled system (1.1) is Hyers-Ulam stable.
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