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VARIATIONS ON THE THEME EULER ANGLES

Clementina D. Mladenova and Iväılo M. Mladenov

Abstract. We discuss different parameterizations of the Lie group SO(3). The well-known

Rodrigues formula describes the three dimensional orthogonal matrices in terms of their axes and

angles of rotation. In particular, an arbitrary SO(3) element can be described by two real pa-

rameters and one angle. In [5] an alternative to Rodrigues representation in which an arbitrary

rotation is expressed in terms of two angles and one real parameter is derived. This is done via

the Cayley map applied to the canonical form of the so(3) matrices. The relationships between

the novel parameterization, the classical Rodrigues representation and the extended SO(3) vector

parameterization are established. The composition law in the new coordinates is derived for the

composition of two regular rotations. In this paper we cover all possible scenarios for the composi-

tion law, including the cases when at least one of the composed matrices is a half-turn. To do this

the extended vector-parameter composition law in SO(3) is used.

1 Introduction

Lie groups and Lie algebras are fundamental fields of the contemporary mathemat-
ics. They appear as basic notion in mathematics, mechanics, physics and other
theoretical sciences [7, 14]. Their development influence over the corresponding
application areas. The Lie groups parameterizations are used in their study and
application.

The group SO(3) is invariably connected with classical mechanics [12]. In the
kinematics of the three-dimensional space R3, the well known theorem of Chasle
that states that the rigid body motion may be described though a translation along
a line and followed by a rotation around it, plays a basic role. From the both
motions translation and rotation, the three-dimensional rotation is the nontrivial
one. The group SO(3,R) is represented as in the theoretical mechanics, so in its
applications. In this aspect, one improvement or a new look at the group leads to
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many improvements in different directions. Important problems are: the problem of
the effective recovery and interpolation of a rotation matrix in different mechanical
treatments, the problem of compositions of many rotations, and also the problem of
decomposition around two or three pre-set axes.

A significant moment in SO(3) study is the vector-parameterization [6, 10], re-
minded in the text below. Instead of the exponential map over the Lie algebra so(3)
of the antisymmetric 3×3 matrices, it is used the Cayley map. In this way a rotation
matrix is associated with a three dimensional vector of rotation along the rotation
axis and its module is equal to the tangent of the half of the rotation angle called in
our considerations ”vector-parameter”. These vectors make a group with a simple
and a nice composition law. Except the fact that the formula of the composition law
is very elegant, it is quite effective in computational aspect and it is the reason the
elementary calculations to be reduced with more than 50%. Only 12 multiplications
are necessary for a composition of two vectors, while the multiplications of two rota-
tion matrices requires 27. As you will see later in the exposition, a disadvantage of
this realization is that the half-turns can not be presented through regular vector-
parameters, and the composition law is not well defined when its denominator is
equal to zero.
The way of describing the motions of rigid bodies in the inertial space using a ro-
tating and translating of a non-inertial frame of reference is important for different
many problems appearing in many areas like vehicle and spacecraft dynamics, mech-
anisms, robotics and biomechanics. Recently, a lot of efforts have been made in order
to include also the flexibility of joints and bodies in parallel with that one established
within rigid body dynamics. In order that the transformation SO(3) matrix between
the above frames be found, a number of different sets of parameters can be used.
These sets of parameters are quite different according to the physical interpretation,
the presence of singularities, the use of trigonometric or purely algebraic functions,
the number of accompanying constraint equations, etc. The vector-parameter ap-
paratus of Lie groups of small dimension and its important applications in the field
of Analytical Mechanics can be found in Mladenova[10, 11, 12] and Mladenov[9], as
well in [13] and etc. One of the applications is the achievement of general refined
theorem about generalized Euler decomposition of a rotation matrix in [1]. The well
known Rodrigues representation [2] and the corresponding composition of two finite
rotations were introduced in 1840. In [5] an alternative to Rodrigues representation
in which an arbitrary rotation is expressed in terms of two angles and one real pa-
rameter is derived. This is done via the Cayley map applied to the canonical form
of the so(3) matrices. The relationships between the novel parameterization, the
classical Rodrigues representation and the extended SO(3) vector-parameterization
are established. The composition law in the new coordinates is derived for the
composition of two regular rotations.

Let R = R(n, θ) be the matrix of a proper (i.e., not a half-turn) three-dimensional
rotation in the axis-angle formalism. A convenient representation of R can be real-
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ized by the vector-parameter c = tan
θ

2
n, θ ̸= π

2
, i.e.,

R(c) =
2

1 + c2

⎛⎝1 + c21 − c22 − c23 c1c2 − c3 c1c3 + c2
c1c2 + c3 1− c21 + c22 − c23 c2c3 − c1
c1c3 − c2 c2c3 + c1 1− c21 − c22 + c23

⎞⎠. (1.1)

However, one has to be careful when half-turns occur because they can not be
represented by regular Gibbs vectors. If c1 and c2 represent the proper rotations
R(c1),R(c2), the composition law in the vector-parameter form is given by the
formulas

R(c3) = R(c2)R(c1), c3 = c3(c2, c1) =
c2 + c1 + c2 × c1

1− c2.c1
· (1.2)

This composition law is not well-defined when either one of the rotations is a half-
turn or when c2.c1 = 1. The vector-parameterization of the covering group SU(2)
and the corresponding composition law is presented in [3]. Also, half-turns are well
defined as the composition law there has no singularities. Within this formalism,
the natural covering map SU(2) → SO(3,R) and its sections are written and studied.
The technique developed in [3] is used in [4] to extend the composition law (1.2) in
the cases when half-turns are involved or the result of the composition is a half-turn,
i.e., when c2.c1 = 1. To do that, a half-turn R(n, π) = O(n) is represented as a
ray, i.e., by the set of all three dimensional non-zero vectors, co-linear with the axis
of rotation n. This is an alternative description of SO(3,R) and the corresponding
composition laws are more intuitive and are computationally cheaper even than the
quaternionic formalism [8] when it comes to the composition of rotations [12]. We
will use the extended composition law to derive all the other cases for the composition
law in the new representation.

2 Preliminaries

Substituting θn× where θ ∈ R∗ = R\{0} and n = (u, v, w) ∈ R3,n2 = u2+v2+w2 =
1 for C in the exponential map exp : so(3) → SO(3,R) produces

exp(θn×) = I +
sin θ

θ
θn× +

1− cos θ

θ2
θ2(n×)2

= I + sin θn× + (1− cos θ)(n⊗ nt − I) (2.1)

= cos θI + sin θn× + (1− cos θ)(n⊗ nt) = R(n, θ)

where n× =

(
0 −n3 n2
n3 0 −n1

−n2 n1 0

)
, n ⊗ nt denotes the dyadic product of n and nt.

Of course, for all n ∈ R3, exp(0n×) = exp(0) = I. Formula (2.1) is exactly the
Rodrigues formula [2] in which θ is the angle and n is the the axis of rotation. Where
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appropriate for typographical reasons we will denote the cos(·) and sin(·) functions
as c(·) and s(·). For the matrix form of the classical Rodrigues representation we
have

R(n, θ)=

⎛⎝ u2(1− cθ) + cθ uv(1− cθ)− wsθ uw(1− cθ) + vsθ
uv(1− cθ) + wsθ v2(1− cθ) + cθ vw(1− cθ)− usθ
uw(1− cθ)− vsθ vw(1− cθ) + usθ w2(1− cθ) + cθ

⎞⎠ . (2.2)

Recall [6] that the Cayley map for so(3) associates with c · J ∈ so(3) matrix

R(c) = Cayso(3)(C) = (I + C)(I − C)−1 = (I − C)−1(I + C). (2.3)

One checks immediately that (I − C)−1 = I +
1

1 + c2
C +

1

1 + c2
C2 and that (2.4)

can be expressed in the form

Cayso(3)(C) = I +
2

1 + c2
C +

2

1 + c2
C2 (2.4)

for all C(c) ∈ so(3). Substitution of ϕn× for C in (2.4) gives

Cay(ϕn×) =
1− ϕ2

1 + ϕ2
I +

2ϕ

1 + ϕ2
n× +

2ϕ2

1 + ϕ2
(n⊗ nt). (2.5)

Comparing (2.1) with (2.5), one can obtain immediately that for θ ̸= (2k + 1)π,
k ∈ Z

exp θn× = Cayso(3)(ϕn
×), ϕ = tan

θ

2
· (2.6)

Recall that the composition law [3, 6] of SO(3,R) expressed in terms of regular
vector-parameters is

R(c3) = R(c2)R(c1), c3 = ⟨c2, c1⟩SO(3,R) =
c2 + c1 + c2 × c1

1− c2.c1
(2.7)

provided that half-turns do not appear in the composition and the result itself is
not a half-turn (the latter is equivalent to c2.c1 = 1). In [4] the composition law
(2.7) is extended to cover the exhaustive list of all possible scenarios. To do this the
Cayley map Caysu(2) : su(2) → SU(2) is used to parameterize the covering group [3].
In this context, a regular rotation is denoted by R(c) whereas a half-turn about an
axis n is denoted as O(n) and represented by SU(2) vector parameter 2n of length
2. In the extended vector-parameterization of SO(3,R) any half-turn is represented
by the ray [n] consisting of all nonzero vectors proportional to n. With any rotation
R we have associated [4] the pair ζ = (c, δ) ∈ R3 × {0, 1} such that

ζ = ζ(R) =

{
(c, 1), R is proper rotation

(λn, 0), R is a half-turn, λ ∈ R∗ (2.8)

where c is the Gibbs vector-parameter if R is proper [6] while in the case when R
is a half-turn the axis n is obtained by the columns of R+ I, see [4, equation (6)].
In the latter case λn is an element of the ray [n]. Table 1 systematizes the results
from the extended composition law in SO(3,R) in vector-parameter form.
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Table 1: All scenarios for the extended composition law in SO(3,R).
Product of
rotations

Result Condition
Compound
rotation

R(c2)R(c1) c3 =
c2 + c1 + c2 × c1

1− c2.c1
, c2.c1 ̸= 1 R(c3)

[n3] = [c2 + c1 + c2 × c1], c2.c1 = 1 O(n3)

R(c2)O(n1) c3 = −n1 + c2 × n1

c2.n1
, c2.n1 ̸= 0 R(c3)

[n3] = [n1 + c2 × n1], c2.n1 = 0 O(n3)

O(n2)R(c1) c3 = −n2 + n2 × c1
n2.c1

, n2.c1 ̸= 0 R(c3)

[n3] = [n2 + n2 × c1], n2.c1 = 0 O(n3)

O(n2)O(n1) c3 = −n2 × n1

n2.n1
, n2.n1 ̸= 0 R(c3)

[n3] = [n2 × n1], n2.n1 = 0 O(n3)

2.1 An alternative of the Rodrigues parameterization

Proposition 1. ([5]) Let ϕ ∈ R and n = (u, v, w) ∈ R3 be such that n2 = 1 and

A = A(n, ϕ) = (ϕn)× = ϕn× = ϕ

⎛⎝ 0 −w v
w 0 −u

−v u 0

⎞⎠ . (2.9)

Then the canonical form of A is Ω = Ω(ϕ)

Ω =

⎛⎝0 0 0
0 0 −ϕ
0 ϕ 0

⎞⎠ = Tα,βAT−1
α,β (2.10)

where Tα,β = RY (β)RZ(α) for

α : cosα =
u√

u2 + v2
, sinα =

−v√
u2 + v2

(2.11)

β : cosβ =
√
u2 + v2, sinβ = −w

provided that n ̸= (0, 0, 1) and T0,−π/2 = RY (−
π

2
)RZ(0) otherwise.

Let R = R(n, θ) = exp(θn) is the axis-angle representation of the regular rota-

tion R, i.e., which is not a half-turn. According to equation (2.6) we have ϕ = tan
θ

2
and using the Cayley map on the canonical form of the basis element of so(3) from
Proposition 1, in [5] we derived the following representation

R = R(n, ϕ) = T−1
α,βRΩ(ϕ)Tα,β. (2.12)
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In this way we have parameterized the set of regular rotations by the following three
parameters: two angles α and β and one real number ϕ. For comparison, Rodrigues
representation (2.1) is based on two real numbers (which define the axis of rotation
n) and one angle θ.

What happens when R is a half-turn, i.e., R = (n,±π)? We must take the limit
θ → ±π, i.e., ϕ → ±∞ (for more discussion about the parameterization of half-turns

see [3, 5]). It is immediate that limϕ→±∞RΩ =
(

0 0 0
0 −1 0
0 0 −1

)
. Thus, if we want to

parameterize the whole group SO(3,R) we need to add the point at infinity to the
real parameter τ , i.e., τ ∈ S1 = R ∪ {∞}. Actually, if we take θ ∈ [0, π] we can
consider τ to be a non-negative real number, τ ∈ R+ ∪ {0} ∪ {∞}.

To obtain the analogue of Rodrigues formula we need to invert formulas (2.12).
We have

n = n(α, β) = nα,β = (u, v, w) = (cosα cosβ,− sinα cosβ,− sinβ). (2.13)

Following (2.12)[5] we are led to the final formula

R(τ, α, β) = I +
2τ

1 + τ2
n×
α,β +

2τ2

1 + τ2
(nα,β ⊗ nt

α,β − I) (2.14)

where n×
α,β =

⎛⎝ 0 sinβ − sinα cosβ
− sinβ 0 − cosα cosβ

sinα cosβ cosα cosβ 0

⎞⎠. Some simple algebraic ma-

nipulations produce the matrix R = R(α, β, τ), namely

R=
1

1+τ2

⎛⎝1−τ2+2τ2c2αc2β 2τsβ−τ2s2αc2β −2τsαcβ−τ2cαs2β
−2τsβ−τ2s2αc2β 1−τ2+2τ2c2βs2α −2τcαcβ+τ2sαs2β
2τsαcβ−τ2cαs2β 2τcαcβ+τ2sαs2β 1−τ2+2τ2s2β

⎞⎠ .(2.15)

In the case when the rotation is a half-turn, the matrix is obtained by taking the
limit τ → ∞ in the above formula (2.15) and this gives

R(α, β,∞) =

⎛⎝2 cos2 α cos2 β − 1 − sin 2α cos2 β − cosα sin 2β
− sin 2α cos2 β 2 sin2 α cos2 β − 1 sinα sin 2β
− cosα sin 2β sinα sin 2β 2 sin2 β − 1

⎞⎠. (2.16)

Let R(n, θ) be a rotation matrix which is not a half-turn, i.e., θ ̸= π. Then using
equation (2.13) and the relationship between the axis-angle form of a rotation matrix
and the vector-parameter form, the latter can be expressed in terms of α, β, τ

c = tan
θ

2
n = τ(cosα cosβ,− sinα cosβ,− sinβ). (2.17)

If τ = ∞ then the ray [n] which corresponds [4] to R(n, π) is

[n] = [(cosα cosβ,− sinα cosβ,− sinβ)]. (2.18)

Figure 1 shows the relations between the discussed parameterizations.
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c or [n] n, θ α, β, τ

[4]

c = tan
θ

2
n

eq. (2.12), τ = tan
θ

2

eq. (2.13), θ = 2arctan τ

Figure 1: Relations between the extended vector-parameterization of SO(3,R), the
classical axis-angle and the derived alternative representation.

3 The composition law in the (α, β, τ) representation

To obtain the (α, β, τ) parameters directly from a given rotational matrix R in any
representation we make use of equation (2.15) and the fact that a rotational matrix
is a half-turn if and only if it is symmetric. Calculation shows that if R ≠ Rt then

trR =
3− τ2

1 + τ2
and therefore we have also τ2 =

{ ∞ if R = Rt

3− trR
1 + trR

if R ≠ Rt.

Again from (2.15) we obtain R −Rt =
4τ

1 + τ2
n×
α,β and thus n×=n×

α,β=
R−Rt

1 + trR
·

Now α and β are determined by formulas (2.12). If however R = Rt then R is a
half-turn and the axis n can be obtained from the columns of R+ I (see [4]), from
where using (2.12) we obtain α and β.

Let us define the scalar function

ν(α1, α2, β1, β2, τ1, τ2) = 1− τ1τ2(cβ1cβ2c(α1 − α2) + sβ1sβ2). (3.1)

In [5] the case when both the composition rotations are proper rotation is given by

Proposition 2. ([5]) Let Ri = Ri(αi, βi, τi), i = 1, 2 be two regular rotations given in
the (α, β, τ) convention. Let R = R2R1 be their composition. Then R = R(α, β, τ)
in which

τ =

⎧⎨⎩
√

(1 + τ21 )(1 + τ22 )− ν2

|ν|
, if ν ̸= 0

∞, if ν = 0

α = arctan
τ1sα1cβ1 + τ2sα2cβ2 + τ1τ2(cα1cβ1sβ2 − cα2cβ2sβ1)

τ1cα1cβ1 + τ2cα2cβ2 + τ1τ2(sα2sβ1cβ2 − sα1cβ1sβ2)
(3.2)

β = εµ arcsin
τ1sβ1 + τ2sβ2 + τ1τ2cβ1cβ2s(α1 − α2)√

(1 + τ21 )(1 + τ22 )− ν2

where ν = ν(α1, α2, β1, β2, τ1, τ2) from equation (3.1) and εν = sgnν provided that
ν ̸= 0 and εν = −1 otherwise.
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Now we are going to exhaust all the possible scenarios for composition of two
SO(3,R) rotations in the (α, β, τ) formalism using extensively the systematized re-
sults from Table 1.

Proposition 3. Let R1 = R1(α1, β1,∞) is a half-turn and R2 = R2(α2, β2, τ2) is
a regular rotations. Let R = R2R1 be their composition. Then R = R(α, β, τ) in
which

τ =

⎧⎨⎩
√

(1 + τ22 )− µ2

|µ|
, if µ ̸= 0

∞, if µ = 0

α = arctan
sα1cβ1 + τ2(cα1cβ1sβ2 − cα2cβ2sβ1)

cα1cβ1 + τ2(sα2sβ1cβ2 − sα1cβ1sβ2)
(3.3)

β = εµ arcsin
sβ1 + τ2cβ2cβ1s(α1 − α2)√

1 + τ22 − µ2

and where

µ = µ(α1, α2, β1, β2, τ2) := τ2(cosβ2 cosβ1 cos(α2 − α1) + sinβ2 sinβ1) (3.4)

and εµ = sgnµ provided that µ ̸= 0 and εµ = −1 otherwise.

Proof. We associate the ray [n1] = [(cosα1 cosβ1, sinα1 cosβ1,− sinβ1)] and the
vector-parameter c2 = τ2(cosα2 cosβ2, sinα2 cosβ2,− sinβ2). Directly from the sec-
ond row in Table 1 we have that the condition for the resulting rotation to be a half
turn is c2.n1 = 0 which is equivalent to τ2(cosβ2 cosβ1 cos(α2−α1)+sinβ2 sinβ1) =
µ(τ2, α1, α2, β1, β2) = 0. Because τ2 ̸= 0 this reduces to cosβ2 cosβ1 cos(α2 − α1) +
sinβ2 sinβ1 = 0.

Let µ ̸= 0, i.e., the resulting rotation is proper and is described by the vector-

parameter c = −n1 + c2 × n1

c2.n1
(see Table 1). It is direct to calculate

τ2 = (c, c) =
1 + c2 − (c2.n1)

2

(c2.n1)2
=

1 + τ22 − µ2

µ2
, τ =

√
1 + τ22 − µ2

|µ|
· (3.5)

Now from (2.17) we get − sinβ = c3, i.e.,

−
√
1 + τ22 − µ2

|µ|
sinβ = −sinβ1 + τ2 cosβ2 cosβ1 sin (α1 − α2)

µ
(3.6)

which immediately leads to (3.4). Following (2.17) we have again − tanα = −c2
c1

provided that c1 ̸= 0. Simple substitutions lead to (3.3).
Let µ = 0, i.e., the resulting rotation is a half-turn, i.e. τ = ∞. From Table 1 we

have that R is represented by the ray [n] = [n1+c2×n1]. To find α and β we need to
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find the unit vector with the direction of the ray. We have (|n1+c2×n1|)2 = 1+ τ2

and thus from (2.18)

(cosα cosβ,− sinα cosβ,− sinβ) =
n1 + c2 × n1√

1 + τ22
· (3.7)

After expressing the second fraction in terms of τ2, α1, α2, β1 and β2 and following
similar logic as the first part of the proof we again get formulas (3.3) and (3.4).

Remark 4. Note that in the proof the case c1 = 0 should be treated separately but we

omit the details here. In this case α = ±π

2
depending on the sign of the nominator

in (3.3). The same applies for the next two propositions as well.

Proposition 5. Let R1 = R1(α1, β1, τ1) is a regular proper rotation and R2 =
R2(α2, β2,∞) is a half-turn. Let R = R2R1 be their composition. Then R =
R(α, β, τ) is generated by

τ =

⎧⎨⎩
√

(1 + τ21 )− ξ2

|ξ|
, if ξ ̸= 0

∞, if ξ = 0

α = arctan
sα2cβ2 + τ1(cα2cβ2sβ1 − cα1cβ1sβ2)

cα2cβ2 + τ1(sα2sβ1cβ2 − sα1cβ1sβ2)
(3.8)

β = εξ arcsin
sβ2 + τ2cβ2cβ1s(α1 − α2)√

1 + τ21 − ξ2

in which

ξ = ξ(α1, α2, β1, β2, τ1) := τ1(cosβ2 cosβ1 cos(α2 − α1) + sinβ2 sinβ1) (3.9)

and where εξ = sgnξ provided that ξ ̸= 0 and εξ = −1 otherwise.

Proof. Similar to the one of Proposition 3.

Proposition 6. Let R1 = R1(αi, βi,∞), i = 1, 2 are half-turns. Let R = R2R1 be
their composition. Then R = R(α, β, τ) is generated by

τ =

⎧⎨⎩
√

1− η2

|η|
, if η ̸= 0

∞, if η = 0

α = arctan
cα2cβ2sβ1 − cα1cβ1sβ2
sα2sβ1cβ2 − sα1cβ1sβ2

(3.10)

β = εη arcsin
cβ2cβ1s(α1 − α2)√

1− η2
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where

η = η(α1, α2, β1, β2) := cosβ2 cosβ1 cos(α2 − α1) + sinβ2 sinβ1 (3.11)

and εη = sgnη provided that η ̸= 0 and εη = −1 otherwise.

Proof. From the results in Table 1 we have that the condition for the resulting
rotation to be proper is n2.n1 = 0 where ni = (cosαi cosβi,− sinαi cosβi,− sinβi),
i = 1, 2 are the associated directions of the rays that represent R1 and R2. It is
clear that n2.n1 = η = η(α1, α2, β1, β2).

Let η ̸= 0, i.e., the resulting rotation is a half-turn. Then the resulting rotation

is represented by the vector-parameter c = −n2 × n1

n2.n1
expressed in αi, βi, i = 1, 2

terms in the following way

c=(
cβ1sα1sβ2− cβ2sα2sβ1, cα1cβ1sβ2−cα2cβ2sβ1, cβ1cβ2s(α1−α2)

cβ2cβ1c(α2−α1)+sβ2sβ1
) (3.12)

Simple calculation shows that c2 =
n2
1n

2
2(1− (n2.n1)

2)

(n2.n1)2
and thus τ =

√
1− η2

|η|
· Now

from (2.17) and (3.12) we get formulas (3.10) and (3.11).

In the second case, i.e., η = 0 the composite rotation R is a half-turn represented
by the ray [n2 × n1]. Thus

− n2 × n1√
1− η2

= (cosα cosβ,− sinα cosβ,− sinβ) (3.13)

and using αi, βi, i = 1, 2 expressions for the numerator of n2 × n1 from (3.12), we
obtain the rest of the cases in the Proposition.

4 Systematized results

The results formulated in Proposition 2 and Proposition 6 can be systematized
eventually as follows. In each of these cases the composition law in the (α, β, τ)
formalism is presented explicitly and additionally one has: ϵX = sgnX if X ̸= 0 and
−1 otherwise, where X = ν, µ, ξ, η and the last numbers are defined correspondingly
in (3.1), (3.4), (3.9) and (3.11).

CASE - 1 : Product of rotations:

R(α2, β2, τ2)R(α1, β1, τ1)
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Result and condition:

α = arctan
τ1sα1cβ1 + τ2sα2cβ2 + τ1τ2(cα1cβ1sβ2 − cα2cβ2sβ1)

τ1cα1cβ1 + τ2cα2cβ2 + τ1τ2(sα2sβ1cβ2 − sα1cβ1sβ2)

β = εµ arcsin
τ1sβ1 + τ2sβ2 + τ1τ2cβ1cβ2s(α1 − α2)√

(1 + τ21 )(1 + τ22 )− ν2

τ =

⎧⎨⎩
√
(1 + τ21 )(1 + τ22 )− ν2

|ν|
, if ν ̸= 0

∞, if ν = 0.

CASE - 2 : Product of rotations:

R(α2, β2, τ1)R(α1, β1,∞)

Result and condition:

α = arctan
sα1cβ1 + τ2(cα1cβ1sβ2 − cα2cβ2sβ1)

cα1cβ1 + τ2(sα2sβ1cβ2 − sα1cβ1sβ2)

β = εµ arcsin
sβ1 + τ2cβ2cβ1s(α1 − α2)√

1 + τ22 − µ2

τ =

⎧⎨⎩
√

(1 + τ22 )− µ2

|µ|
, if µ ̸= 0

∞, if µ = 0.

CASE - 3 : Product of rotations:

R(α2, β2,∞)R(α1, β1, τ1)

Result and condition:

α = arctan
sα2cβ2 + τ1(cα2cβ2sβ1 − cα1cβ1sβ2)

cα2cβ2 + τ1(sα2sβ1cβ2 − sα1cβ1sβ2)

β = εξ arcsin
sβ2 + τ2cβ2cβ1s(α1 − α2)√

1 + τ21 − ξ2

τ =

⎧⎨⎩
√
(1 + τ21 )− ξ2

|ξ|
, if ξ ̸= 0

∞, if ξ = 0.

CASE - 4 : Product of rotations:

R(α2, β2,∞)R(α1, β1,∞)
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Result and condition:

α = arctan
cα2cβ2sβ1 − cα1cβ1sβ2
sα2sβ1cβ2 − sα1cβ1sβ2

β = εη arcsin
cβ2cβ1s(α1 − α2)√

1− η2

τ =

⎧⎨⎩
√

1− η2

|η|
, if η ̸= 0

∞, if η = 0.

5 Concluding remarks

The alternative forms of the Rodrigues representation [5] developed here along the
full spectrum of cases for the composition law are not so computationally cheap and
simple as the vector-parameter formalism. However, we find that this is important
as the (α, β, τ) formalism is naturally connected to the spherical coordinates. As
such, we believe, that there are mechanical or other physical problems in which the
setting is such that the use of the alternative Rodrigues representation would be
natural and more effective. Last but not least, it is curious if there are rotational
representations related to other surfaces in classical differential geometry and in
which problems they arise.
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