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A MATHEMATICAL PRESENTATION OF
LAURENT SCHWARTZ’S DISTRIBUTIONS

Josefina Alvarez

Abstract. This is a mathematical presentation of Laurent Schwartz’s distributions.

1 Introduction

The theory of distributions, as developed by Laurent Schwartz (1915-2002), is con-
sidered a great mathematical achievement of the twentieth century. Its development
provided a rigorous setting in which formal objects, such as the so-called Dirac func-
tion, were fully understood and justified. It also augmented the bank of initial data
and solutions for partial differential equations, and further incorporated the methods
of functional analysis into the study of differential operators. Moreover, it further
developed the theory of the Fourier transform, aided by the Lebesgue integral, an-
other great development of the twentieth century. With the theory of distributions,
a whole array of new spaces appeared, which, in turn, became some of the foremost
examples in the theory of topological linear spaces.

This blend of fundamental subjects is one of the reasons why the theory of
distributions has become an integral part of mainstream mathematics. To be sure,
this has not always been the case. Lars Hörmander relates in [14] how his doctoral
advisor reproached him for using distributions in his dissertation. John Synowiec (b.
1934) reproduces in [28] the following exchange with several of his professors, during
his years as a doctoral student: “Distributions? You mean probability distributions?
-No, Laurent Schwartz distributions.- Oh ... if you are interested in that sort of thing,
you will have to talk to someone else. I don’t have much use for them in my work.”

These reticencies are long in the past. As an evidence of the position enjoyed by
the theory of distributions, we recall the words of Jeffrey Rauch (b. 1945) in [20]:
“Distribution theory has become so ubiquitous that one of the good things that a
course in partial differential equations can do is to familiarize students with it.”

As it is the case with most subjects, the theory of distributions did not spring
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full fleshed from Schwartz’s forehead. In his book [25], Schwartz gives a thorough
account of the many insights and open problems that inspired his work. The article
by János Horváth (1927-2015) [15] is another good source for such matters.

We must mention also that Schwartz’s work is not the only attempt to extend
the notion of function. The article by Rauch [20], already mentioned, ends with
an extensive bibliography that includes presentations à la Schwartz, as well as pre-
sentations that follow various other approaches. Thus, anyone wanting to become
familiarized with the theory of distributions, can choose from an array of possibilities.
Still, it might be fair to say that Schwartz’s approach has been the most successful.
In fact, for his work on distributions, Schwartz was awarded the Fields medal at
the International Congress of Mathematicians held in Cambridge, Massachusetts, in
1950.

Understanding why and how a piece of mathematics has become what is now,
requires learning about its historical development. It is surprising, and even amus-
ing, to see the origins of a topic, firmly rooted in common sense and human need,
regardless of the level of abstraction it might have achieved today. The theory of dis-
tributions is no exception. An account of its very interesting historical development
is given in the book by Jesper Lützen (b. 1951) [18].

As for the purpose of our article, it is to provide a mathematical presentation
of the theory of distributions on Rn, à la Schwartz. The emphasis is on getting our
hands “dirty”, developing many calculations in detail. Except for a few remarks,
rigorously worded, we do not dwell much on the topological structures that make
distributions what they are. To put it bluntly, our presentation chooses, whenever
possible, to do a calculation, over citing a theorem. To be sure, this is not always
possible or practical, thus showing that, for instance, the theory of topological linear
spaces has a sure footing in the foundations of Schwartz’s distribution theory.

None of the material discussed in this article is new. It can be found, in one form
or another, in Schwartz’s book [25], or in other references that will be mentioned at
the appropriate time. If any novelty can be adjudicated, it is, to the way in which
some of the topics are developed.

This article has been a long time in the making. It began as a set of lecture
notes, with some exercises, that I wrote in the seventies, as an introduction to a
course on partial differential equations, taught by Professor Alberto P. Calderón, at
the University of Buenos Aires. It was my great honor to be his doctoral student
and his teaching assistant. At one point, Professor Calderón read the notes and
judged them to be “very good” for its purpose. This is the best assurance I can
offer, because he was a master at tailoring the tools he used, to the scope of the
results he wanted.

The original notes, as well as later versions from which this article stems, have
been used in doctoral level courses, at several universities in Argentina and at New
Mexico State University in the USA.

For the purpose of preparing this article, the notes have gone through a final

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 1 – 137

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


Laurent Schwartz’s Distributions 3

rewrite, expanding on the examples as well as on the treatment of some of the
topics, and incorporating, fully explained, many of the exercises.

As for the necessary background knowledge, we make frequent use of results from
measure, integration, and function space theory, mostly at the level of, for instance,
[27]. Occasionally, we invoke results from other sources, which we cite. We also
bring in a fair amount of functional analysis, for which we give references at the
appropriate time.

The organization of the article is as follows: Before concluding this introductory
section, we go over the notation to be used. In Section 2 we collect, with proofs, a few
auxiliary results. Section 3 and Section 4 are dedicated to define and study several
spaces central to the subject. Section 5 and Section 6 deal with operations such
as differentiation, tensor product, convolution product, and multiplicative product.
The common theme of the last three sections is the Fourier transform, which we
present in the classical setting, as well as in the sense of distributions. The article
ends with a list of references.

1.1 Notation

With C we denote the space of complex numbers, while Rn denotes the n-dimensional
euclidean space consisting of n-tuples x = (x1, ..., xn) of real numbers, with the

euclidean norm |x| =
(
x21 + ...+ x2n

)1/2
.

We denote N and Nn the space of non-negative integers and the n-tuples of
non-negative integers, respectively. Given α = (α1, ..., αn) in Nn, we write |α| =
α1 + ...+ αn and α! = α1!...αn!.

If α and β belong to Nn, α ≤ β means αj ≤ βj for all j. The notation α < β,
α ≥ β, etc. should then be clear.

Given α and β in Nn, if α ≥ β we write(
α

β

)
def
=

(
α1

β1

)
...

(
αn
βn

)
,

which in turn can be written as

α!

β! (α− β)!
.

If x ∈ Rn and α ∈ Nn,

xα
def
= xα1

1 ...xαn
n .

Given x, ξ ∈ Rn, xξ denotes the scalar product x1ξ1 + ...+ xnξn.

When α ∈ Nn, ∂α is the partial derivative

∂α1
x1 ...∂

αn
xn .
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4 Josefina Alvarez

If necessary, we indicate the variable on which the partial derivative is calculated
as ∂αx . If it is important to recognize the order in which the partial derivatives are
performed, we write, for instance,

∂xj1 ...∂xjm .

In the case of derivatives in one variable, we might write d
dx or f ′, dk

dxk
or f (k),

etc..

If a space is generically considered on Rn, we just write, L1, D, S, etc. If the
space is considered in a different context, such as R or a subset U of Rn, etc., we
indicate it as L1 (R), D (U), etc..

Depending on the particular situation, a letter might denote a number, or a
function, or a derivative. The specific meaning will always be clear.

The domain of a sequence or the summation range of a series will be, for instance,
l ≥ 1. The meaning of r ≥ 1 or r > 1, etc., should be clear. If we want to indicate
m ≥ 1 and m ∈ N, we will write m = 0, 1, ... or m = 1, 2, ....

That a parameter, say C, or j, or δ, depends on other parameters, say n,m, ε,
will be denoted Cn,m, jm, δε, etc.

As usual, the letter C, with or without subindexes attached, will indicate a
positive constant that might be different at different occurrences.

Other notation will be explained at the appropriate time.

2 Preliminaries

Lemma 1. (multinomial expansion)Given x ∈ Rn for n ≥ 2, and m ≥ 1,

|x|2m =
∑

|α|=m

(
m

α1 + ...+ αn−1

)(
α1 + ...+ αn−1

α1 + ...+ αn−2

)
...

(
α1 + α2

α1

)
x2α. (2.1)

The expansion (2.1) has
(
m+n−1

m

)
terms.

Proof. To prove (2.1) we will use induction on n. For n = 2, (2.1) becomes the
binomial expansion (

x21 + x22
)m

=
m∑
j=0

(
m

j

)
x2j1 x

2(m−j)
2 . (2.2)

So, if we assume (2.1) to be true for some n ≥ 2, we can write, with β′ =
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Laurent Schwartz’s Distributions 5

(β1, ..., βn), β = (β1, ..., βn+1), x
′ = (x1, ...xn) and x = (x1, ...xn+1),(⏐⏐x′⏐⏐2 + x2n+1

)m
=

m∑
j=0

(
m

j

) ⏐⏐x′⏐⏐2j x2(m−j)
n+1 (2.3)

=

m∑
j=0

(
m

j

) ∑
|β′|=j

(
j

β1 + ...+ βn−1

)(
β1 + ...+ βn−1

β1 + ...βn−2

)
...

×
(
β1 + β2
β1

)
x′2β

′
x
2(m−j)
n+1

=
∑

|β|=m

(
m

β1 + ...+ βn

)(
β1 + ...+ βn
β1 + ...+ βn−1

)
...

×
(
β1 + β2
β1

)
x2β.

As for the number of terms in the expansion, for n = 2, (2.2) shows that we
have m + 1 =

(
m+1
m

)
terms. If we assume that, for n, there are

(
m+n−1

m

)
terms in

the multinomial expansion (2.1), according to (2.3) there will be

m∑
j=0

(
j + n− 1

j

)
terms for n+ 1. That is to say, if indeed we have

(
n+m
m

)
terms for n+ 1, the equality

m∑
j=0

(
j + n− 1

j

)
=

(
m+ n

m

)
(2.4)

must be true for each m ≥ 1.
We prove (2.4) by induction on m.
If m = 1, the left-hand side of (2.4) is

(
n−1
0

)
+
(
n
1

)
= 1 + n, while the right-hand

side is
(
n+1
1

)
= n+ 1.

If we assume that (2.4) holds for some m ≥ 1,

m+1∑
j=0

(
j + n− 1

j

)
=

m∑
j=0

(
j + n− 1

j

)
+

(
m+ n

m+ 1

)

=

(
m+ n

m

)
+

(
m+ n

m+ 1

)
=

(
m+ 1 + n

m+ 1

)
, (2.5)

which is the right-hand side of (2.4), with m+ 1 instead of m.
Let us observe that in (2.5) we have used the identity(

p

q − 1

)
+

(
p

q

)
=

(
p+ 1

q

)
, (2.6)
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which is fairly simple to verify.
This completes the proof of the lemma.

Corollary 2. Given x ∈ Rn for n ≥ 2, and m ≥ 1,(
1 + |x|2

)m
=

m∑
|α|=0

(
m

α1 + ...+ αn

)(
α1 + ...+ αn
α1 + ...+ αn−1

)
...

(
α1 + α2

α1

)
x2α. (2.7)

The expansion (2.7) has
(
m+n
m

)
terms .

Proof. We begin by writing (2.1) with y ∈ Rn+1 and β ∈ Nn+1, for n ≥ 2 and m ≥ 1.

|y|2m =
∑

|β|=m

(
m

β1 + ...+ βn

)(
β1 + ...+ βn
β1 + ...+ βn−1

)(
β1 + β2
β1

)
y′2β

′
x
βn+1

n+1 , (2.8)

where y′ = (y1, ..., yn) and, as in Lemma 1, β′ = (β1, ..., βn).
If we take yn+1 = 1 in (2.8), we have(

1 +
⏐⏐y′⏐⏐2)m =

m∑
|β|=0

(
m

β1 + ...+ βn

)(
β1 + ...+ βn
β1 + ...+ βn−1

)(
β1 + β2
β1

)
y′2β

′
.

To obtain (2.7) we only have to write x instead of y′ and α instead of β′.
The number of terms in (2.7) equals the number of terms in the sum

∑
0≤j≤m

∑
|α|=j .

The work done in Lemma 1 shows that this sum is
∑

0≤j≤m
(
j+n−1

j

)
, which, accord-

ing to (2.4), equals
(
m+n
m

)
.

This completes the proof of the corollary.

Remark 3. The coefficients in (2.1), called multinomial coefficients, can be written
in various ways. For instance,(

m

α1 + ...+ αn−1

)(
α1 + ...+ αn−1

α1 + ...+ αn−2

)
...

(
α1 + α2

α1

)
=

m!

αn! (α1 + ...+ αn−1)!

(α1 + ...+ αn−1)!

αn−1! (α1 + ...+ αn−2)!
...

(α1 + α2)!

α2!α1!

=
m!

α1!α2!...αn−1!αn!
=
m!

α!
. (2.9)

Likewise, here is a shorter formula for the coefficients in (2.7):(
m

α1 + ...+ αn

)(
α1 + ...+ αn
α1 + ...+ αn−1

)
...

(
α1 + α2

α1

)
=

m!

(m− α1 − ...− αn)! (α1 + ...+ αn)!

(α1 + ...+ αn)!

αn! (α1 + ...+ αn−1)!
...

(α1 + α2)!

α1!α2!

=
m!

(m− α1 − ...− αn)!α1!α2!...αn!
. (2.10)

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 1 – 137

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


Laurent Schwartz’s Distributions 7

If we denote Cm,α the expression in (2.9) or (2.10), it is clear that, in each case,
there is a constant Cm,n > 0 so that

supCm,α = Cm,n,

where the supremum is taken over the appropriate values of α. In most cases, this
bound and the number of terms in the expansion is all that matters.

Lemma 4. (Leibniz’s rule) Given functions ϕ and ψ continuous with continuous
derivatives of order ≤ m for some m ≥ 1, we have, for α ∈ Nn with |α| ≤ m,

∂α (ϕψ) =

α∑
β=0

(
α

β

)(
∂βϕ

)(
∂α−βψ

)
. (2.11)

There are (α1 + 1) ... (αn + 1) terms in (2.11).

Proof. When |α| = 1, we can write ∂α = ∂xj , for some 1 ≤ j ≤ n. So, (2.11)
becomes

∂α (ϕψ) = ∂xj (ϕψ) =
(
∂xjϕ

)
ψ + ϕ

(
∂xjψ

)
,

which is the rule for taking one derivative of a product.
If m ≥ 2, we assume (2.11) to be true for |α| = k with k < m. We can write, for

some 1 ≤ j ≤ n,

∂xj∂
α (ϕψ) = ∂xj

α∑
β=0

(
α

β

)(
∂βϕ

)(
∂α−βψ

)
=

α∑
β=0

(
α

β

)(
∂xj∂

βϕ
)(

∂α−βψ
)

+
α∑
β=0

(
α

β

)(
∂βϕ

)(
∂xj∂

α−βψ
)

.(2.12)

Let us denote α′ and β′ the (n− 1)-tuples that result from removing αj and βj
from α and β, respectively. Then, we can write (2.12) as

α′∑
β′=0

(
α′

β′

) αj∑
βj=0

(
αj
βj

)(
∂
βj+1
xj ∂β

′
ϕ
)(

∂
αj−βj
xj ∂α

′−β′
ψ
)

+

α′∑
β′=0

(
α′

β′

) αj∑
βj=0

(
αj
βj

)(
∂
βj
xj ∂

β′
ϕ
)(

∂
αj−βj+1
xj ∂α

′−β′
ψ
)

= (1) + (2) .

If we write βj + 1 = γj

(1) =

α′∑
β′=0

(
α′

β′

) αj+1∑
γj=1

(
αj

γj − 1

)(
∂
γj
xj∂

β′
ϕ
)(

∂
αj+1−γj
xj ∂α

′−β′
ψ
)

. (2.13)
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So, substituting βj for γj in (2.13), we have

(1) + (2) =

α′∑
β′=0

(
α′

β′

)(
αj
αj

)(
∂

αj+1

xj ∂β
′
ϕ
)(

∂α
′−β′

ψ
)

+
α′∑
β′=0

(
α′

β′

)(
αj
0

)(
∂β

′
ϕ
)(

∂
αj+1
xj ∂α

′−β′
ψ
)

+
α′∑
β′=0

(
α′

β′

) αj∑
βj=1

[(
αj

βj − 1

)
+

(
αj
βj

)](
∂
βj
xj ∂

β′
ϕ
)(

∂
αj+1−βj
xj ∂α

′−β′
ψ
)

.

According to (2.6), (
αj

βj − 1

)
+

(
αj
βj

)
=

(
αj + 1

βj

)
.

So

∂xj∂
α (ϕψ) =

α′∑
β′=0

(
α′

β′

) αj+1∑
βj=0

(
αj + 1

βj

)(
∂
βj
xj ∂

β′
ϕ
)(

∂
αj+1−βj
xj ∂α

′−β′
ψ
)

.

As for the number of terms in (2.11), we only need to remember that the sum∑
0≤β≤α means

∑
0≤β1≤α1

...
∑

0≤βn≤αn
. Thus, the number of terms in the expansion

is (α1 + 1) ... (αn + 1).

This completes the proof of the lemma.

Remark 5. Let us observe that if |α| ≤ m for some m ≥ 1,

sup
0≤β≤α

(
α

β

)
= Cm,n,

for some constant Cm,n > 0, independent of α and β. As in the case of the multi-
nomial expansion, an estimate of the coefficients and the number of terms in the
expansion is, often, all that is needed.

The next two results not only are well known, but also appear in several references
(see, for instance, [27], p. 100, Theorem 1 and Theorem 3). Nevertheless, we are
going to invoke them often, so it will be convenient to include them in this section,
in a suitable form.

Theorem 6. (continuity of an integral depending on a parameter) Let (S,Σ, µ) be
a measure space and let f : Rn × S → C be a function satisfying the following
conditions:
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1. f (x, ·) : S → C is µ-integrable for each x ∈ Rn.

2. f (·, s) : Rn → C is continuous at x0 ∈ Rn, for each s ∈ S.

3. There is a µ-integrable function g : S → [0,∞) so that |f (x, s)| ≤ g (s) for all
x ∈ Rn, s ∈ S.

Then, the function F (x) =
∫
S f (x, s) dµ (s) is continuous at x0.

Proof. Let {xj}j≥1 be a sequence in Rn converging to x0 as j → ∞. According to
2), f (xj , s) must converge to f (x0, s) in C as j → ∞ for every s ∈ S. Moreover,
according to 3), |f (xj , s)| ≤ g (s) for every j ≥ 1. Then, Lebesgue’s dominated
convergence theorem implies that F (xj) converges to F (x0) in C as j →∞. Thus,
the function F is continuous at x0.

This completes the proof of the theorem.

Remark 7. The continuity of a function at a point is a local property. Therefore,
it would suffice to assume in 1) and 3) of Theorem 6 that the assumption holds for
all x in a particular open neighborhood of x0.

Theorem 8. (derivative of an integral depending on a parameter) Let (S,Σ, µ) be
a measure space and let f : Rn × S → C be a function satisfying the following
conditions:

1. f (x, ·) : S → C is µ-integrable for each x ∈ Rn.

2.
(
∂xjf

)
(x, s) exists for some 1 ≤ j ≤ n and for each s ∈ S.

3. There is a µ-integrable function g : S → [0,∞) so that
⏐⏐(∂xjf) (x, s)

⏐⏐ ≤ g (s)
for all x ∈ Rn, s ∈ S.

Then,
(
∂xjF

)
(x) exists and

(
∂xjF

)
(x) =

∫
S

(
∂xjf

)
(x, s) dµ (s) ,

for x ∈ Rn.

Proof. First of all, the function f can be written as f1 + if2, where the functions f1
and f2 are real-valued and satisfy conditions 1), 2) and 3). Furthermore, to simplify
the notation, we assume that j = 1 and we write, if n > 1, x′ = (x2, ..., xn).

Now, for x = (x1,..., xn) ∈ Rn fixed, we consider every sequence {ak}k≥1 con-
verging to x1 in R as k →∞, for which ak ̸= x1 for all k ≥ 1. Then, there is

lim
k→∞

f (ak, x
′, s)− f (x, s)

ak − x1

= (∂x1f) (x, s) ,
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for each s ∈ S. Moreover, the function

f (ak, x
′, s)− f (x, s)

ak − x1

is a µ-integrable function of s ∈ S, for ak and x fixed. Thus, for each s ∈ S and
x′ ∈ Rn−1 fixed, the mean value theorem tells us that there are real numbers yk,x1
and zk,x1 between ak and x1, so that

f (ak, x
′, s)− f (x, s)

ak − x1
= (∂x1f1)

(
yk,x1 , x

′, s
)

+ i (∂x1f2)
(
zk,x1 , x

′, s
)

.

Therefore, according to 3),⏐⏐⏐⏐f (ak, x
′, s)− f (x, s)

ak − x1

⏐⏐⏐⏐ ≤ 2g (s) ,

for each s ∈ S and k ≥ 1. Then, Lebesgue’s dominated convergence theorem implies
that there is

lim
k→∞

∫
S

f (ak, x
′, s)− f (x, s)

ak − x1
dµ (s) =

∫
S

(∂x1f) (x, s) dµ (s) .

On the other hand,∫
S

f (ak, x
′, s)− f (x, s)

ak − x1
dµ (s) =

F (ak, x
′)− F (x)

ak − x1
.

Thus, (∂x1F ) (x) exists and

(∂x1F ) (x) =

∫
S

(∂x1f) (x, s) dµ (s) .

This completes the proof of the theorem.

Remark 9. As with continuity, the existence of a partial derivative at a point is a
local property. So, it would be enough to assume in 1) and 3) of Theorem 8 that
the statement holds for all x in a particular open subset of Rn.

Remark 10. In both, Theorem 6 and Theorem 8, it can be assumed that the
function f is defined on U × S, for some U ⊆ Rn open. Still, in most cases, we will
be working with U = Rn.

When the measure space in Theorems 6 and 8 is the Lebesgue measure space on
Rn, we will write dx or dy, etc., as appropriate, instead of dµ (s).

We are now quite ready to go onto our presentation on distributions.
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Laurent Schwartz’s Distributions 11

3 The spaces D and D′

We begin with a definition.

Definition 11. Let ϕ : Rn → C be a function. The support of ϕ, denoted supp (ϕ),
is defined as the closure, in Rn, of the set

{x ∈ Rn : ϕ (x) ̸= 0} .

That is, x /∈ supp (ϕ) exactly when ϕ is zero on an open neighborhood of x.

Example 12. 1. The support of the sine function is R, since the sine function
is zero only on isolated points.

2. The support of the characteristic function of Q, the set of rational numbers,
is also R.

3. The support of the function

H1 (x) =

{
1 if x ≥ 0
0 if x < 0

,

is the set {x ∈ R : x ≥ 0}. This function is the one-dimensional Heaviside
function, named after the electrical engineer and theoretical physicist Oliver
Heaviside (1850-1925).

4. Given functions f, g : Rn → C,

supp (fg) ⊆ supp (f)
⋂
supp (g) .

In fact, let us assume that x0 does not belong to supp (f). Then, there is an
open neighborhood U of x0 where f is identically zero. Therefore, f (x) g (x) =
0 for all x ∈ U , which means, by definition, that x0 /∈ supp (fg).

Let us observe that the inclusion can be strict. For instance if χQ, χI de-
note, respectively, the characteristic function of the rational numbers and the
characteristic function of the irrational numbers, supp (χQχI) = ∅, while

supp (χQ)
⋂
supp (χI) = Rn

⋂
Rn = Rn.

Definition 13. A function ϕ : Rn → C is called smooth if it is continuous and it
has continuous partial derivatives of all orders.

Definition 14. Given a compact set K ⊆ Rn, we denote

DK= {ϕ : Rn → C : ϕ is smooth and supp (ϕ) ⊆ K} .

We also denote
D =

⋃
{DK : K ⊆ Rn compact} .
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12 Josefina Alvarez

Remark 15. It follows from the definitions that DK and D are complex linear
spaces.

The functions in D are called test functions. It should be clear that D ⊆ Lp for
1 ≤ p ≤ ∞.

Example 16. The function ρ : Rn → R defined as

ρ (x) =

{
e
− 1

1−|x|2 if |x| < 1
0 if |x| ≥ 1

(3.1)

belongs to D and supp (ρ) = {x ∈ Rn : |x| ≤ 1}.
The function ρ is clearly continuous when |x| < 1 and when |x| > 1. If we fix

x0 ∈ Rn with |x0| = 1 and |x| < 1, there is

lim
x→x0

e
− 1

1−|x|2 = 0.

Thus, ρ is continuous everywhere. It should be clear that ρ has continuous
derivatives of all orders when |x| < 1 and when |x| > 1. It only remains to show
that every derivative exists and is continuous at x0 for |x0| = 1.

We claim that, for x ∈ Rn with |x| < 1 and for each α ∈ Nn, |α| ≥ 1,

(∂αρ) (x) = e(|x|
2−1)

−1 (
|x|2 − 1

)−|α|
P

(
x;
(
|x|2 − 1

)−1
)

, (3.2)

where P is a polynomial function, of degree |α|, in the variable
(
|x|2 − 1

)−1
, with

coefficients that are polynomial functions in the variable x, of degree ≤ |α|. Let
us observe that the notation ∂α assumes a particular order in which the partial
derivatives are taken. In all fairness, (3.2) should be stated in terms of a completely
arbitrary derivative, ∂xr1 ,...,xrk , for 1 ≤ r1, ..., rk,≤ n. Nevertheless, to keep the
formulas as neat as possible, we will use the notation ∂α. So, let us prove (3.2) by
induction on |α|. If |α| = 1,

(
∂xjρ

)
(x) = e(|x|

2−1)
−1 (
|x|2 − 1

)−2
2xj = e(|x|

2−1)
−1 (
|x|2 − 1

)−1
(−2)xj

(
|x|2 − 1

)−1
.

Thus, (3.2) holds for |α| = 1. If we assume (3.2) to be true for |α| = m for some
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Laurent Schwartz’s Distributions 13

m ≥ 1,

(
∂xj (∂αρ)

)
(x) = e(|x|

2−1)
−1

(−1)
(
|x|2 − 1

)−2
2xj

((
|x|2 − 1

)−1
)|α|

P

(
x;
(
|x|2 − 1

)−1
)

+e(|x|
2−1)

−1

|α|
((
|x|2 − 1

))−|α|−1
2xjP

(
x;
(
|x|2 − 1

)−1
)

+e(|x|
2−1)

−1 (
|x|2 − 1

)−|α|

×
[(
∂xjP

)(
x;
(
|x|2 − 1

)−1
)

+ P ′
(
x;
(
|x|2 − 1

)−1
)

(−1)
(
|x|2 − 1

)−2
2xj

]
= e(|x|

2−1)
−1 (
|x|2 − 1

)−|α|−1

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2xj

(
|x|2 − 1

)−1
P

(
x;
(
|x|2 − 1

)−1
)

+2 |α|xjP
(
x;
(
|x|2 − 1

)−1
)

+

[(
∂xjP

)(
x;
(
|x|2 − 1

)−1
)(
|x|2 − 1

)
− 2xj

(
|x|2 − 1

)−1
P ′
(
x;
(
|x|2 − 1

)−1
)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which is (3.2) for ∂xj∂
α.

Next, if we fix x0 ∈ Rn with |x0| = 1 and if |x| < 1, it should be clear that there
is

lim
x→x0

(∂αρ) (x) = 0,

for all α ∈ Nn.

Finally, we show, by induction on |α|, that (∂αρ) (y) exists and it is equal to
zero, for all |y| = 1 and for all α ∈ Nn, |α| ≥ 1. The same warning about the use of
the notation ∂α applies here.

For y ∈ Rn with |y| = 1 fixed and for x1 < 1, there is

lim
x1→y1

ρ (x1, y
′)

x1 − y1
= lim

x1→y1

e(x
2
1+|y′|2−1)

−1

x1 − y1
= 0,

so (∂x1ρ) (0) = 0. The same holds true for
(
∂xjρ

)
(0).

With the same notation, we assume now that (∂αρ) (y) exists and it is equal
to zero, for all |y| = 1 and for all α ∈ Nn, |α| ≤ m for some m ≥ 1 fixed. Then,
according to (3.2),

(∂αρ)
(
x1, y

′) = e(x
2
1+|y′|2−1)

−1 (
x21 +

⏐⏐y′⏐⏐2 − 1
)−|α|

P

(
x;
(
x21 +

⏐⏐y′⏐⏐2 − 1
)−1

)
,
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14 Josefina Alvarez

so, there is

lim
x1→y1

(∂αρ) (x1, y
′)

x1 − y1
= 0.

Thus, the space D contains non-identically zero functions, which is a surprising
fact, given the constrains placed by Definition 14.

Remark 17. For each K ⊆ Rn compact, the space DK is a Fréchet space (see, for
instance, [26], p. 24, Example 27; p. 35). That is to say, DK is a complete linear
metric space, where the metric is derived from the countable family of norms

∥ϕ∥m = sup
|α|≤m

sup
x∈Rn

|∂αϕ (x)| ,

using the definition

d (ϕ,ψ) =
∑
m≥0

1

2m
∥ϕ− ψ∥m

1 + ∥ϕ− ψ∥m
.

Thus, a sequence {ϕj}j≥1 converges to ϕ in DK as j → ∞ exactly when, for
each α ∈ Nn, the sequence {∂αϕj}j≥1 converges to ∂αϕ uniformly on Rn as j →∞.

We define in D a strong topology as the inductive limit topology of the spaces DK
for K ⊆ Rn compact. With this topology, the linear space D becomes a complete,
locally convex and Hausdorff topological linear space (see, for instance, [26], Chapter
III, Section 22).

Under the inductive limit topology, a sequence {ϕj}j≥1 converges to ϕ in D as
j → ∞ exactly when there is a compact set K ⊆ Rn so that ϕj , ϕ ∈ DK for all
j ≥ 1 and {ϕj}j≥1 converges to ϕ in DK as j → ∞ (see, for instance,[26], p. 274,
Example 14). Moreover, a linear functional T : D →C is continuous if, and only if,
T : DK→C is continuous for each K ⊆ Rn compact (see, for instance, [26], p. 268,
Corollary 2).

As we pointed out in Remark 15, the space D is included in Lp for 1 ≤ p ≤ ∞.
Furthermore,

Lemma 18. The inclusion of D in Lp is continuous for 1 ≤ p ≤ ∞.

Proof. If {ϕj}j≥1 converges to ϕ in D as j →∞, we have the estimates:

∥ϕj − ϕ∥Lp ≤
(

sup
x∈Rn

|ϕj (x)− ϕ (x)|
)

(meas (K))1/p ,

for some K ⊆ Rn compact and all 1 ≤ p <∞, and

∥ϕj − ϕ∥L∞ = sup
x∈Rn

|ϕj (x)− ϕ (x)| .

This completes the proof of the lemma.
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Laurent Schwartz’s Distributions 15

Definition 19. We denote D′ the topological dual of D. That is to say, D′ is
the complex linear space consisting of all the linear and continuous functionals T :
D →C. Such functionals are called distributions.

The action of a distribution T on a test function ϕ is denoted T (ϕ) or (T, ϕ).
When it is important to indicate the duality, we will write (T, ϕ)D′,D.

All we have said in Remark 17, allows us to rephrase Definition 19 in the following
equivalent way:

Definition 20. A map T : D →C is called a distribution if it is linear and (T, ϕj)→
(T, ϕ) in C as j →∞, whenever ϕj → ϕ in D as j →∞.

Let us repeat that a sequence {ϕj}j≥1 converges to ϕ in D as j → ∞ exactly
when there is a compact set K ⊆ Rn so that ϕj , ϕ ∈ DK for all j ≥ 1 and {ϕj}j≥1
converges to ϕ in DK as j →∞.

That is to say, in spite of the topological complexity of D, which is a non-
metrizable space ([25], p. 65; [26], Chapter I, Section 3), it behaves in many ways
as it were a metric space, where continuity can be checked using sequences. This is
a very convenient characteristic of the space D, which we will use quite often. For
an exposition of the topological structure of D, which fills in the details left out in
Remark 17, see ([25], Chapter III, Section 1).

Remark 21. Given K1 ⊆ K2 compact subsets of Rn, it should be clear that the
identity map from DK1 into DK2 is continuous. Furthermore, DK1 is a closed linear
subspace of DK2 .

We now discuss the strong and the weak topologies in D′, as well as the weak
topology in D.

Remark 22. In the inductive limit topology of D, a subset B is bounded when it
satisfies the following conditions ([25], Chapter III, Section 2):

1. B ⊆ DK for some K ⊆ Rn compact.

2. For each α ∈ Nn,

sup
ϕ∈B

sup
x∈Rn

|∂αϕ (x)| <∞.

Thus, B is a bounded subset of D exactly when B is a bounded subset of the
Fréchet space DK , for some K ⊆ Rn compact.

Furthermore ([25]. p. 69, Theorem VI), a subset B of D is bounded if, and only
if, for each T ∈ D′,

sup
ϕ∈B
|T (ϕ)| <∞.
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16 Josefina Alvarez

The strong topology in D′ is defined by the uncountable family of semi-norms
([25], p. 71)

∥T∥D′,B = sup
ϕ∈B
|T (ϕ)| ,

where B is every bounded subset of D. With this topology, D′ is a complete, locally
convex and non-metrizable topological linear space ([25], p. 71). Moreover, the
space D with the inductive limit topology is the topological dual of the space D′

with the strong topology ([25], p. 75, Theorem XIV).
By definition, a set B′ ⊆ D′ is bounded in the strong topology of D′ exactly when

sup
T∈B′

∥T∥D′,B = sup
T∈B′

sup
ϕ∈B
|T (ϕ)| <∞,

for each B ⊆ D bounded. Theorem IX in ([25], p. 72) provides necessary conditions
and sufficient conditions for B′ ⊆ D′ to be bounded. For example, if

sup
T∈B′

|T (ϕ)| <∞

for each ϕ ∈ D, then B′ is bounded.
From the definition of the semi-norms ∥·∥D′,B, it should be clear that a sequence

{Tj}j≥1converges to zero in the strong topology of D′ as j → ∞ if, and only if,
Tj (ϕ) → 0 as j → ∞, uniformly on B for each bounded subset B of D. This form
of convergence is called the strong convergence.

As for the weak topology in D, we can say that it is generated by the family{
T−1 (U) : T ∈ D′, U ⊆ C open

}
. (3.3)

In other words, a set U ⊆ D is open in the weak topology if, and only if, it can
be written as an arbitrary union of finite intersections of sets of the form (3.3). That
is to say, it is the smallest topology that makes each T continuous. By definition,
every T ∈ D′ is continuous in the strong topology of D, which is finer, or has more
sets, than the weak topology.

A sequence {ϕj}j≥1 in D converges to zero weakly as j → ∞ exactly when

T (ϕj)→ 0 as j →∞, for each T ∈ D′. Furthermore, ([25], p. 70), in the bounded
subsets of D, the strong topology of D coincides with the weak topology of D. Since
a bounded subset of D is a subset of DK for some K ⊆ Rn compact, we conclude that
convergent sequences in the weak topology of D are exactly the convergent sequences
in the inductive limit, or strong, topology of D. Likewise, a Cauchy sequence in the
weak topology of D is also a Cauchy sequence in the strong topology of D. In other
words ([25], p. 70), we can say the following:

Given a sequence {ϕj}j≥1 ⊆ D, suppose that the sequence {T (ϕj)}j≥1 converges

in C, for each T ∈ D′. Then there exists ϕ ∈ D such that T (ϕj) → T (ϕ) in C as
j →∞ and ϕj → ϕ as j →∞ in the strong topology of D.
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Laurent Schwartz’s Distributions 17

Let us recall that a functional defined on a topological linear space T is bounded,
by definition, if it maps bounded subsets of T into bounded subsets of C. As on a
normed linear space, linear functionals defined on a Fréchet space are continuous if,
and only if, they are bounded. A linear functional T : D →C is continuous, that is
to say it is a distribution, exactly when is continuous from DK to C for each K ⊆ Rn
compact. Thus, we conclude that a linear functional T : D →C is a distribution if,
and only if, it is bounded.

Since the spaces D and D′ with their strong topologies are reflexive, we can use
the functions in D, to construct the weak topology in D′. This topology will be
generated by the subsets of D′ defined as{

ϕ−1 (U) : ϕ ∈ D, U ⊆ C open
}

.

So, a sequence {Tj}j≥1 converges to zero weakly in D′ as j → ∞ exactly when
Tj (ϕ)→ 0 as j →∞, for each ϕ ∈ D.

The strong topology and the weak topology of D′ coincide in the subsets of D′

that are bounded in the strong topology of D′ ([25], p. 74). Moreover, we have the
following result ([25], p. 74):

Given a sequence {Tj}j≥1 ⊆ D
′, suppose that the sequence {Tj (ϕ)}j≥1 converges

in C, for each ϕ ∈ D. Then, the linear functional T : D →C defined as T (ϕ) =
limj→∞ Tj (ϕ) is a distribution and Tj →j→∞ T in the strong topology of D′.

Finally, if we view (T, ϕ) as a bilinear functional on D′ ×D,

sup
T∈B′,ϕ∈B

|(T, ϕ)| <∞,

for each bounded subset B of D and for each bounded subset B′ of D′ ([25], p.
73). Furthermore, if {Tj}j≥1 converges to zero in the strong topology of D′ and
{ϕj}j≥1converges to zero in the strong topology of D, then (Tj , ϕj)→j→∞ 0 in C.

Although some of these results are true for filters and nets ([25], pp. 66, 70, 71,
73, 74), in our presentation we will only use sequences.

This concludes the overview of topological matters concerning the spaces D and
D′. It is amply sufficient for our purposes. Still, much has been left unsaid, for
which we refer to [25].

It is time now to discuss our first examples of distributions.

Example 23. 1. Let us fix p with 1 ≤ p ≤ ∞ and let

Lploc = {f : Rn → C : χKf ∈ Lp for each K ⊆ Rn compact} ,

where χK denotes the characteristic function of K. It should be clear that
Lploc is a complex linear space.

We consider in Lploc the topology defined by the family of semi-norms

∥f∥p,K = ∥χKf∥Lp ,
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18 Josefina Alvarez

for K ⊆ Rn compact.

Since it suffices to use a countable covering of Rn by compact subsets, Lploc is
a Fréchet space. In this space, a sequence {fj}j≥1 converges to f as j → ∞
exactly when {χKfj}j≥1 converges to χKf in Lp as j →∞, for each K ⊆ Rn
compact. Moreover, if 1 ≤ p1 < p2 ≤ ∞, we have the continuous inclusion
Lp2loc ⊆ L

p1
loc.

Indeed, given f ∈ Lp2loc and K ⊆ Rn compact, if p2 =∞,

∥χKf∥Lp1 =

(∫
Rn

|f |p1 χKdx
) 1

p1

≤ (meas (K))
1
p1 ∥χKf∥L∞ ,

while if p2 is finite,

∥χKf∥Lp1 =

(∫
Rn

|f |p1 χKχKdx
) 1

p1

≤
(1)

(∫
Rn

|f |p2 χKdx
) 1

p2

(∫
Rn

χKdx

) 1
p1

(
1− p1

p2

)

= meas (K)
1
p1

− 1
p2 ∥χKf∥Lp2 .

We have used in (1) Hölder’s inequality with the conjugate exponents p2/p1
and p2/ (p2 − p1).
Given f ∈ Lploc and ϕ ∈ D, Hölder’s inequality tells us that fϕ =

(
fχsupp(ϕ)

)
ϕ

is an integrable function. Thus, we can consider the linear map Tf : D →C
defined as

Tf (ϕ) =

∫
Rn

f (x)ϕ (x) dx.

We claim that Tf is a distribution. Since Tf is linear, to prove continuity, it
suffices to use sequences converging to zero. Indeed, if we fix K ⊆ Rn compact
and if {ϕj}j≥1 converges to zero in DK as j →∞, we can write,

|Tf (ϕj)| ≤
∫
K
|f (x)| |ϕj (x)| dx

≤
(1)
∥f∥p,K ∥ϕj∥Lq

≤ (meas (K))1/q ∥f∥p,K sup
x∈Rn

|ϕj (x)| →
j→∞

0.

We have used in (1) Hölder’s inequality.

Conversely, we say that a distribution T is a function, if there exists f ∈ Lploc,
for some 1 ≤ p ≤ ∞, such that T = Tf . That is,

(T, ϕ) = (Tf , ϕ) =

∫
Rn

f (x)ϕ (x) dx,
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Laurent Schwartz’s Distributions 19

for all ϕ ∈ D.

Due to the continuous inclusion Lp2loc ⊆ Lp1loc for 1 ≤ p1 < p2 ≤ ∞, we will
generally assume that f ∈ L1

loc.

Thus, when we say that distributions extend the concept of function, we always
mean locally integrable functions.

Strictly speaking, the elements of Lp, Lploc and other spaces to be considered,
are classes under the equivalence relation f ∼ g if f and g are equal except on a
set of Lebesgue measure zero. Nevertheless, for the purpose of our exposition,
we will always work with functions, that is with class representatives. In
every instance in which we consider distributions of the form Tf , it will be
straightforward to verify that the matter at hand remains unchanged if we
pick a different representative.

2. Given a ∈ Rn, we consider the linear map δa : D →C defined as

δa (ϕ) = ϕ (a) .

The estimate
|δa (ϕ)| ≤ sup

x∈Rn
|ϕ (x)| ,

for every ϕ ∈ D, tells us that δa is a distribution. It is named the Dirac
distribution after the theoretical physicist Paul Dirac (1902-1984), co-winner
with Erwin Schröedinger (1887-1961) of the 1933 Nobel prize in physics.

The Dirac distribution is not a function, that is to say, there is no f ∈ L1
loc

such that δa = Tf . To prove this claim, we assume that there is f ∈ L1
loc so

that ∫
Rn

f (x)ϕ (x) dx = ϕ (a) ,

for all ϕ ∈ D. In particular, let us pick the test function jnρ (j (x− a)) for
j ≥ 1, where ρ is defined as in (3.1). Then,∫

Rn

f (x) jnρ (j (x− a)) dx = jnρ (j (0)) = jn,

or ∫
Rn

f (x) ρ (j (x− a)) dx = 1,

for all j ≥ 1.

However,⏐⏐⏐⏐∫
Rn

f (x) ρ (j (x− a)) dx

⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐
∫
|j(x−a)|≤1

f (x) ρ (j (x− a)) dx

⏐⏐⏐⏐⏐
≤ sup

x∈Rn
(ρ (x))

∫
|(x−a)|≤1/j

|f (x)χK (x)| →
j→∞

0,
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where K indicates the compact set {x ∈ Rn : |x− a| ≤ 1} and χK is the char-
acteristic function of K.

Since we arrive at a contradiction, such an f cannot exist.

Lützen has this to say about the early days of the so-called Dirac function
([18], p. 110): “The δ-function must have had a very sad childhood since
neither mathematicians nor physicists recognized it as belonging to their do-
main. If mathematicians used it, it was an intuitive physical notion with no
mathematical reality ... On the other hand, physicists usually considered the
δ-function, or the point mass, as a pure mathematical idealization which did
not exist in nature.”

3. If we fix a ∈ Rn and m = 1, 2, ..., the linear map Tma : D →C defined as

Tma (ϕ) =
(
∂mx1ϕ

)
(a) (3.4)

is a distribution, since we have the estimate

|Tma (ϕ)| ≤ sup
x∈Rn

⏐⏐(∂mx1ϕ) (x)
⏐⏐ , (3.5)

for every ϕ ∈ DK , where K ⊆ Rn is compact.

4. For f ∈ L1
loc and k ∈ R, k ̸= 0, we define the operator dk as

dk (f) (x) = f (kx) .

If ϕ ∈ D,(
Tdk(f), ϕ

)
=

∫
Rn

f (kx)ϕ (x) dx =
1

|k|n
∫
Rn

f (x)ϕ
(x
k

)
dx

=

(
Tf(x),

ϕ
(
x
k

)
|k|n

)
=

(
Tf ,

d1/k (ϕ)

|k|n
)

.

Therefore, given T ∈ D′, we define the linear map dk as

(dk (T ) , ϕ) =

(
T,
d1/k (ϕ)

|k|n
)
.

In particular, if k = −1,

(d−1 (T ) , ϕ) = (T, ϕ (−·)) .

When d−1 (T ) = −T , we say that the distribution is odd. If d−1 (T ) = T , we
say that the distribution is even. In particular, if f ∈ L1

loc, Tf is odd if, and
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Laurent Schwartz’s Distributions 21

only if, the function f is odd. Likewise, Tf is even if, and only if, the function
f is even.

It should be clear that δ0 is even, while T 1
0 , as defined by (3.4), is odd.

Given a bounded subset B of D, the set Bk = d1/k (B) is bounded in D.
Therefore,

∥dk (T )∥D′,B =
1

|k|n
sup
ϕ∈B

⏐⏐(T, d1/k (ϕ)
)⏐⏐ =

1

|k|n
sup
ϕ∈Bk

|(T, ϕ)| = 1

|k|n
∥T∥D′,Bk

.

So, the linear operator dk is continuous from D′ into itself.

5. The series
∑

j≥1 δj defines a distribution in D′ (R). Indeed, if we fix K ⊆ R
compact and ϕ ∈ DK , there is jK ≥ 1 so that ϕ (j) = 0 for j > jK . Therefore,⏐⏐⏐⏐⏐⏐

⎛⎝∑
j≥1

δj , ϕ

⎞⎠⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐
jK∑
j=1

ϕ (j)

⏐⏐⏐⏐⏐⏐ ≤ CK sup
x∈R
|ϕ (x)| .

Moreover, the sequence
{∑

1≤j≤k δj

}
k≥1

converges to
∑

j≥1 δj in D′ (R) as

k →∞. In fact, if we fix a bounded subset B of D (R),

sup
ϕ∈B

⏐⏐⏐∑
j>k

ϕ (j)
⏐⏐⏐ = 0

for k > kB, according to Remark 22.

6. The work done in 5) shows that the series
∑

j≥1 δ1/j defines a distribution in
D′ (0,∞). The formula does not define a distribution on R, since the pairing⎛⎝∑

j≥1

δ1/j , ϕ

⎞⎠
is not a complex number if ϕ (x) = 1 on a neighborhood of zero.

Lemma 24. Given ϕ ∈ DK for some K ⊆ Rn compact and given f ∈ L1
loc, the

convolution ∫
Rn

ϕ (x− y) f (y) dy (3.6)

defines a function F : Rn → C that is smooth. Moreover,

(∂αF ) (x) =

∫
Rn

(∂αϕ) (x− y) f (y) dy, (3.7)

for all α ∈ Nn, |α| ≥ 1.
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22 Josefina Alvarez

Proof. First of all, for x ∈ Rn fixed, suppy (ϕ (x− y)) is a compact subset of Rn
which is a translation of K. Thus, the integral (3.6) exists.

Next, we verify the hypotheses of Theorem 6, in the form suggested in Remark
7.

Let us fix an open subset U of Rn with compact closure. For each x ∈ U fixed,
the integral in (3.6) is carried out on a compact subset of Rn which is a translation
of K. Thus, 1) in Theorem 6 holds. If we fix x0 ∈ U , it should be clear, once again,
that ϕ (· − y) f (y) is continuous at x0 for each y ∈ Rn. So, 2) in Theorem 6 is true.
Lastly, there is a compact subset K1 of Rn so that suppy (ϕ (x− y)) ⊆ K1, for all
x ∈ U . Thus,

|ϕ (x− y) f (y)| ≤
(

sup
z∈Rn

|ϕ (z)|
)
|χK1 (y) f (y)| ,

for x ∈ U and y ∈ Rn. This shows that 3) in Theorem 6 is also true. So, the function
F is continuous on U . Since U is arbitrary, we conclude that F is continuous on Rn.

Let us now fix α ∈ Nn with |α| = 1. So, ∂α = ∂xj for some 1 ≤ j ≤ n. We want
to verify the hypotheses of Theorem 8, in the form suggested in Remark 9.

As before, 1) holds for each x ∈ U and all y ∈ Rn. It should be clear that(
∂xj (ϕ (· − y) f (y))

)
(x) =

(
∂xjϕ

)
(x− y) f (y)

exists for each x ∈ U and all y ∈ Rn. Thus, 2) holds as well.
Finally,

⏐⏐(∂xjϕ) (x− y) f (y)
⏐⏐ ≤ ( sup

z∈Rn

⏐⏐⏐(∂zj
ϕ
)

(z)
⏐⏐⏐) |χK1 (y) f (y)| ,

for x ∈ U and y ∈ Rn. That is to say, 3) is also true.
So,

(
∂xjF

)
(x) exists for x ∈ U . Since U is arbitrary, we conclude that ∂xjF

exists on Rn. Moreover, ∂xjF (x) is given by (3.7) with ∂α = ∂xj .
The calculations we just performed show that

(
∂xjϕ

)
(x− y) f (y) satisfies, for

x ∈ U , the hypotheses of Theorem 6, as outlined in Remark 7. Thus, ∂xjF is
continuous on Rn.

Likewise, we can verify that ∂xk
((
∂xjϕ

)
(x− y) f (y)

)
satisfies the hypotheses of

Theorem 8, in the form suggested in Remark 9, for x ∈ U 1 ≤ k ≤ n. Therefore,
∂2xk,xjF exists on Rn and(

∂2xk,xjF
)

(x) =

∫
Rn

(
∂2xk,xjϕ

)
(x− y) f (y) dy.

Continuing in this fashion, we can prove that F has continuous derivatives of all
orders and that (3.7) holds.

This completes the proof of the lemma.
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Laurent Schwartz’s Distributions 23

Theorem 25. Given K ⊆ Rn compact and ε > 0, there is a function ϕ ∈ D
satisfying the following properties:

1. 0 ≤ ϕ (x) ≤ 1 for all x ∈ Rn,

2. ϕ (x) = 1 for all x ∈ K,

3. supp (ϕ) ⊆ ε-neighborhood(K) = {x ∈ Rn : d (x,K) < ε}, where d (x,K) =
infy∈K |x− y|.

Proof. Given the test function ρ defined in Example 3.1, let

ρj (x) =
jn

c
ρ (jx)

for each j ≥ 1, where c =
∫
Rn ρ (x) dx. It should be clear that ρj is a test function

with integral one and support in the ball {x ∈ Rn : |x| ≤ 1/j}.
If χKε denotes the characteristic function of the set Kε = ε/3-neighborhood(K),

we write

ϕj (x) = (χKε ∗ ρj) (x) =

∫
Kε

ρj (x− y) dy

=

∫
|y|≤1/j

χKε (x− y) ρj (y) dy.

Lemma 24 tell us that ϕj is a smooth function. Moreover,

0 ≤ ϕj (x) ≤
∫
Rn

ρj (x− y) dy = 1.

Now, given x ∈ K and y ∈ Rn,

d (x− y,K) ≤ |y| .

Thus, for j0 > 3/ε, x− y ∈ Kε when x ∈ K and |y| ≤ 1/j0. So, if x ∈ K,

ϕj0 (x) =

∫
|y|≤1/j0

χKε (x− y) ρj0 (y) dy =

∫
Rn

ρj0 (y) dy = 1.

As for the support of ϕj0 , let us recall that given z1, z2 ∈ Rn,

|d (z1,K)− d (z2,K)| ≤ |z1 − z2| .

In particular,
d (z1,K) ≥ d (z2,K)− |z1 − z2| .

Now, if z1 = x− y and z2 = x for x /∈ 2ε/3-neighborhood(K), and |y| ≤ 1/j0,

d (x− y,K) ≥ d (x,K)− |y| > 2ε

3
− 1

j0
>
ε

3
.

So, χKε (x− y) = 0, and then ϕj0 (x) = 0.
This completes the proof of the theorem.
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24 Josefina Alvarez

Remark 26. Theorem 25 illustrates the effect of convolving with the function ρj .
It smooths out the discontinuous function χK , yielding a smooth function with
compact support, which is “almost” the characteristic function, of a slightly bigger
set. For this reason, ρ is called a smoothing, or regularizing, function.

There are versions of Theorem 25 that do not involve compact sets. Here is an
example:

Theorem 27. There is a smooth function ψ so that 0 ≤ ψ (x) ≤ 1 for all x ∈ R
and

ψ (x) =

{
0 if x ≤ 2
1 if x ≥ 3

.

Proof. Given the characteristic function χ of the half-line (2 + ε,∞) for some 0 <
ε < 1, we define

ψj (x) = (χ ∗ ρj) (x) =

∫
R
χ (y) ρj (x− y) dy

=

∫
R
χ (x− y) ρj (y) dy,

where ρj is the one-dimensional version of the smoothing function used in Theorem
25.

According to Lemma 24, the function ψj is smooth for j ≥ 1. Moreover,

0 ≤ ψj (x) ≤
∫
R
ρj (x− y) dy = 1,

for x ∈ R.
If x ≥ 3 and −1/j ≤ y ≤ 1/j,

2 ≤ 3− 1/j ≤ x− y

so, χ (x− y) = 1. Therefore,

ψj (x) =

∫
|y|≤1/j

ρj (y) dy = 1.

If x ≤ 2 and −1/j ≤ y ≤ 1/j,

x− y ≤ x+ 1/j ≤ 2 + ε/2

for some j = j0. So, χ (x− y) = 0 and then, ψj0 (x) = 0.
This completes the proof of the theorem.

Theorem 28. The space D is densely included in Lp for 1 ≤ p <∞.
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Laurent Schwartz’s Distributions 25

Proof. Let us recall that continuous functions with compact support are dense in
Lp (see, for instance, [21], p. 69, Theorem 3.14). Thus, it suffices to approximate
continuous function with compact support, by functions in D.

If f is such a function, let

fj (x) = (f ∗ ρj) (x) =

∫
Rn

f (y) ρj (x− y) dy,

where ρj is the function used in the proof of Theorem 25. According to Lemma 24,
fj is a smooth function. Moreover, not only fj has compact support, but supp (fj)
is contained in a fix compact set, independently of j.

Let K be the support of f . We claim that supp (fj) ⊆ 2-neighborhood(K). In
fact, if x /∈ 2-neighborhood(K) and y ∈ K,

2 < d (x,K) ≤ |x− y| ,

so ρj (x− y) = 0.
Thus, fj ∈ D for all j ≥ 1. It remains to show that fj → f in Lp as j →∞.
First of all, the function f is uniformly continuous, because it is continuous and

it has compact support. Thus, given ε > 0, there is j0 = j0 (ε) ≥ 1 so that

|f (x− y)− f (x)| ≤ ε,

when |y| < 1/j for j ≥ j0, for all x ∈ Rn. So,

|fj (x)− f (x)| =

⏐⏐⏐⏐∫
Rn

f (x− y) ρj (y) dy − f (x)

∫
Rn

ρj (y) dy

⏐⏐⏐⏐
≤

∫
Rn

|f (x− y)− f (x)| ρj (y) dy ≤ ε,

for all x ∈ Rn. Thus, ∥fj − f∥Lp ≤ ε for j ≥ j0.

∥fj − f∥Lp .

This completes the proof of the theorem.

Remark 29. 1. As a consequence of Theorem 28, given f ∈ Lp for 1 ≤ p < ∞,
the sequence {f ∗ ρj}j≥1 converges to f in Lp as j →∞.

First of all, the function f ∗ ρj is smooth, according to Lemma 24, although
will not, in general, have compact support. Furthermore, Young’s convolution
theorem (see, for instance, [29], p. 146, Theorem 9.2; p. 145, Theorem 9.1)
implies that

∥f ∗ ρj∥Lp ≤ ∥f∥Lp ∥ρj∥L1 = ∥f∥Lp .

Thus, f ∗ ρj ∈ Lp for all j ≥ 1.
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Next, let fk = χkf , where χk is the characteristic function of {x ∈ Rn : |x| ≤ k}
for k ≥ 1. Then,

∥f − f ∗ ρj∥Lp ≤ ∥f − fk∥Lp + ∥fk − fk ∗ ρj∥Lp + ∥(fk − f) ∗ ρj∥Lp

≤ 2∥f − fk∥Lp

(1)

+ ∥fk − fk ∗ ρj∥Lp

(2)

. (3.8)

(1) =

∫
|x|≥k

|f (x)|p dx →
j→∞

0,

according to Lebesgue’s dominated convergence theorem. Thus, given ε > 0
there is k0 = k0 (ε) ≥ 1 so that ∥f − fk0∥Lp ≤ ε. We fix k = k0 throughout
(3.8). As we said in the proof of Theorem 28, there is a continuous function g
with compact support such that ∥fk0 − g∥Lp ≤ ε. Therefore,

(2) ≤ ∥fk0 − g∥Lp + ∥g − g ∗ ρj∥Lp + ∥(g − fk0) ∗ ρj∥Lp

≤ 2 ∥fk0 − g∥Lp + ∥g − g ∗ ρj∥Lp ≤ 2ε+ ∥g − g ∗ ρj∥Lp .

Finally, it was shown in the proof of Theorem 28 that ∥g − g ∗ ρj∥Lp → 0 as
j →∞.

2. With the notation used in 1), given ε > 0 there are k0 = k0 (ε) ≥ 1 and
j0 = j0 (ε) ≥ 1 so that

∥fk0 ∗ ρj0 − f∥Lp ≤ ε.

Indeed,

∥fk ∗ ρj − f∥Lp ≤ ∥fk ∗ ρj − fk∥Lp + ∥fk − f∥Lp

That is to say, we can approximate functions in Lp with test functions, just
by using a truncation followed by smoothing.

Theorem 30. For each 1 ≤ p ≤ ∞, the map

Lploc → D′

f → Tf

is linear, one-to-one, and continuous in the sense that fj → f in Lploc as j → ∞,
implies strong convergence in D′.

Proof. According to the inclusion result proved in 1) of Example 23, we can assume
that p = 1.

It should be clear that the map is linear from L1
loc into D′. So, to prove that it is

one-to-one, given f ∈ L1
loc, we need to show that

∫
Rn fϕdx = 0 for all ϕ ∈ D implies

that f is zero a.e., that is, f (x) = 0 except for x in a set of Lebesgue measure zero.
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Laurent Schwartz’s Distributions 27

We consider

(fϕ ∗ ρj) (x) =

∫
Rn

f (y)ϕ (y) ρj (x− y) dy,

where ρj is the function used in the proof of Theorem 25. For each x ∈ Rn, the
function ϕ (·) ρj (x− ·) belongs to D. Therefore, (fϕ ∗ ρj) (x) = 0. Furthermore, as
we have shown in 1) of Remark 29, fϕ ∗ ρj → fϕ in L1 as j →∞. Thus, fϕ is zero
a.e.. Let us write

Rn =
⋃
k≥1

Bk,

where Bk = {x ∈ Rn : |x| ≤ k}. Theorem 25 tells us that there is ϕk ∈ D so that
ϕk (x) = 1 for x ∈ Bk. So, there is a null set Nk ⊆ Bk such that f (x) = 0 for
x ∈ Bk\Nk. Finally, f (x) = 0 except for x in the null set N =

⋃
k≥1Nk.

Let {fj}j≥1 be a sequence converging to zero in L1
loc as j → ∞ and let B be

a bounded subset of D. That is, B is a bounded subset of DK for some K ⊆ Rn
compact. Then,

sup
ϕ∈B

⏐⏐⏐⏐∫
Rn

fjϕdx

⏐⏐⏐⏐ ≤ ∥fj∥1,K sup
x∈Rn

|ϕ (x)| →j→∞ 0,

for every ϕ ∈ B.
This completes the proof of the theorem.

Remark 31. Theorem 30 gives us an opportunity to test some of the properties
stated in Remark 17 and Remark 22.

If {fj}j≥1 converges to zero in L1
loc as j →∞, the family

{
Tfj
}
j≥1

is a bounded

subset in the strong topology of D′. Indeed, if we fix a bounded subset B in the
strong topology of D, there is K ⊆ Rn so that B ⊆ DK . Thus,⏐⏐Tfj (ϕ)

⏐⏐ ≤ sup
j≥1
∥fj∥1,K sup

ϕ∈B
sup
x∈Rn

|ϕ (x)| <∞.

So,

sup
j≥1

TfjD′,B = sup
j≥1

sup
ϕ∈B

⏐⏐Tfj (ϕ)
⏐⏐ ≤ sup

j≥1
∥fj∥1,K sup

ϕ∈B
sup
x∈Rn

|ϕ (x)| <∞.

Since the strong convergence and the weak convergence, of sequences, coincide
on the bounded set

{
Tfj
}
j≥1

, the sequence
{
Tfj
}
j≥1

actually converges to zero in

the strong topology of D′, a fact that is fairly easy to verify directly. Indeed, as
before, for each bounded subset B in the strong topology of D, there is K ⊆ Rn so
that B ⊆ DK . Thus,

TfjB = sup
ϕ∈B

⏐⏐Tfj (ϕ)
⏐⏐ ≤ (sup

ϕ∈B
sup
x∈Rn

|ϕ (x)|

)
∥fj∥1,K →j→∞ 0.
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At the end of Remark 22, we mentioned several properties of the pairing (T, ϕ)
seen as a bilinear map from D′ ×D into C. Let us illustrate them in the particular
case of (Tf , ϕ) for f ∈ L1

loc.
That B is a bounded subset of L1

loc means that for each K ⊆ Rn compact we
have

sup
f∈B
∥f∥1,K <∞.

Then, for each bounded subset B of DK for each K ⊆ Rn compact,

|(Tf , ϕ)| ≤ ∥f∥1,K sup
x∈Rn

|ϕ (x)| ,

for f ∈ B and ϕ ∈ B. So,
sup

f∈B,ϕ∈B
|(Tf , ϕ)| <∞.

If {fj}j≥1 converges to zero in L1
loc and {ϕj}j≥1converges to zero in the strong

topology of D, then ⏐⏐(Tfj , ϕj)⏐⏐ ≤ ∥fj∥1,K sup
x∈Rn

|ϕj (x)| →j→∞ 0, (3.9)

where ϕj ∈ DK for some K ⊆ Rn compact and for all j ≥ 1.
For an arbitrary pairing (T, ϕ), we cannot say, generally, anything else. However,

in our particular case, it should be clear from (3.9) that

1. (Tf , ϕj)→ 0 in C as j →∞ when f belongs to a bounded subset of L1
loc and

{ϕj}j≥1 converges to zero in the strong topology of D.

2.
(
Tfjϕ

)
→ 0 in C as j → ∞ when {fj}j≥1 converges to zero in L1

loc and ϕ
belongs to a bounded subset of D.

Definition 32. Given T ∈ D′ and an open subset Ω of Rn, the restriction of T to
Ω, denoted T |Ω , is defined as

(T |Ω) (ϕ) = T (ϕ) ,

for all ϕ ∈ D with supp (ϕ) ⊆ Ω.

Remark 33. The word restriction in Definition 32, should not be taken literally,
since Rn is not the domain of T . It really means that the distribution T is being
restricted to the linear subspace of D consisting of those functions ϕ with support
contained in Ω. Later on, we will explicitly restrict a distribution to a linear subspace
of its domain, thus using the word restriction with its proper meaning.

If D (Ω) is the linear space of those functions ϕ ∈ D with supp (ϕ) ⊆ Ω, all
we have said in Remarks 17 and 22 applies to D (Ω). Thus, T |Ω is a linear and
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Laurent Schwartz’s Distributions 29

continuous functional on D (Ω), or in other words, belongs to D′ (Ω), the topological
dual of D (Ω).

For instance, the function f (x) = 1/x does not define a distribution of the form
Tf on R, because f is not locally integrable on R. However, Tf belongs to D′ (R\ {0})
since 1/x is a locally integrable function on R\ {0}.

Definition 34. A distribution T ∈ D′ is zero on an open subset Ω of Rn, if T |Ω = 0,
that is, if T (ϕ) = 0 for every ϕ ∈ D (Ω).

For instance, the Dirac distribution δa is zero on Rn\ {a}.

Definition 35. Given T1, T2 ∈ D′ we say that they coincide on an open subset Ω of
Rn if (T1 − T2) |Ω = 0.

We consider the following question: Suppose that the distribution T ∈ D′ is zero
on an open subset Ωi of Rn for i ∈ I, where I is an arbitrary set of indexes. If
Ω =

⋃
i∈I Ωi, is it true that T is zero on Ω?. We will answer this question on the

affirmative, but to do that, we will need to “cut up” a test function into pieces that
are still test functions, but with specific properties. The following theorem is the
tool we will use.

Theorem 36. Given K ⊆ Rn compact and given a finite covering {Ωj}1≤j≤k of K
by open sets, there are functions {αj}1≤j≤k so that

1. αj ∈ D (Ωj) for each 1 ≤ j ≤ k,

2. 0 ≤ αj (x) ≤ 1 for all x ∈ Rn and for each 1 ≤ j ≤ k,

3.
∑

1≤j≤k αj = 1 for each x in a certain open neighborhood of K.

Proof. It should be clear that there is ε > 0 and there are compact sets Kj so
that the 2ε-neighborhood(Kj) ⊆ Ωj for 1 ≤ j ≤ k and the ε-neighborhood(K) ⊆⋃
1≤j≤k

Kj . For each 1 ≤ j ≤ k, we select a function ϕj satisfying the conditions

stated in Theorem 25, with respect to the compact set that is the closure of the
ε-neighborhood(Kj). Then, we define

α1 = ϕ1,

α2 = ϕ2 (1− ϕ1) ,

α3 = ϕ3 (1− ϕ1) (1− ϕ2) , ...,

αk = ϕk (1− ϕ1) (1− ϕ2) ... (1− ϕk−1) .

Thus, the function αj satisfies 1) and 2). As for 3), it can be proved by induction
on k that ∑

1≤j≤k
αj = 1− (1− ϕ1) ... (1− ϕk) .

So, if x ∈ ε-neighborhood(K), it should be clear that
∑

1≤j≤k αj (x) = 1.
This completes the proof of the theorem.
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Definition 37. Given K ⊆ Rn compact and given a finite covering {Ωj}1≤j≤k of K
by open sets, a family {αj}1≤j≤k of functions satisfying the conditions in Theorem
36 is called a partition of unity associated with the covering {Ωj}1≤j≤k.

Theorem 38. Let us assume that the distribution T ∈ D′ is zero on an open subset
Ωi of Rn for i ∈ I, where I is an arbitrary set of indexes. If Ω =

⋃
i∈I Ωi, then, T

is zero on Ω.

Proof. Given ϕ ∈ D (Ω), let K = supp (ϕ). Since {Ωi}i∈I is a covering of the
compact set K, we can select a finite covering,

{
Ωij

}
1≤j≤k. According to Theorem

36, there is a partition of unity {αj}1≤j≤k associated with the covering
{

Ωij

}
1≤j≤k.

Then,

ϕ =
k∑
j=1

αjϕ,

where αjϕ ∈ D
(
Ωij

)
. Since, by definition, D

(
Ωij

)
⊆ D (Ω) ⊆ D for all 1 ≤ j ≤ k,

we can write

T (ϕ) =
k∑
j=1

T (αjϕ) ,

which is zero by hypothesis. Thus, T |Ω = 0.
This completes the proof of the theorem.

Definition 39. The support of a distribution T ∈ D′, denoted supp (T ), is defined
as the complement of the largest open subset of Rn where T is zero.

Theorem 38 allows us to say that

supp (T ) = Rn\
⋃
{Ω ⊆ Rn open : T |Ω = 0} .

Example 40. 1. The support of the Dirac distribution δa is {a}. The support
of the distribution Tma defined in (3.4) is also {a}.
When the support of a distribution is a single point {a}, it is customary to
say that the distribution is concentrated on {a}.

2. If Tf is the distribution defined by a locally integrable function f ,

supp (Tf ) ⊆ supp (f) .

Indeed, if x0 /∈ supp (f), there is an open set U ⊆ Rn so that f (x) = 0 for
every x ∈ U . Then, Tf (ϕ) = 0 for every ϕ ∈ D (U). Thus, x0 /∈ supp (Tf ).

The inclusion supp (Tf ) ⊆ supp (f) can be strict. Indeed, if f = χQ, the
characteristic function of the rationals, given ϕ ∈ D (R),

∫
R χQϕdx = 0. Thus,

supp
(
TχQ

)
= ∅. However, as we saw in Example 11, supp (χQ) = R.
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Let us observe that the distribution Tf defined by a locally integrable function
f , remains unchanged when f is replaced by a function g equal to f except on
a null set. Thus, supp (Tf ) does not change either. Of course, supp (g) may
differ from supp (f).

3. If f : Rn → C is continuous,

supp (Tf ) = supp (f) .

We only need to verify that supp (f) ⊆ supp (Tf ). If x0 /∈ supp (Tf ), there is
an open ball Bε centered at x0 so that∫

Rn

f (y)ϕ (y) dy = 0

for all ϕ ∈ D (Bε). If we assume that x0 ∈ supp (f), there is x1 ∈ Bε so that
f (x1) ̸= 0. Since f is continuous at x1, there is ε′ < ε such that f (x) ̸= 0
for x ∈ Bε′ , an open ball contained in Bε and centered at x1. The function
ϕ (·) ρj (x− ·) belongs to D (Bε) for x ∈ Rn. Thus,∫

Rn

f (y)ϕ (y) ρj (x− y) dy = 0.

Furthermore, as we have shown in 1) of Remark 29, fϕ ∗ ρj → fϕ in L1 as
j →∞. Thus, fϕ is zero a.e. on Rn. In particular, if we pick a test function
ϕ that is equal to one on Bε′ , we conclude that f is zero a.e. on Bε, which is
not possible. Therefore, x0 /∈ supp (f).

Lemma 41. Let T ∈ D′ and ϕ ∈ D. If supp (T )
⋂
supp (ϕ) = ∅, then T (ϕ) = 0.

Proof. That supp (T )
⋂
supp (ϕ) = ∅ implies that supp (ϕ) ⊆ Rn\supp (T ). Since

T is zero on the open set U = Rn\supp (T ) and ϕ ∈ D (U), we can conclude, by
definition, that T (ϕ) = 0.

This completes the proof of the lemma.

Remark 42. 1. There is a more general version of Theorem 36 (see [25], p. 22,
Theorem II), which would give us the following extension result ([25], p. 27,
Theorem IV):

For each i ∈ I, an arbitrary set of indexes, we fix a distribution Ti ∈ D′ (Ωi),
where Ωi is an open subset of Rn. Furthermore, we stipulate the following
compatibility condition: If Ωi

⋂
Ωj is not empty, Ti |Ωi

⋂
Ωj = Tj |Ωi

⋂
Ωj .

Then, if Ω =
⋃
i∈I Ωi, there is a distribution, in fact unique, T ∈ D′ (Ω), so

that T |Ωi = Ti.

Roughly speaking, we can “stitch” together an arbitrary bunch of compatible
distributions, by means of a certain partition of unity, obtaining a distribution
that is a unique extension of all the pieces.
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What we said in Remark 33 about the use of the word restriction applies to
the word extension as well.

2. Given Ω1 ⊆ Ω2 open subsets of Rn and given a distribution T1 in D′ (Ω1),
the Hahn-Banach theorem for locally convex and Hausdorff topological linear
spaces (see, for instance, [16], p. 180, Proposition 1) implies that there is a
distribution T2 in D′ (Ω2) such that T2 |Ω1 = T1.

Example 43. Sometimes, there is an explicit ad hoc method to extend a particular
distribution. Let us look at three examples.

1. The first one involves the distribution Tf in D′ (R\ {0}) for f (x) = 1/x. Let
us observe that the function 1/x is measurable, but not locally integrable, on
R. Given ϕ ∈ D (R) and given j ≥ 1, let us consider

Tj (ϕ) =

∫
|x|>1/j

ϕ (x)

x
dx. (3.10)

It should be clear that Tj ∈ D′ (R) for each j ≥ 1. We claim that (3.10)
has a limit in C as j → ∞. In fact, we can assume that supp (ϕ) ⊆ Br =
{x∈R : |x| ≤ r} for some r ≥ 1. Then, if 1 ≤ j′ < j,⏐⏐⏐⏐⏐

∫
r>|x|>1/j′

ϕ (x)

x
dx−

∫
r>|x|>1/j

ϕ (x)

x
dx

⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐
∫
1/j′≥|x|>1/j

ϕ (x)

x
dx

⏐⏐⏐⏐⏐ ≤
⏐⏐⏐⏐⏐
∫
1/j′≥|x|>1/j

ϕ (x)− ϕ (0)

x
dx

⏐⏐⏐⏐⏐
+ |ϕ (0)|

⏐⏐⏐⏐⏐
∫
1/j′≥|x|>1/j

dx

x

⏐⏐⏐⏐⏐ = (1) + (2).

Since the function 1/x is odd, the integral in (2) is zero. As for (1),⏐⏐⏐⏐⏐
∫
1/j′≥|x|>1/j

ϕ (x)− ϕ (0)

x
dx

⏐⏐⏐⏐⏐ ≤ 2 sup
x∈R

⏐⏐ϕ′ (x)
⏐⏐ ( 1

j′
− 1

j

)
→

j,j′→∞
0.

So, there is limTj (ϕ) in C as j →∞, for each ϕ ∈ D (R). Let us call the limit
T (ϕ). Since

|Tj (ϕ)| =

⏐⏐⏐⏐⏐
∫
r>|x|>1/j

ϕ (x)

x
dx

⏐⏐⏐⏐⏐ ≤ 2

(
r − 1

j

)
sup
x∈R

⏐⏐ϕ′ (x)
⏐⏐ ,

we conclude that
|T (ϕ)| ≤ 2r sup

x∈R

⏐⏐ϕ′ (x)
⏐⏐ , (3.11)
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Laurent Schwartz’s Distributions 33

for ϕ ∈ DBr (R).

Therefore, according to Remark 17 and Remark 22, T belongs to D′ (R). The
distribution T is called the principal value of 1/x and it is denoted pv 1/x.
That is, (

pv
1

x
, ϕ

)
= lim

j→∞

∫
|x|>1/j

ϕ (x)

x
dx,

for ϕ ∈ D.

It should be clear that pv 1/x extends Tf to R, when f (x) = 1/x.

2. In the second example, we consider the distribution Tf in D′ (R\ {0}) for
f (x) = 1/x2. Once again, the function is measurable, but not locally in-
tegrable, on R.

We begin in the same way as in the first example. Given ϕ ∈ D (R) and given
j ≥ 1, let us write

Tj (ϕ) =

∫
|x|>1/j

ϕ (x)

x2
dx. (3.12)

As before, Tj ∈ D′ (R) for each j ≥ 1. If supp(ϕ) ⊆ Br = {x ∈ R : |x| ≤ r} for
some r ≥ 1 and if 1 ≤ j′ < j,⏐⏐⏐⏐⏐

∫
r>|x|>1/j′

ϕ (x)

x2
dx−

∫
r>|x|>1/j

ϕ (x)

x2
dx

⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐
∫
1/j′≥|x|>1/j

ϕ (x)

x2
dx

⏐⏐⏐⏐⏐ ≤
⏐⏐⏐⏐⏐
∫
1/j′≥|x|>1/j

ϕ (x)− ϕ (0)− xϕ′ (0)

x2
dx

⏐⏐⏐⏐⏐
+ |ϕ (0)|

⏐⏐⏐⏐⏐
∫
1/j′≥|x|>1/j

dx

x2

⏐⏐⏐⏐⏐+
⏐⏐ϕ′ (0)

⏐⏐ ⏐⏐⏐⏐⏐
∫
1/j′≥|x|>1/j

dx

x

⏐⏐⏐⏐⏐
= (1) + (2) + (3) .

As in the first example, the integral in (3) is zero. Since |ϕ (x)− ϕ (0)− xϕ′ (0)| ≤
x2

2 supx∈R |ϕ′′ (x)|, we can write

(1) ≤ sup
x∈R

⏐⏐ϕ′′ (x)
⏐⏐ ( 1

j′
− 1

j

)
→

j,j′→∞
0.

Therefore, there is

lim
j→∞

∫
|x|>1/j

ϕ (x)− ϕ (0)− xϕ′ (0)

x2
dx (3.13)
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for each ϕ ∈ DBr (R). As for (2),⏐⏐⏐⏐⏐
∫
1/j′≥|x|>1/j

dx

x2

⏐⏐⏐⏐⏐ = 4
(
j − j′

)
.

This divergence is unavoidable, so we simply put it aside.

From the estimate⏐⏐⏐⏐⏐
∫
r≥|x|>1/j

ϕ (x)− ϕ (0)− xϕ′ (0)

x2
dx

⏐⏐⏐⏐⏐ ≤ 2

(
r − 1

j

)
1

2
sup
x∈R

⏐⏐ϕ′′ (x)
⏐⏐

for ϕ ∈ DBr (R), we can conclude that (3.13) defines a distribution in D′ (R),
which is called the finite part of 1/x2 and it is denoted fp 1/x2. That is,(

fp
1

x2
, ϕ

)
= lim

j→∞

∫
|x|>1/j

ϕ (x)− ϕ (0)− xϕ′ (0)

x2
dx

and ⏐⏐⏐⏐(fp 1

x2
, ϕ

)⏐⏐⏐⏐ ≤ r

2
sup
x∈R

⏐⏐ϕ′′ (x)
⏐⏐ , (3.14)

where ϕ ∈ D (Br).

It should be clear that fp 1/x2 extends Tf to R when f (x) = 1/x2.

3. Finally, we consider the distribution Tf in D′ (R\ {0}) for f (x) = 1/ |x|. Once
again, the function is measurable, but not locally integrable, on R. We begin
in the same way as in the first example.

Given ϕ ∈ D (R) and given j ≥ 1, let us write

Tj (ϕ) =

∫
|x|>1/j

ϕ (x)

|x|
dx.

As before, Tj ∈ D′ (R) for each j ≥ 1. If supp(ϕ) ⊆ Br = {x ∈ R : |x| ≤ r} for
some r ≥ 1 and if 1 ≤ j′ < j, ⏐⏐⏐⏐⏐

∫
r>|x|>1/j′

ϕ (x)

|x|
dx−

∫
r>|x|>1/j

ϕ (x)

|x|
dx

⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐
∫
1/j′≥|x|>1/j

ϕ (x)

|x|
dx

⏐⏐⏐⏐⏐ ≤
⏐⏐⏐⏐⏐
∫
1/j′≥|x|>1/j

ϕ (x)− ϕ (0)

|x|
dx

⏐⏐⏐⏐⏐
+ |ϕ (0)|

⏐⏐⏐⏐⏐
∫
1/j′≥|x|>1/j

dx

|x|

⏐⏐⏐⏐⏐ = (1) + (2).

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 1 – 137

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


Laurent Schwartz’s Distributions 35

Since the function 1/ |x| is even,⏐⏐⏐⏐⏐
∫
1/j′≥|x|>1/j

dx

|x|

⏐⏐⏐⏐⏐ = 2

∫ 1/j′

1/j

dx

x
= 2 ln

j

j′
.

This divergence is unavoidable, so we simply put it aside, as we did in 2).

As in 1),

(1) =

⏐⏐⏐⏐⏐
∫
1/j′≥|x|>1/j

ϕ (x)− ϕ (0)

|x|
dx

⏐⏐⏐⏐⏐ ≤ 2 sup
x∈R

⏐⏐ϕ′ (x)
⏐⏐ ( 1

j′
− 1

j

)
→

j,j′→∞
0.

So, there is

lim
j→∞

∫
r>|x|>1/j

ϕ (x)− ϕ (0)

|x|
dx

in C, for each ϕ ∈ D (R). Let us call the limit T (ϕ). Since⏐⏐⏐⏐⏐
∫
r>|x|>1/j

ϕ (x)− ϕ (0)

|x|
dx

⏐⏐⏐⏐⏐ ≤ 2

(
r − 1

j

)
sup
x∈R

⏐⏐ϕ′ (x)
⏐⏐ ,

we conclude that

|T (ϕ)| ≤ 2r sup
x∈R

⏐⏐ϕ′ (x)
⏐⏐ ,

for ϕ ∈ DBr (R).

Therefore, according to Remark 17 and Remark 22, T belongs to D′ (R). The
distribution T is called the finite part of 1/ |x| and it is denoted fp 1/ |x|. That
is, (

fp
1

|x|
, ϕ

)
= lim

j→∞

∫
|x|>1/j

ϕ (x)− ϕ (0)

|x|
dx,

for ϕ ∈ D.

It should be clear that fp 1/ |x| extends Tf to R when f (x) = 1/ |x|.

Remark 44. 1. In Example 43, we could have used ε > 0 instead of 1/j for
j ≥ 1, taking the limit as ε → 0. But, strictly speaking, we would had been
using a net, while we promised to work only with sequences. Of course, this
is just a minor detail.
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2. The distribution pv 1/x is odd, while the distributions fp 1/x2 and fp 1/ |x|
are even. Indeed, according to 4) in Example 23, if ϕ ∈ D,

(
d−1

(
pv

1

x

)
, ϕ

)
= lim

j→∞

∫
|x|>1/j

ϕ (−x)

x
dx = lim

j→∞

(∫ ∞

1/j

ϕ (−x)

x
dx+

∫ −1/j

−∞

ϕ (−x)

x
dx

)

= lim
j→∞

(∫ −∞

−1/j

ϕ (x)

x
dx+

∫ 1/j

∞

ϕ (x)

x
dx

)
= − lim

j→∞

∫
|x|>1/j

ϕ (x)

x
dx

= −
(
pv

1

x
, ϕ

)
,

while(
d−1

(
fp

1

x2

)
, ϕ

)
= lim

j→∞

∫
|x|>1/j

ϕ (−x)− ϕ (0)− (−x)ϕ′ (0)

x2
dx

=

(
fp

1

x2
, ϕ

)
and (

d−1

(
fp

1

|x|

)
, ϕ

)
= lim

j→∞

∫
|x|>1/j

ϕ (−x)− ϕ (0)

|x|
dx

=

(
fp

1

|x|
, ϕ

)
.

4 The spaces S, S ′, E, E ′, D(m) and D(m)′

We begin with a definition.

Definition 45. Let

E = {ϕ : Rn → C : ϕ is smooth} .

The space E is a complex linear space. We consider in E the topology defined by
the countable family of semi-norms

∥ϕ∥m,Bk
= sup

|α|≤m
sup
x∈Bk

|(∂αϕ) (x)| , (4.1)

for each m = 0, 1, ... and each Bk = {x ∈ Rn : |x| ≤ k} for k ≥ 1.

With this topology, E becomes a Fréchet space. A sequence {ϕj}j≥1 converges to
ϕ in E exactly when, for each α ∈ Nn, the sequence {∂αϕj}j≥1 converges to ∂αϕ as
j →∞, uniformly on each compact subset of Rn.
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Laurent Schwartz’s Distributions 37

Example 46. Let ψ ∈ D be so that 0 ≤ ψ (x) ≤ 1 for all x ∈ Rn. Moreover let

ψ (x) =

{
1 if |x| ≤ 1
0 if |x| ≥ 2

.

Theorem 25 shows how to construct such a function.

Let ψj (x) = ψ (x/j) for j ≥ 1. Then, the sequence {ψj}j≥1 converges in E as
j →∞ to the function identically equal to one.

Indeed, if we fix K ⊆ Rn compact, there is j0 = j0 (K) ≥ 1 so that |ψj (x)− 1| =
0 for x ∈ K and j ≥ j0. Thus, trivially, {ψj}j≥1 converges to one uniformly on K,
as j →∞.

If we fix α ∈ Nn, |α| ≥ 1 and x ∈ K,

|∂α (ψj − 1) (x)| = |∂α (ψϕj (x))| = 1

j|α|

⏐⏐⏐⏐(∂αψ)

(
x

j

)⏐⏐⏐⏐
≤ 1

j|α|
sup
x∈K
|(∂αψ) (x)| →

j→∞
0.

Remark 47. A test function like ψ in Example 46, is called a cut-off function. When
preserving smoothness is not an issue, the characteristic function of an appropriate
set can be used as a cut-off function. This was done, for instance, when we truncated
an Lp-function in Remark 29.

Definition 48. A smooth function ϕ : Rn → C is rapidly decreasing at infinity with
all its derivatives if for each α, β ∈ Nn,

sup
x∈Rn

⏐⏐⏐xα (∂βϕ) (x)
⏐⏐⏐ <∞. (4.2)

We denote S the complex linear space consisting of those smooth functions that
are rapidly decreasing at infinity with all its derivatives. The space S becomes a
Fréchet space with the topology induced by the countable family of semi-norms

∥ϕ∥a,b = sup
|α|≤a,|β|≤b

sup
x∈Rn

⏐⏐⏐xα (∂βϕ) (x)
⏐⏐⏐ , (4.3)

for a, b = 0, 1, .... A sequence {ϕj}j≥1 converges to ϕ in S exactly when xα∂βϕj

converges to xα∂βϕ as j →∞, uniformly on Rn, for each α, β ∈ Nn.
We will refer to functions in S, simply, as smooth functions that are rapidly

decreasing with all its derivatives.

Example 49. 1. The function

ϕ (x) = e−|x|2
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belongs to S. Indeed, since ϕ is the composition of two smooth functions,
t → e−t and x → |x|2, it is smooth. Moreover, it should be clear that ϕ is
rapidly decreasing.

As for the derivatives, we claim that

∂αx

(
e−|x|2

)
(x) = e−|x|2P (x) , (4.4)

where P (x) is a polynomial function of degree |α|.
Indeed, when |α| = 1,

∂xj

(
e−|x|2

)
(x) = −2xje

−|x|2 .

If we assume that (4.4) is true when |α| ≤ k for some k ≥ 1,

∂xj∂
α
(
e−|x|2

)
(x) = ∂xj

(
e−|x|2P (x)

)
= −2xjP (x) e−|x|2 +

(
∂xjP

)
(x) .

Therefore, (4.4) is true for all α. Then, it should be clear that all the derivatives

of e−|x|2 are rapidly decreasing.

2. The function

ψ (x) = e−|x|2eie
|x|2

,

which is smooth and rapidly decreasing, does not belong to S, since

∂xjψ (x) = −2xje
−|x|2eie

|x|2
+ ieie

|x|2e|x|
2

2xj

is not rapidly decreasing.

Lemma 50. As a consequence of (4.2), there is

lim
j→∞

sup
|x|>j

⏐⏐⏐xα (∂βϕ) (x)
⏐⏐⏐ = 0,

for each α, β ∈ Nn, or equivalently, there is

lim
|x|→∞

⏐⏐⏐xα (∂βϕ) (x)
⏐⏐⏐ = 0,

for each α, β ∈ Nn.

Proof. Let us fix α, β ∈ Nn and m = 1, 2, .... According to Corollary 2 and Remark
3,(

1 + |x|2
)m ⏐⏐⏐xα (∂βϕ) (x)

⏐⏐⏐ ≤ m∑
|γ|=0

m!

(m− γ1 − ...− γn)!γ1!γ2!...γn!

⏐⏐⏐x2γ+α (∂βϕ) (x)
⏐⏐⏐

≤ Cm,n

(
m+ n

m

)
sup
|γ|≤m

sup
x∈Rn

⏐⏐⏐x2γ+α (∂βϕ) (x)
⏐⏐⏐ . (4.5)
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Thus,

sup
|x|>j

⏐⏐⏐xα (∂βϕ) (x)
⏐⏐⏐

≤

[
Cm,n

(
m+ n

m

)
sup
|γ|≤m

sup
x∈Rn

⏐⏐⏐x2γ+α (∂βϕ) (x)
⏐⏐⏐] sup

|x|>j

(
1 + |x|2

)−m
≤

[
Cm,n

(
m+ n

m

)
sup
|γ|≤m

sup
x∈Rn

⏐⏐⏐x2γ+α (∂βϕ) (x)
⏐⏐⏐](1 +

1

j2

)−m
→
j→∞

0.

This completes the proof of the lemma.

Lemma 51. Pointwise multiplication by a fixed function η ∈ E is a linear and
continuous operator from E into E.

Proof. It should be clear that the operator is well defined and it is linear. Given
ϕ ∈ E and α ∈ Nn, if α ̸= 0 we can write, according to Lemma 4,

(∂α (ηϕ)) (x) = η (x) ∂α (ϕ) (x) +
∑

0<β≤α

(
α

β

)(
∂βη

)
(x)
(
∂α−βϕ

)
(x) . (4.6)

If α = 0, we only have the first term in (4.6). Therefore, it suffices to work with
α ̸= 0. From the estimates

sup
x∈Bk

|η (x) ∂α (ϕ) (x)| ≤

(
sup
x∈Bk

|η (x)|

)
sup
x∈Bk

|∂α (ϕ) (x)|

and

sup
x∈Bk

⏐⏐⏐⏐⏐⏐
∑

0<β≤α

(
α

β

)(
∂βη

)
(x)
(
∂α−βϕ

)
(x)

⏐⏐⏐⏐⏐⏐ ≤ Cα
(

sup
β≤α

sup
x∈Bk

⏐⏐⏐(∂βη) (x)
⏐⏐⏐) sup

β≤α
sup
x∈Bk

(
∂α−βϕ

)
(x) ,

follows the continuity of the multiplication.

This completes the proof of the lemma.

Remark 52. Let us observe that the pointwise multiplication by a fixed function
η ∈ E remains well defined and continuous, if considered between other appropriate
spaces, for instance from D into D. It is not well defined, in general, from S into S,
as can be seen by taking, for instance, η (x) = e|x|

2

.

Theorem 53. We have the following continuous, dense, and strict inclusions:

D ↪→ S ↪→ E
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Proof. It should be clear that, as sets, D is included in S and S is included in E .
The inclusions are strict, since, for instance, e−|x|2 belongs to S\D and e|x|

2

belongs
to E\S.

If we fix K ⊆ Rn compact, and α, β ∈ Nn, the estimate

sup
x∈Rn

⏐⏐⏐xα (∂βϕ) (x)
⏐⏐⏐ = sup

x∈K
|xα| sup

x∈Rn

⏐⏐⏐(∂βϕ) (x)
⏐⏐⏐

for ϕ ∈ DK , implies that the inclusion of D into S is continuous.

If we fix K ⊆ Rn compact, α ∈ Nn, the estimate

sup
x∈K

⏐⏐⏐(∂βϕ) (x)
⏐⏐⏐ ≤ sup

x∈Rn

⏐⏐⏐(∂βϕ) (x)
⏐⏐⏐

for ϕ ∈ S, implies that the inclusion of S into E is continuous.

So, we are left to prove that D is dense in S and that S is dense in E . In both
cases, we will use the sequence {ψj}j≥1 defined in Example 46.

If we fix ϕ ∈ S, we claim that the sequence {ϕψj}j≥1, contained in D, converges
to ϕ in S. To prove this claim, we need to show that given a, b = 0, 1, ..., the
sequence xα∂β (ϕ (ψj − 1)) (x) converges to zero as j → ∞, uniformly with respect
to x ∈ Rn, for each |α| ≤ a, |β| ≤ b.

If β ̸= 0, using Leibniz’s rule we can write

xα∂β (ϕ (ψj − 1)) (x) = (ψj − 1) (x)xα
(
∂βϕ

)
(x) (4.7)

+
∑

0<γ≤β

(
β

γ

)
xα
(
∂β−γϕ

)
(x)

1

j|γ|
(∂γψ)

(
x

j

)
. (4.8)

If β = 0, we only have (4.7) with β = 0. Thus, it suffices to consider the case
β ̸= 0. Each term in (4.8) can be estimated as

1

j|γ|

(
β

γ

)
sup
x∈Rn

⏐⏐⏐xα (∂β−γϕ) (x)
⏐⏐⏐ sup
x∈Rn

|(∂γψ) (x)| →
j→∞

0.

As for (4.7), since ϕ ∈ S and ψj (x) = 1 for |x| ≤ j,

sup
x∈Rn

⏐⏐⏐(ψj − 1) (x)xα
(
∂βϕ

)
(x)
⏐⏐⏐ ≤ sup

|x|>j

⏐⏐⏐xα (∂βϕ) (x)
⏐⏐⏐ →
j→∞

0.

Hence, we have proved that D is dense in S. To show that S is dense in E , it is
enough to show that D is dense in E . So, let us fix η ∈ E and let us consider the
sequence {ηψj}j≥1, contained in D. According to Lemma 51 and Example 46, the
sequence {ηψj}j≥1 converges to η in E as j →∞.

This completes the proof of the theorem.
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Lemma 54. If A denotes one of the spaces D, E or S, the operator ∂α is linear and
continuous from A into itself. Moreover,

supp (∂αϕ) ⊆ supp (ϕ) ,

for ϕ ∈ A.

Proof. Let us consider the case A = S, the other cases being similar. It should be
clear that the operator ∂α is well defined and it is linear. If we fix a, b = 0, 1, ...,

∥∂αϕ∥a,b = sup
|γ|≤a,|β|≤b

sup
x∈Rn

⏐⏐⏐xγ (∂β+αϕ) (x)
⏐⏐⏐

≤ sup
|γ|≤a,|β|≤b+|α|

sup
x∈Rn

⏐⏐⏐xγ (∂βϕ) (x)
⏐⏐⏐ ,

which shows that the operator ∂α is continuous from S into itself.
Finally, if x0 /∈ supp (ϕ), it means that ϕ is zero on an open neighborhood of

x0. Consequently, each partial derivative ∂xjϕ must be zero on the neighborhood.
Iterating this process, we conclude that ∂αϕ is zero on that neighborhood.

This completes the proof of the lemma.

Definition 55. A continuous linear functional T : S → C is called a tempered
distribution.

In other words, a linear functional T : S → C is a tempered distribution exactly
when T (ϕj) → 0 in C as j → ∞, whenever ϕj → 0 in the Fréchet space S as
j →∞.

The complex linear space consisting of all the tempered distributions is denoted
S ′. By definition, S ′ is the topological dual of S.

Remark 56. 1. According to Theorem 53, if T ∈ S ′, then T |D : D → C belongs
to D′. That is, we can say that a tempered distribution is a distribution in
the sense of Definition 19 or Definition 20.

Since D is dense in S, a tempered distribution is uniquely determined by its
restriction to D.

2. Given a distribution T in D′, it is not always possible to extend it to a distri-
bution in S ′.
For example, let us consider the distribution in D′ defined by the function
e|x|

2

. It should be clear that T
e|x|

2 is not a tempered distribution, since, for

instance, the pairing
(
T
e|x|

2 , e|x|
2
)

does not equal a complex number.

Furthermore, there is no tempered distribution T such that

(T, ϕ) =

∫
Rn

e|x|
2

ϕ (x) dx
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for all ϕ ∈ D. To prove it, we consider the sequence
{
e−|x|2ψj

}
j≥1

, where

ψj (x) = ψ (x/j) is the function in Example 46.

As shown in the proof of Theorem 53, there is limj→∞ ϕψj = ϕ in S. Therefore,
if such a tempered distribution T would exist,(

T, e−|x|2
)

= lim
j→∞

(
T, e−|x|2ψj

)
= lim

j→∞

∫
Rn

e|x|
2

e−|x|2ψ

(
x

j

)
dx

≥ lim
j→∞

meas (Bj)

where Bj = {x ∈ Rn : |x| ≤ j}, which is not possible.

Theorem 57. The space S is continuously included in Lp for all 1 ≤ p ≤ ∞.
Moreover, the inclusion is dense for 1 ≤ p <∞.

Proof. Given ϕ ∈ S,

∥ϕ∥L∞ = sup
x∈Rn

|ϕ (x)| .

Thus, S is continuously included in L∞.

If ϕ ∈ S, 1 ≤ p <∞ and m = 1, 2, ...,

∥ϕ∥pLp ≤
(

sup
x∈Rn

⏐⏐⏐(1 + |x|2
)m

ϕ (x)
⏐⏐⏐p)  

(1)

∫
Rn

(
1 + |x|2

)−mp
dx.

Estimate (4.5) takes care of (1). As for the integral,

∫
Rn

(
1 + |x|2

)−mp
dx = Cn

∫ ∞

0

(
1 + r2

)−mp
rn−1dr

≤ Cn

(∫ 1

0
rn−1dr +

∫ ∞

1

(
1 + r2

)−mp
dr

)
<∞, (4.9)

if m > n/2p.

That S is dense in Lp for 1 ≤ p <∞, follows from Theorem 28 and Theorem 53.

This completes the proof of the theorem.

The following result is a fairly immediate consequence of Theorem 57.

Corollary 58. Given ϕ ∈ S, the functions ∂α
(
xβϕ

)
and xβ∂αϕ belong to Lp for

all 1 ≤ p ≤ ∞ and for all α, β ∈ Nn.

Example 59. 1. According to Theorem 57, if f ∈ Lp for any 1 ≤ p ≤ ∞, the
distribution Tf belongs to S ′.
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2. If P is a complex polynomial function, P (x) =
∑

0≤|α|≤d cαx
α with cα ∈ C,

the distribution TP is tempered. Indeed, given ϕ ∈ S,

∫
Rn

|P (x)ϕ (x)| dx ≤
d∑

|α|=0

|cα|
∫
Rn

|xαϕ (x)| dx

≤ CP

(
sup
x∈Rn

⏐⏐⏐(1 + |x|2
)m

xαϕ (x)
⏐⏐⏐)  

(1)

∫
Rn

(
1 + |x|2

)−m
dx  

(2)

.

Now, (4.5) takes care of (1), while (4.9) takes care of (2).

3. A function f : Rn → C is slowly increasing at infinity if there is a number
k ∈ N such that

sup
x∈Rn

⏐⏐⏐⏐⏐⏐⏐
f (x)(

1 + |x|2
)k
⏐⏐⏐⏐⏐⏐⏐ <∞.

For instance, a polynomial function P as in 1), is slowly increasing at infinity.

We will refer to these functions, simply, as slowly increasing.

4. In general, if f is a slowly increasing and Lebesgue measurable function, Tf is
a tempered distribution. The verification requires calculations that are very
similar to those used in 2).

5. The distributions pv 1/x, fp 1/x2, and fp 1/ |x|, defined in Example 43, are
tempered distributions.

Indeed, given ϕ ∈ S,∫
|x|>1/j

ϕ (x)

x
dx =

∫
|x|≥2

ϕ (x)

x
dx  

(1)

+

∫
2>|x|>1/j

ϕ (x)

x
dx  

(2)

As in 1) of Example 43, there is limj→∞ (2) and

|(2)| =

⏐⏐⏐⏐⏐
∫
2>|x|>1/j

ϕ (x)− ϕ (0)

x
dx

⏐⏐⏐⏐⏐ ≤ 2

(
2− 1

j

)
sup
x∈R

⏐⏐ϕ′ (x)
⏐⏐ ,

while

|(1)| ≤ sup
x∈R
|xϕ (x)|

∫
|x|≥2

dx

x2
.
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As in 2) of Example 43, there is

lim
j→∞

∫
2>|x|>1/j

ϕ (x)− ϕ (0)− xϕ′ (0)

x2
dx.

Therefore, ⏐⏐⏐⏐⏐fp
∫
|x|>1/j

ϕ (x)

x2
dx

⏐⏐⏐⏐⏐ (4.10)

≤

⏐⏐⏐⏐⏐
∫
|x|≥2

ϕ (x)

x2
dx

⏐⏐⏐⏐⏐+

⏐⏐⏐⏐⏐
∫
2>|x|>1/j

ϕ (x)− ϕ (0)− xϕ′ (0)

x2
dx

⏐⏐⏐⏐⏐
≤ sup

x∈R
|ϕ (x)|

∫
|x|≥2

dx

x2
+ 2 sup

x∈R

⏐⏐ϕ′′ (x)
⏐⏐ (2− 1

j

)
,

where fp in (4.10) indicates the finite terms in the integral.

Finally, there is

lim
j→∞

∫
2>|x|>1/j

ϕ (x)− ϕ (0)

|x|
dx,

so, ⏐⏐⏐⏐⏐fp
∫
|x|>1/j

ϕ (x)

|x|
dx

⏐⏐⏐⏐⏐
≤

⏐⏐⏐⏐⏐
∫
|x|≥2

ϕ (x)

|x|
dx

⏐⏐⏐⏐⏐+

⏐⏐⏐⏐⏐
∫
2>|x|>1/j

ϕ (x)− ϕ (0)

|x|
dx

⏐⏐⏐⏐⏐
≤ sup

x∈R
|xϕ (x)|

∫
|x|≥2

dx

x2
+ 2 sup

x∈R

⏐⏐ϕ′ (x)
⏐⏐ (2− 1

j

)
.

6. With the same work done in 5) of Example 23, we can prove that the series∑
j≥1 e

j2δj defines a distribution T in D′ (R). However, T is not a tempered
distribution, since the pairing⎛⎝ k∑

j=1

ej
2
δj , e

−x2

⎞⎠ = k,

does not have a limit in C as k → ∞. Furthermore, there is no tempered
distribution T such that

T |D =
∑

j≥1
ej

2
δj .

To see it, we only need to follow the proof of 2) in Remark 56.
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The proof of the next result should be pretty straightforward, after the numerous
estimates we have done on functions in the space S.

Theorem 60. 1. Given ϕ ∈ E, the following statements are equivalent:

(a) ϕ ∈ S.
(b) For each polynomial function P (x) and each α ∈ Nn, there is CP,α > 0

so that

sup
x∈Rn

|∂α (P (x)ϕ) (x)| ≤ CP,α.

(c) Given α ∈ Nn and r ∈ R, there is Cα,r > 0 so that

sup
x∈Rn

⏐⏐⏐(1 + |x|2
)r

(∂αϕ) (x)
⏐⏐⏐ ≤ Cα,r.

2. The formulas

sup
|α|≤m,|β|≤l

sup
x∈Rn

⏐⏐⏐∂α (xβϕ) (x)
⏐⏐⏐

and

sup
|α|≤m

sup
x∈Rn

⏐⏐⏐(1 + |x|2
)r

(∂αϕ) (x)
⏐⏐⏐

define families of semi-norms that are equivalent to the family of semi-norms
given by (4.3).

Definition 61. The linear space consisting of all the linear and continuous func-
tionals T : E →C is denoted E ′. By definition, E ′ is the topological dual of E.

According to Theorem 53, given T ∈ E ′, the restriction T : S→C is a tempered
distribution. Moreover, T is uniquely determined by its values on D. Furthermore,
we have the following result:

Theorem 62. The space E ′ can be identified, as a linear space, with the linear
subspace of D′ consisting of distributions with compact support.

Proof. Let

K =
{
T ∈ D′ : supp (T ) is compact

}
.

We will prove that the restriction operator r : E ′ → D′, defined as r (T ) = T |D ,
is a bijection between E ′ and K.

Let us begin by showing that r (E ′) ⊆ K.

Given T ∈ E ′, let T1 = T |D . If T1 does not have compact support, for each
k ≥ 1 there is ϕk ∈ D so that supp (ϕk) ⊆ {x ∈ Rn : |x| > k} and T1 (ϕk) ̸= 0. We
can assume that T1 (ϕk) = 1 for all k ≥ 1.
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The sequence {ϕk}k≥1 converges trivially to zero in E as k → ∞. Hence,
T1 (ϕk) = T (ϕk) must converge to zero in C as k → ∞, which is a contradiction.
So T1 ∈ K. It should be clear that r is linear.

Next we show that the restriction map r is injective from E ′ into K.
Given ϕ ∈ E , according to Theorem 53 there is a sequence {ϕj}j≥1 in D so that

ϕj → ϕ in E as j →∞. Now, given T ∈ E ′, if r (T ) = 0, we have

(T, ϕ)E ′,E = lim
j→∞

(T, ϕj)E ′,E = lim
j→∞

(r (T ) , ϕj)D′,D = 0,

since (r (T ) , ϕj)D′,D = 0 for every j ≥ 1. Thus, T = 0.
Let us observe that the subscripts indicate, as mentioned in Definition 19, the

duality used.
To prove that r is surjective, we will define a linear map e : K → E ′ such that

r ◦ e is the identity map on K.
Given T ∈ K, we pick a function α ∈ D so that α = 1 on an open neighborhood

of supp (T ). Then, we define the linear functional T2 from E into C as

T2 (ϕ) = T (αϕ) .

First, we claim that T2 ∈ E ′. In fact, if ϕj → 0 in E as j →∞, it should be clear
that αϕj → 0 in D as j →∞ and therefore, T2 (ϕj) = T (αϕj)→ 0 in C as j →∞.

Moreover, the definition of T2 is independent of α satisfying the stated conditions.
Indeed, if α, β ∈ D are equal to one, each on an open neighborhood of supp (T ),
we can say that supp (T )

⋂
supp ((α− β)ϕ) = ∅, for ϕ ∈ E . Therefore, Lemma 41

implies that T ((α− β)ϕ) = 0 or T (αϕ) = T (βϕ).
So, the map e is well defined. It should be clear that e is linear and that r ◦ e is

the identity map on K.
This completes the proof of the theorem.

Remark 63. When we refer to T ∈ E ′ as being a distribution with compact support,
we will always mean in the sense of Theorem 62.

Example 64. 1. According to 1) in Example 40, the distributions δa and Tma
belong to E ′.
Moreover, if a function f has compact support and belongs to Lploc for some
1 ≤ p ≤ ∞, Tf belongs to E ′.

2. Given a sequence {aj}j≥1 converging to zero in R as j →∞, the series

∑
j≥1

δaj
j2

defines a distribution T in E ′ (R).
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Indeed, if ϕ ∈ E (R) and K ⊆ R is compact,⏐⏐⏐⏐⏐⏐
⎛⎝∑
j≥1

δaj
j2
, ϕ

⎞⎠⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐
∑
j≥1

ϕ (aj)

j2

⏐⏐⏐⏐⏐⏐ ≤
⎛⎝∑
j≥1

1

j2

⎞⎠ sup
x∈K
|ϕ (x)| ,

which shows that T ∈ E ′ (R).

Moreover, if a = supj≥1 {|aj |} and supp (ϕ) ⊆ {x ∈ R : |x| > a+ 1}, it should
be clear that (T, ϕ) = 0. Therefore, supp (T ) ⊆ [−a− 1, a+ 1].

Lemma 65. Let T ∈ D′ and let ϕ ∈ E. If supp (T )
⋂
supp (ϕ) is a compact set K,

the pairing (T, ϕ) can be defined.

Proof. Given ε > 0, let α ∈ D be so that α (x) = 1 for x in the ε-neighborhood(K)
and supp (α) ⊆ 2ε-neighborhood(K).

Then, αϕ ∈ D and we can write (T, αϕ)D′D.
We only need to show that the pairing does not depend on the function α sat-

isfying the stated conditions. In fact, if β ∈ D is another function like α, we claim
that supp (T )

⋂
supp ((α− β)ϕ) = ∅.

Indeed,

supp ((α− β)ϕ) ⊆ (Rn\ε-neighborhood (K))
⋂
supp (ϕ)

⊆ Rn\
(
supp (T )

⋂
supp (ϕ)

)⋂
supp (ϕ)

=
(

(Rn\supp (T ))
⋃

Rn\supp (ϕ)
)⋂

supp (ϕ)

⊆ (Rn\supp (T )) .

Thus, according to Lemma 41,

(T, (α− β)ϕ)D′D = 0.

This completes the proof of the lemma.

Remark 66. In Lemma 65 we can use, for instance, open balls centered at zero, as
neighborhoods of the intersection.

Remark 67. A subset B of E is bounded when, for each K ⊆ Rn compact and for
each α ∈ Nn,

sup
ϕ∈B

sup
x∈K
|(∂αϕ) (x)| <∞.

In the space E ′ we consider the dual topology, also called strong topology, induced
by the uncountable family of semi-norms

∥T∥E ′,B = sup
ϕ∈B
|T (ϕ)| , (4.11)
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for all the bounded subsets B of E . With this topology, E ′ is a complete, locally
convex and non-metrizable topological linear space ([25], p. 89). We will always use
this topology in E ′.

Let us observe that, although Theorem 62 identifies E ′, as a linear space, with
the linear subspace K of D′, the topology of E ′ is different, in fact it is finer, than
the topology induced by D′ in K ([25], p. 89).

Still, according to Remark 22, the bounded subsets of D are also bounded in E .
So, if {Tj}j≥1 converges to zero in E ′ as j →∞, the sequence {r (Tj)}j≥1 converges

to zero in D′ as j →∞.
From (4.11), it should be clear that a sequence {Tj}j≥1 converges to zero in the

strong topology of E ′ as j →∞ if, and only if, Tj (ϕ)→ 0 as j →∞, uniformly on
B, for each bounded subset B of E . That is to say if, and only if,

sup
ϕ∈B
|Tj (ϕ)| →

j→∞
0

for each B ⊆ E bounded. This form of convergence is called the strong convergence.
Moreover, the space E with the topology induced by the semi-norms (4.1), is the
topological dual of the space E ′ with the strong topology ([25], p. 90). Thus, E and
E ′ are reflexive. Let us point out that the strong topology in E ′ coincides with the
inductive limit topology induced by the spaces

E ′K =
{
T ∈ E ′ : supp (T ) ⊆ K

}
,

for K ⊆ Rn compact ([25], p. 90).
The strong, or dual, topology of the space S ′ is defined in a similar manner.

First, we observe that a subset B of S is bounded exactly when, for each α, β ∈ Nn,

sup
ϕ∈B

sup
x∈Rn

⏐⏐⏐xα (∂βϕ) (x)
⏐⏐⏐ <∞.

We consider in S ′ the topology induced by the uncountable family of semi-norms

∥T∥S′,B = sup
ϕ∈B
|T (ϕ)| ,

for all the bounded subsets B of S. We will always use this topology in S ′. With
this topology, S ′ becomes a complete, locally convex and non-metrizable topological
linear space, for which S is the topological dual ([25], p. 238). Thus, S and S ′ are
reflexive.

A sequence {Tj}j≥1converges to zero in the strong topology of S ′ as j → ∞ if,
and only if, Tj (ϕ)→ 0 as j →∞, uniformly on B, for each bounded subset B of S.
That is to say if, and only if,

sup
ϕ∈B
|Tj (ϕ)| →

j→∞
0
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for each B ⊆ S bounded. Once again, this form of convergence is called the strong
convergence.

This brief account of the strong topologies in E ′ and S ′ will suffice for our purpose.
For more on these matters, we refer to ([25], Chapter III, Section 7) and Chapter
VII, Sections 3 and 4).

Theorem 68. If ρj is the function defined in the proof of Theorem 25, the sequence{
Tρj
}
j≥1

converges to δ0 in E ′ as j →∞.

Proof. Let us fix a bounded subset B of E . Then, for ϕ ∈ B,⏐⏐⏐⏐∫
Rn

ρj (x)ϕ (x) dx− ϕ (0)

⏐⏐⏐⏐ ≤ ∫
|x|≤1/j

ρj (x) |ϕ (x)− ϕ (0)| dx

≤ Cn sup
ϕ∈B

sup
1≤l≤n

sup
x∈K
|(∂xlϕ) (x)|

∫
|x|≤1/j

ρj (x) |x| dx

=
Cn
j

sup
ϕ∈B

sup
1≤l≤n

sup
x∈K
|(∂xlϕ) (x)| →

j→∞
0,

where K ⊆ Rn is compact.

This completes the proof of the theorem.

Theorem 69. Given 1 ≤ p ≤ ∞, the map

Lp → S ′
f → Tf

is well defined, linear, and continuous.

Proof. If ϕ ∈ S, we have, for p =∞,∫
Rn

|f (x)| |ϕ (x)| dx ≤ ∥f∥L∞ sup
x∈Rn

⏐⏐⏐(1 + |x|2
)m

ϕ (x)
⏐⏐⏐ ∫

Rn

(
1 + |x|2

)−m
dx <∞

for m > n/2.

If 1 ≤ p <∞,∫
Rn

|f (x)| |ϕ (x)| dx ≤ sup
x∈Rn

⏐⏐⏐(1 + |x|2
)m

ϕ (x)
⏐⏐⏐ ∫

Rn

|f (x)|
(

1 + |x|2
)−m

dx

≤ sup
x∈Rn

⏐⏐⏐(1 + |x|2
)m

ϕ (x)
⏐⏐⏐ ∥f∥Lp

(1 + |x|2
)−m

Lq

<∞,

for mq > n/2, where q is the conjugate exponent of p.

Therefore, the map is well defined. It should be clear that it is linear.
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As for the continuity, if we fix a bounded subset B of S, the calculations done
above and Corollary 2, imply that

∥Tf∥S′,B ≤ Cm,p,n ∥f∥Lp sup
ϕ∈B

sup
|α|≤2m

sup
x∈Rn

|xαϕ (x)| .

So, the map is continuous.
This completes the proof of the theorem.

Before going onto the spaces D(m) and D(m)′, we prove the following characteri-
zation of D′:

Theorem 70. Given a linear functional T : D →C, the following statements are
equivalent:

1. T is a distribution.

2. For each compact subset K of Rn, there is mK ∈ N and CK,m > 0 so that

|T (ϕ)| ≤ CK,m sup
|α|≤mK

sup
x∈Rn

|∂αϕ (x)| , (4.12)

for all ϕ ∈ DK .

Proof. Let us assume that the linear functional T : D →C does not satisfy (4.12).
This means that there is a compact subset K of Rn such that for each C > 0 and
m = 1, 2, ..., there is ϕ ∈ DK so that

|T (ϕ)| > C sup
|α|≤m

sup
x∈Rn

|∂αϕ (x)| .

In particular, if C = m, there is ψm ∈ DK satisfying

|T (ψm)| > m sup
|α|≤m

sup
x∈Rn

|∂αψm (x)| .

Let

ϕm =
ψm

|T (ψm)|
.

Given β ∈ Nn, if m > |β|,

sup
x∈Rn

⏐⏐⏐∂βϕm (x)
⏐⏐⏐ ≤ sup

|α|≤m
sup
x∈Rn

|∂αϕm (x)| < 1

m
→
j→∞

0.

That is to say, the sequence {ϕm}m≥1 converges to zero in D as m→∞. How-
ever, by construction, T (ϕm) = 1 for all m. This shows that T is not a distribution.

So, we have proved 1) ⇒ 2).

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 1 – 137

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


Laurent Schwartz’s Distributions 51

Conversely, if T : D →C is a linear functional satisfying (4.12), let us see that
T ∈ D′. That is to say, let us see that T is continuous in the strong topology of D.

In fact, if {ϕj}j≥1 converges to zero in D as j →∞, then ϕj ∈ DK for some K ⊆
Rn compact. Moreover, for each α ∈ Nn, the sequence {(∂αϕj) (x)}j≥1 converges to
zero uniformly for x ∈ Rn as j →∞. Thus, according to (4.12),

|T (ϕj)| ≤ CK,m sup
|α|≤mK

sup
x∈Rn

|(∂αϕj) (x)| →
j→∞

0.

So, T is a distribution.
This completes the proof of the theorem.

Definition 71. When mK in (4.12) can be chosen independently of K, we say that
the distribution T has finite order ≤ m. If this is not the case, we say that the
distribution has infinite order.

Example 72. According to Example 23, the distribution Tf defined by a locally
integrable function f , and the Dirac distribution δa, both have finite order equal to
zero.

According to (3.5), the distribution Tma has finite order ≤ m. Actually, the order
is m.

Indeed, let P (x1) be the polynomial function xm1 and let α be a function in D
satisfying the following conditions: 0 ≤ α (x) ≤ 1 for all x ∈ Rn, α (x) = 1 when
|x| ≤ 1/3 and α (x) = 0 when |x| ≥ 1/2. Then, for j ≥ 1,

(Tma , P (j (·1 − a1))α (j (· − a))) = jmm!.

If we assume that the order is m′ for some 0 ≤ m′ < m, we can write,

jmm! ≤ Cm′ sup
|α|≤m′

sup
x∈Rn

|∂α (P (j (·1 − a1))α (j (· − a))) (x)|

≤ Cm′jm
′

sup
|α|≤m′

sup
|x−a|≤1/2

|∂α (P (·1 − a1)α (· − a))|

for all j ≥ 1, which is not possible.
Estimates (3.11) and (3.14) show, respectively, that the distribution pv 1/x has

finite order ≤ 1, while the distribution fp 1/x2 has finite order ≤ 2. Actually, pv 1/x
does not belong to D′(0) and fp 1/x2 does not belong to D′(1).

Nevertheless, it is quite satisfactory to have just an upper bound for the order
of a distribution of finite order.

The distribution Tma shows that there are distributions in D′ of arbitrarily large
finite order. There are also distributions of infinite order.

Indeed, for ϕ ∈ D (R), let us consider the formal series∑
k≥1

ϕ(k) (k) . (4.13)
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We observe that if ϕ ∈ DK (R) for a fixed compact set K ⊆ R, there is kK ≥ 1
so that ∑

k≥1

ϕ(k) (k) =
∑

1≤k≤kK

ϕ(k) (k) .

Therefore, the series is well defined in DK (R). Moreover,⏐⏐⏐⏐⏐⏐
∑
k≥1

ϕ(k) (k)

⏐⏐⏐⏐⏐⏐ ≤ sup
1≤k≤kK

sup
x∈R

⏐⏐⏐ϕ(k) (x)
⏐⏐⏐ ,

for every ϕ ∈ DK (R). Hence, (4.13) defines a distribution T in D′ (R).

Let us assume that T has finite order ≤ m0. We fix k0 > m0 and we consider
again the test function P (j (·1 − a))α (j (· − a)) for m = k0, a = k0 and j ≥ 1.
Then,

jk0k0! = (T, P (j (·1 − k0))α (j (· − k0)))
≤ Cm0j

m0 sup
|α|≤m0

sup
|x−k0|≤1/2

|∂α (P (·1 − k0)α (· − k0))| ,

which it is not possible for all j ≥ 1.

Definition 73. We denote D′(m) the linear subspace of D′ consisting of those dis-
tributions that have finite order ≤ m.

Definition 74. Let D(m) be the linear space of those functions ϕ : Rn → C with
compact support, that are continuous and have continuous derivatives of order ≤ m.
For m = 0, the functions in D(0) are continuous functions with compact support.

If K ⊆ Rn is compact, let

D(m)
K =

{
ϕ ∈ D(m) : supp (ϕ) ⊆ K

}
.

Then,

D(m)=
⋃{
D(m)
K : K ⊆ Rn compact

}
.

The linear space D(m)
K becomes a Banach space with the norm

∥ϕ∥m,K = sup
|α|≤m

sup
x∈Rn

|(∂αϕ) (x)| .

As in the case of D, the space D(m)becomes a topological linear space with the

inductive limit topology of the spaces D(m)
K for K ⊆ Rn compact. As usual, the

topological dual space D(m)′ is given the dual or strong topology.

However, the spaces D(m) and D(m)′ are not reflexives ([25], p. 75).
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Lemma 75. The space D is continuously and densely included in D(m) for all
m = 0, 1, ....

Proof. That the inclusion is continuous, follows from Definition 74.
As for the density, given ϕ ∈ D(m) let ϕj = ϕ ∗ ρj , where ρj is the function used

in the proof of Theorem 25.
It should be clear, from Lemma 24, that ϕj ∈ D. Moreover, if m ≥ 1, ∂αϕj =

(∂αϕ) ∗ ρj , for |α| ≤ m. Furthermore, we can see, as in the proof of Theorem 28,
that supp (ϕj) is contained in an open neighborhood of supp (ϕ) for all j ≥ 1.

Thus, to show that the sequence {ϕj}j≥1 converges to ϕ in D(m), it suffices to
show that ϕj (x)→ ϕ (x) uniformly with respect to x in Rn as j →∞.

|ϕj (x)− ϕ (x)| =

⏐⏐⏐⏐⏐
∫
|y|≤1/j

ϕ (x− y) ρj (y) dy − ϕ (x)

∫
|y|≤1/j

ρj (y) dy

⏐⏐⏐⏐⏐
≤

∫
|y|≤1/j

|ϕ (x− y)− ϕ (x)| ρj (y) dy.

Since ϕ is uniformly continuous, because it is continuous and it has compact
support, we can say that given ε > 0, there is j0 = j0 (ε) ≥ 1 so that

|ϕ (x− y)− ϕ (x)| ≤ ε,

when |y| ≤ 1/j for j ≥ j0, for all x ∈ Rn. So, |ϕj (x)− ϕ (x)| ≤ ε for all x ∈ Rn.
This completes the proof of the lemma.

Lemma 76. For each K ⊆ Rn compact, the operator ∂α is linear and continuous

from D(m)
K into D(m−|α|)

K , for m = 1, 2, ..., and |α| ≤ m.

Proof. According to Lemma 54, it should be clear that the operator is well defined
and it is linear.

As for the continuity, if we fix K ⊆ Rn compact,

sup
|γ|≤m−|α|

sup
x∈Rn

⏐⏐(∂α+γϕ) (x)
⏐⏐ ≤ sup

|γ|≤m
sup
x∈Rn

|(∂γϕ) (x)| ,

for all ϕ ∈ D(m)
K . Thus, the operator is continuous.

This completes the proof of the lemma.

Theorem 77. The space D(m)′ can be identified, as a linear space, with the linear
subspace D′(m) of D′.

Proof. According to Lemma 75, given T ∈ D(m)′, the restriction r (T ) = T |D defines
a linear map from D(m)′ into D′. We will show that r is a bijection between D(m)′

and D′(m).
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To begin with, we claim that given T ∈ D(m)′, the linear map T1 = T |D belongs
to D′(m). That is to say, T1 satisfies 2) in Theorem 70. Indeed, if this is not true, as
in the proof of Theorem 70, we could find a compact subset K of Rn and a sequence
{ϕj}j≥1 in DK so that

sup
|α|≤m

sup
x∈Rn

|(∂αϕj) (x)| < 1

j
,

while (T1, ϕj) = 1 for all j ≥ 1, which is a contradiction. Thus, T1 ∈ D′(m).
Let us see that the map r is a bijection. That r is injective, follows from the

dense inclusion of D into D(m). In fact, given ϕ ∈ D(m), there is sequence {ϕj}j≥1

in D that converges to ϕ in D(m) as j → ∞. Then, if T ∈ D(m)′, T (ϕj) converges
to T (ϕ) in C as j → ∞. Moreover, if T1 = 0, it means that T (ϕj) = T1 (ϕj) = 0
for all j ≥ 1. Thus, T (ϕ) = 0. Since ϕ is arbitrary, we conclude that T = 0.

To prove that the map r is surjective, it suffices to show that it has a right
inverse.

Let e be the extension map defined on D′(m) as follows:
Given T ∈ D′(m), by definition, T satisfies (4.12) with the same m for every

compact subset K of Rn.
Now, given ϕ ∈ D(m), let {ϕj}j≥1 be a sequence in D converging to ϕ in D(m)

as j → ∞. Then, ϕj , ϕ ∈ D(m)
K for some K ⊆ Rn compact and ϕj → ϕ in D(m)

K as
j → ∞. It follows from (4.12) that the sequence {T (ϕj)}j≥1 is a Cauchy sequence
in C, since

|T (ϕj)− T (ϕk)| ≤ Cm sup
|α|≤m

sup
x∈Rn

|(∂α (ϕj − ϕk)) (x)| →
j→∞

0.

Let e (T ) (ϕ) = limj→∞ T (ϕj). We claim that this limit does not depend on the
approximating sequence. Indeed, if {ψj}j≥1 is another sequence in D converging to

ϕ in D(m) as j →∞,

|T (ϕj)− T (ψj)| ≤ Cm sup
|α|≤m

sup
x∈Rn

|(∂α (ϕj − ψj)) (x)| →
j→∞

0.

Moreover, e (T ) belongs to D(m)′. In fact, it should be clear, by the definition,
that e (T ) is a linear functional. As for the continuity, since

|T (ϕj)| ≤ Cm sup
|α|≤m

sup
x∈Rn

|∂α (ϕj) (x)| ,

taking the limit on both sides as j →∞, we get

|(e (T )) (ϕ)| ≤ Cm,K sup
|α|≤m

sup
x∈Rn

|∂α (ϕ) (x)|

for each ϕ ∈ D(m)
K . So, e (T ) ∈ D(m)′.
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Finally, let us see that r ◦ e is the identity on D′(m).

Given T ∈ D′(m) and ϕ ∈ D, we take ϕj = ϕ for all j ≥ 1 as approximating
sequence. Thus,

((r ◦ e) (T )) (ϕ) = r (T ) (ϕ) = T (ϕ) .

This completes the proof of the theorem.

The following result is an immediate consequence of Theorem 77.

Corollary 78. A distribution T has order zero exactly, when it can be extended to
a linear and continuous functional from D(0) into C.

Remark 79. According to Definition 74 and Theorem 70, a linear functional T :
D(m) → C is continuous exactly when, for each K ⊆ Rn compact, there is Cm,K > 0
so that

|T (ϕ)| ≤ Cm,K sup
|α|≤m

sup
x∈Rn

|∂α (ϕ) (x)| ,

for each ϕ ∈ D(m)
K .

Remark 80. As in Remark 67, let us observe that the bounded subsets of D are
also bounded in D(m). Therefore, if {Tj}j≥1 converges to zero in D(m)′ as j → ∞,

the sequence {r (Tj)}j≥1 converges to zero in D′ as j →∞.

There is a very interesting connection between distributions of order zero and
measures. Indeed, certain linear and continuous functionals on D(0) can be repre-
sented as integrals with respect to certain measures. The result that guarantees this
connection between functionals and measures is the Riesz-Markov-Kakutani the-
orem, named after the mathematicians Frigyes Riesz (1880-1956), Andrei Markov
(1856-1922), and Shizuo Kakutani (1911-2004). Starting with Riesz’s version, set on
R, Markov and Kakutani formulated increasingly general versions of the theorem,
which is, in the end, true on a locally compact Hausdorff topological space. For our
purposes, it will suffice to work on Rn, and we will do so.

We begin with a few definitions.

Definition 81. Let (Rn,B) be the Borel measurable space. A measure µ : B → [0,∞]
is called a Borel measure if µ (K) is finite for every K ⊆ Rn compact.

Definition 82. A Borel measure µ is regular if given A ∈ B,

µ (A) = sup {µ (K) : K ⊆ A compact}
= inf {µ (U) : A ⊆ U open} .

Remark 83. According to ([7], p. 206, Proposition 7.2.3.), a finite Borel measure
is regular.
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Definition 84. Given T ∈ D(0)′, we say that T is positive if T (ϕ) is real and
non-negative for every ϕ ∈ D(0) that is real and non-negative.

Now, we state, on Rn, the Riesz-Markov-Kakutani theorem.

Theorem 85. Given T ∈ D(0)′ positive, there is a unique regular Borel measure µ
so that

T (ϕ) =

∫
Rn

ϕdµ,

for every ϕ ∈ D(0).

For a detailed and self-contained exposition of this theorem in its general version
see, for instance, ([19]; [7], p. 209, Theorem 7.2.8).

The result published by Riesz in 1909, became the first of many Riesz represen-
tation theorems, that although could differ greatly from one to the other, all had as
ultimate goal, to provide a concrete description of a topological dual. An excellent
reference for the historical evolution of this matter is [9].

Example 86. 1. In general, the distribution Tf with f ∈ L1
loc, is given, by defi-

nition, by the signed measure fdx. Thus, by extension, we can say that Tf is
a signed measure that is absolutely continuous with respect to the Lebesgue
measure. When f is real and non-negative, fdx : B → [0,∞] is a regular Borel
measure.

2. The Dirac distribution δa is associated with the finite measure µa : B → [0,∞)
defined as

µa (A) =

{
1 if a ∈ A
0 if a /∈ A .

This means that

δa (ϕ) =

∫
Rn

ϕdµa,

According to Remark 83, µa is a regular Borel measure. The fact that δa is
not defined by a locally integrable function, means that µa is not absolutely
continuous with respect to the Lebesgue measure.

In the sense of Theorem 85, we say that measures generalize the concept of
function.

3. Let us consider the linear functional T defined on D(0) (R) as

T (ϕ) = R
∫
R
ϕ (x) dx,
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where R
∫
R is the Riemann integral. It should be clear that T is positive.

Furthermore, we have the estimate

|T (ϕ)| ≤ sup
x∈R
|ϕ (x)| l (I) ,

where l (I) is the length of an interval in R containing the support of ϕ. So, we
conclude that T ∈ D(0)′ (R). As it happens, the measure associated with T is
the Lebesgue measure on R. Thus, Theorem 85 provides a way of constructing
the Lebesgue measure without using outer measures.

Remark 87. The positivity assumption in Theorem 85 is necessary. Indeed, if we
consider, on R,

T (ϕ) = R
∫ ∞

0
ϕdx−R

∫ 0

−∞
ϕdx,

we have that T ∈ D(0)′ (R). However, it should be clear that there is no measure µ
associated with T in the sense of Theorem 85.

Based on Example 86, we state the following definition:

Definition 88. The functionals in D(0)′ are called Radon measures.

Although the use of the word measure in this definition might seem a little far
fetched, Schwartz goes actually farther, stating that ([25], p. 17) “Today, it has
become indispensable to define a measure µ as a linear and continuous functional
on D(0). It is from this functional µ (ϕ) that we will identify, when necessary, the
countably additive function of sets µ (A).” Let us add that this approach had been
advocated by the Bourbaki school.

Remark 89. Definition 88 explains why the Dirac distribution is usually called
Dirac measure.

We end this section with a density result.

Theorem 90. The linear space C [x] of complex polynomial functions in x = (x1, ..., xn)
is dense in E.

The proof of this theorem necessitates some preliminary work, which we take up
now.

The function

W (x, t) =
1

(4πct)n/2
e−|x|2/4ct,

where c is a positive real number, is a solution of the heat equation, or diffusion
equation,

(∂tu) (x, t)− c (∆u) (x, t) = 0,
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for (x, t) ∈ Rn × R+. Moreover, it satisfies the distributional initial condition

lim
t→0+

∫
Rn

W (x, t)ϕ (x) dx = ϕ (0) , (4.14)

for each ϕ ∈ D(0). The first statement can be verified by a straightforward calcula-
tion. The second statement uses the properties listed in the lemma that follows.

Lemma 91. The following statements are true:

1. W (x, t) > 0 for every (x, t) ∈ Rn × R+.

2.
∫
Rn W (x, t) dx = 1 for all t > 0.

3. For each δ > 0 there is

lim
t→0+

∫
|x|>δ

W (x, t) dx = 0.

Proof. It is fairly obvious that 1) is true. As for 2), let us observe that, according
to Example 49, the function W (·, t) ∈ S for each t > 0. Thus, the integral exists,
according to Theorem 57.

Since ∫
Rn

W (x, t)ϕ (x) dx =
n∏
l=1

1

(4πct)1/2

∫
R
e−x

2
l /4ctdxl,

to prove 2) it will suffice to show that

1

(4πct)1/2

∫
R
e−x

2/4ctdx = 1, (4.15)

which we will do by a well known argument, that uses polar coordinates in R2. In
fact, if we denote I the integral in (4.15),

I2 =

(
1

(4πct)1/2

∫
R
e−x

2/4ctdx

)(
1

(4πct)1/2

∫
R
e−y

2/4ctdy

)

=
2π

4πct

∫ ∞

0
re−r

2/4ctdr =
1

2ct

∫ ∞

0
(−2ct)

d

dr
e−r

2/4ct = 1.

Since I > 0, we conclude that I = 1.
Finally, let us prove 3). By the change of variables x/

√
t = y, we can write

1

(4πct)n/2

∫
|x|>δ

e−|x|2/4ctdx =
1

(4πc)n/2

∫
|x|>δ/

√
t
e−|x|2/4cdx

= 1− 1

(4πc)n/2

∫
|x|≤δ/

√
t
e−|x|2/4ctdx. (4.16)
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Let {tk}k≥1 be a non-increasing sequence in R+ with tk → 0 as k → ∞ and let

χk be the characteristic function of
{
y ∈ R : |y| ≤ δ/

√
tk
}

. Then, we can apply the
monotone convergence theorem to the sequence

fk (x) = χk (x)
1

(4πc)n/2
e−|x|2/4ct.

Therefore, (4.16) goes to zero as t→ 0+.

This completes the proof of the lemma.

Remark 92. The distributional initial condition (4.14) can be verified as follows:

Using 1) and 2) in Lemma 91,∫
Rn

W (x, t)ϕ (x) dx− ϕ (0) =

∫
Rn

W (x, t) (ϕ (x)− ϕ (0)) dx.

By continuity, given ε > 0 there is δε > 0, so that |x| ≤ δε implies |ϕ (x)− ϕ (0)| ≤
ε. Hence,⏐⏐⏐⏐∫

Rn

W (x, t)ϕ (x) dx− ϕ (0)

⏐⏐⏐⏐ ≤ 2 sup
x∈Rn

|ϕ (x)|
∫
|x|>δε

W (x, t) dx+ ε,

for all t ∈ R+. Using 3) in Lemma 91, we can write⏐⏐⏐⏐∫
Rn

W (x, t)ϕ (x) dx− ϕ (0)

⏐⏐⏐⏐ ≤ (2 sup
x∈Rn

|ϕ (x)|+ 1

)
ε,

for t ≥ tε.

Remark 93. The function W (x, t) defines on D(0) a linear integral operator by
means of the convolution ∫

Rn

W (x− y, t)ϕ (y) dy.

The function W (x− y, t) is the kernel of the integral operator and it is called the
Gauss-Weierstrass kernel, or the heat kernel. It is name after the mathematicians
Carl Friedrich Gauss (1777-1855) and Karl Weierstrass (1815-1897). Since we will
use W (x, t) as an approximation tool, we assume that the parameter c is one.
Moreover, we take t = 1/j for j ≥ 1. Then, the function W (x, t) becomes

Wj (x) =

(
j

4π

)n/2
e−j|x|

2/4.

We are now ready to prove Theorem 90.
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Proof. We fix ϕ ∈ E , K ⊆ Rn compact and m = 0, 1, .... We select a function α ∈ D
such that 0 ≤ α (x) ≤ 1 for all x ∈ Rn, α (x) = 1 for x in the θ/2-neighborhood of
K for some 0 < θ < 1, and supp (α) ⊆ θ-neighborhood of K. Let ψ = αϕ and let us
fix β ∈ Nn with |β| ≤ m.⏐⏐⏐(Wj ∗ ∂βψ

)
(x)−

(
∂βψ

)
(x)
⏐⏐⏐ ≤ ∫

Rn

Wj (y)
⏐⏐⏐(∂βψ) (x− y)−

(
∂βψ

)
(x)
⏐⏐⏐ dy.

Since ∂βψ is continuous on Rn and it has compact support, it is uniformly
continuous. Thus, for each ε > 0 there is δε,β > 0 depending on ε and β, so that⏐⏐(∂βψ) (x− y)−

(
∂βψ

)
(x)
⏐⏐ ≤ ε for |y| ≤ δε,β.

By taking δε,m = inf {δε,β : |β| ≤ m} and using Lemma 91, we have⏐⏐⏐(Wj ∗ ∂βψ
)

(x)−
(
∂βψ

)
(x)
⏐⏐⏐ ≤ ε+ 2 sup

x∈Rn

⏐⏐⏐(∂βψ) (x)
⏐⏐⏐ ∫

|y|>δε,m
Wj (y) dy

≤
(

1 + 2 sup
x∈Rn

⏐⏐⏐(∂βψ) (x)
⏐⏐⏐) ε

if j ≥ jε,m.
Let us observe that

(
∂βψ

)
(x) =

(
∂βϕ

)
(x) when x ∈ θ/2-neighborhood(K). So,

we can write

sup
|β|≤m

sup
x∈K

⏐⏐⏐(Wj ∗ ∂βψ
)

(x)−
(
∂βϕ

)
(x)
⏐⏐⏐ ≤ (1 + 2 sup

|β|≤m
sup
x∈Rn

⏐⏐⏐(∂βψ) (x)
⏐⏐⏐) ε,

for j ≥ jε,m. Let us fix j0 ≥ jε,m.
The kernel Wj0 (x− y) can be represented by the series

Wj0 (x− y) =

(
j0
4π

)n/2∑
k≥0

(
− j0

4 |x− y|
2
)k

k!

that converges absolutely for every x, y ∈ Rn.
Let Kθ be the closure of the θ-neighborhood of K. If x ∈ K and y ∈ Kθ,

then x − y belongs to a compact subset K ′ of Rn. Therefore, the series converges
absolutely and uniformly on K × Kθ, as well as each of its term-by-term partial
derivatives. So, given m ∈ N, there is Nj0,m ≥ 1 so that⏐⏐⏐⏐⏐⏐⏐

(
∂βWj0

)
(x− y)−

(
j0
4π

)n/2 N∑
k=0

(
− j0

4

)k
k!

∂βx

(
|x− y|2k

)⏐⏐⏐⏐⏐⏐⏐ ≤ ε
for |β| ≤ m and N ≥ Nj0,m . Since(

∂βWj0

)
∗ ψ = Wj0 ∗

(
∂βψ

)
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(
Wj0 ∗ ∂βψ

)
(x)−

∫
Kθ

(
j0
4π

)n/2 N∑
k=0

(
− j0

4

)k
k!

∂βx

(
|x− y|2k

)
ψ (y) dy

⏐⏐⏐⏐⏐⏐⏐
≤

∫
Kθ

⏐⏐⏐⏐⏐⏐⏐Wj0 (x− y)−
(
j0
4π

)n/2 N∑
k=0

(
− j0

4

)k
k!

∂βx

(
|x− y|2k

)⏐⏐⏐⏐⏐⏐⏐ |ψ (y)| dy

≤ meas (Kθ)

(
sup
x∈Rn

|ψ (x)|
)
ε,

for N > Nj0,m . We fix N ≥ max (Nj0,m,m)
According to Lemma 1,

|x− y|2k =
∑
|γ|=k

k!

γ1!...γn!
(x− y)2γ =

∑
|γ|=k

k!

γ1!...γn!

n∏
s=1

2γs∑
ls=0

(
2γs
ls

)
xlss y

2γs−ls
s .

Therefore,

∫
Kθ

(
j0
4π

)n/2 N∑
k=0

(
− j0

4

)k
k!

∂βx

(
|x− y|2k

)
ψ (y) dy

=

(
j0
4π

)n/2 N∑
k=0

−
(
j0
4

)k
k!

∑
|γ|=k

k!

γ1!...γn!

n∏
s=1

2γs∑
ls=0

(
2γs
ls

)(∫
Kθ

y2γs−lss ψ (y) dy

)
∂β
(
xlss

)
,

which is a polynomial in x of degree 2N −m.
This completes the proof of the theorem.

5 The derivative of a distribution

Given T ∈ D′, we want to define n distributions, called the n partial derivatives of
T with respect to the variables x1, ..., xn. We will do it in a way that extends to
distributions the notion of partial derivative of a function. In other words, if T = Tf
for f continuous with continuous partial derivatives, the distribution j-th partial
derivative of T will be T∂xj f .

So, let us begin with this case and let us assume, to simplify the notation, that
j = 1. Then, given ϕ ∈ D,(

T∂x1f , ϕ
)

=

∫
Rn

(∂x1f) (x)ϕ (x) dx∫
Rn−1

(∫ ∞

−∞
(∂x1f)

(
x1, x

′)ϕ (x1, x′) dx1) dx′, (5.1)
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where we have written, as usual, x = (x1, x
′). Let us observe that for x′ fixed, the

function ϕ (x1, x
′) = 0 for x1 outside a finite interval. Thus, using integration by

parts on x1, the integral in (5.1) becomes

−
∫
Rn

f (x) (∂x1ϕ) (x) dx.

So, we can write (
T∂x1f , ϕ

)
= − (Tf , ∂x1ϕ) .

If instead of Tf we consider a distribution T ∈ D′, the functional

D → C
ϕ → − (T, ∂x1ϕ)

(5.2)

is well defined and it is linear. Moreover, if {ϕj}j≥1 converges to zero in D as j →∞,
it should be clear that {∂x1ϕj}j≥1 also converges to zero in D as j → ∞. Thus,

(Tf , ∂x1ϕj) → 0 in C as j → ∞. Hence, the functional (5.2) belongs to D′. In
general,

Definition 94. Given T ∈ D′ the distribution

D → C
ϕ → −

(
T, ∂xjϕ

)
is called the j-th partial derivative of T and it is denoted ∂xjT , for 1 ≤ j ≤ n.

Remark 95. The process of computing partial derivatives of a distribution can go
on indefinitely. Thus, in this sense, distributions are smooth. Moreover, since given
ϕ ∈ D,

∂xk
(
∂xjϕ

)
= ∂xj (∂xkϕ)

for 1 ≤ j, k ≤ n, it follows that the result of differentiating a distribution repeatedly,
does not depend on the order in which we take the partial derivatives. Therefore,
given α ∈ Nn, we can write

(∂αT, ϕ) = (−1)|α| (T, ϕ) ,

for all ϕ ∈ D.
So, we can see the usefulness of the notation ∂α, when differentiating a distribu-

tion.
Let us observe that given a continuous function f with enough continuous partial

derivatives, we have, integrating by parts,

∂αTf = T∂αf ,

where, on the left-hand side, ∂α indicates the partial derivative in the sense of
distributions, while, on the right-hand side, ∂α indicates the partial derivative in
the classical sense.
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Example 96. 1. The distribution Tma defined in 3) of Example 23 is equal to
(−1)m ∂mx1δa.

2. Given the locally integrable function ln |x| defined on R, we claim that

d

dx
Tln|x| = pv

1

x
. (5.3)

Indeed, given ϕ ∈ D (R),(
d

dx
Tln|x|, ϕ

)
= −

∫
R

(ln |x|)ϕ′ (x) dx = − lim
j→∞

∫
|x|>1/j

(ln |x|)ϕ′ (x) dx.

For j ≥ 1 fixed, we write∫
|x|>1/j

(ln |x|)ϕ′ (x) dx =

∫ −1/j

−∞
(ln (−x))ϕ′ (x) dx  

(1)

+

∫ ∞

1/j
(lnx)ϕ′ (x) dx  

(2)

and we integrate by parts. Then,

(1) = ln

(
1

j

)
ϕ

(
−1

j

)
−
∫ −1/j

−∞

ϕ (x)

x
dx,

while

(2) = − ln

(
1

j

)
ϕ

(
1

j

)
−
∫ ∞

1/j

ϕ (x)

x
dx.

Thus,∫
|x|>1/j

(ln |x|)ϕ′ (x) dx = − ln

(
1

j

)(
ϕ

(
1

j

)
− ϕ

(
−1

j

))
−
∫
|x|>1/j

ϕ (x)

x
dx

= −2

j
ln

(
1

j

)
ϕ′ (θj)−

∫
|x|>1/j

ϕ (x)

x
dx,

for some θj between 1/j and −1/j.

So, (
d

dx
Tln|x|, ϕ

)
= lim

j→∞

∫
|x|>1/j

ϕ (x)

x
dx =

(
pv

1

x
, ϕ

)
.

3. Next, we claim that
d

dx

(
pv

1

x

)
= −fp 1

x2
. (5.4)
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In fact, given ϕ ∈ D (R),(
d

dx

(
pv

1

x

)
, ϕ

)
= − lim

j→∞

∫
|x|>1/j

ϕ′ (x)

x
dx.

For j ≥ 1 fixed, we write∫
|x|>1/j

ϕ′ (x)

x
dx =

∫ −1/j

−∞

ϕ′ (x)

x
dx  

(1)

+

∫ ∞

1/j

ϕ′ (x)

x
dx  

(2)

and we integrate by parts. Then,

(1) = −jϕ
(
−1

j

)
+

∫ −1/j

−∞

ϕ (x)

x2
dx

and

(2) = −jϕ
(

1

j

)
+

∫ ∞

1/j

ϕ (x)

x2
dx.

Therefore,

(1) + (2) = −j
(
ϕ

(
1

j

)
+ ϕ

(
−1

j

))
+

∫
r>|x|>1/j

ϕ (x)

x2
dx,

where r ≥ 1 is such that supp (ϕ) ⊆ {x ∈ R : |x| < r}.
Following Example 43, we write∫

r>|x|>1/j

ϕ (x)

x2
dx =

∫
r>|x|>1/j

ϕ (x)− ϕ (0)− ϕ′ (0)x

x2
dx

+ϕ (0)

∫
r>|x|>1/j

dx

x2
+ ϕ′ (0)

∫
r>|x|>1/j

dx

x
.

As in Example 43, ∫
r>|x|>1/j

dx

x
= 0,

while

ϕ (0)

∫
r>|x|>1/j

dx

x2
= ϕ (0)

(
1

r
+ j − 1

r
+ j

)
= 2jϕ (0) .

Then,∫
|x|>1/j

ϕ′ (x)

x
dx = −j

(
ϕ

(
1

j

)
− ϕ (0)

)
− j

(
ϕ

(
−1

j

)
− ϕ (0)

)
+

∫
r>|x|>1/j

ϕ (x)− ϕ (0)− ϕ′ (0)x

x2
dx

= −j 1

j
ϕ′ (θj)− j

(
−1

j

)
ϕ′ (ηj) +

∫
r>|x|>1/j

ϕ (x)− ϕ (0)− ϕ′ (0)x

x2
dx,
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where 0 < θj , ηj < 1/j.

So, taking the limit on both sides as j →∞ we get, according to Example 43(
pv

1

x
, ϕ′
)

= −ϕ′ (0) + ϕ′ (0) +

(
fp

1

x2
, ϕ

)
.

Thus, we have proved (5.4).

4. Let us consider the function |x| defined on R . Integrating by parts,(
d

dx
T|x|, ϕ

)
=

∫ 0

−∞
xϕ′ (x) dx−

∫ ∞

0
xϕ′ (x) dx

= −
∫ 0

−∞
ϕ (x) dx+

∫ ∞

0
ϕ (x) dx.

That is to say,
d

dx
T|x| = Tsgn(x), (5.5)

where sgn denotes the sign function, defined as

sgn (x) =

{
1 if x ≥ 0
−1 if x < 0

.

Let us observe that the choice of value at x = 0 does not matter. Moreover,
the derivative, in the distributional sense, of T|x|, is the distribution associated
with the classical derivative of |x|, which exists for x ̸= 0.

5. Next, we calculate d
dxTsgn(x). Since∫ 0

−∞
ϕ′ (x) dx−

∫ ∞

0
ϕ′ (x) dx = 2ϕ (0) ,

we have
d

dx
Tsgn(x) = 2δ0. (5.6)

That is to say, the jump at zero of the function sgn results in a derivative
equal to a multiple of the Dirac measure δ0, where the factor is equal to the
height of the jump.

A similar behavior can be observed in the next example.
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6. Let Hn be the n-dimensional Heaviside function,

Hn (x) =

{
1 if x1, ..., xn ≥ 0
0 otherwise

.

Then,
∂x1 ...∂xnTHn = δ0. (5.7)

Indeed, given ϕ ∈ D, if we integrate on x1, then x2, etc., we have

(−1)n
∫ ∞

0
....

∫ ∞

0
(∂x1 ...∂xnϕ) (x) dx1...dxn = ϕ (0) .

7. Given k = 1, 2, ..., we calculate d−1

(
δ
(k)
0

)
, where δ0 is the Dirac distribution

concentrated on {0} ⊆ R and δ
(k)
0 is the derivative of δ0, of order k.(

d−1

(
δ
(k)
0

)
, ϕ
)

= (−1)k (ϕ (−x))(k) (0)

= ϕ(k) (0) =
(
δ0, ϕ

(k)
)

= (−1)k
(
δ
(k)
0 , ϕ

)
.

Or,

d−1

(
δ
(k)
0

)
= (−1)k δ

(k)
0 .

Therefore, the distribution δ
(k)
0 is odd when k is odd, and it is even when k is

even.

8. In general, if T is an odd distribution in D′, ∂xjT is even. If T is an even
distribution in D′, ∂xjT is odd.

In fact, let us assume that T is odd. Given ϕ ∈ D,(
d−1

(
∂xjT

)
, ϕ
)

= −
(
T, ∂xj (ϕ (−·))

)
=
(
T,
(
∂xjϕ

)
(−·)

)
=

(
d−1T, ∂xjϕ

)
=
(1)
−
(
T, ∂xjϕ

)
=
(2)

(
∂xjT, ϕ

)
.

When T is even, we only need to move the negative sign from the right-hand
side of (1) to the right-hand side of (2), to conclude that ∂xjT is odd.

Remark 97. It should be clear that Tln|x| and T|x| are even distributions, while
Tsgnx is odd.

According to 2) in Remark 44, the distribution vp 1/x, is odd, while the distri-
bution fp 1/x2is even.

Therefore, (5.3), (5.4), (5.5), and (5.6), are all illustrations of 8) in Example 96.
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Theorem 98. If A denotes one of the spaces D′, E ′, or S ′, the operator ∂α is linear
and continuous from A into itself. Moreover, given T ∈ A,

supp (∂αT ) ⊆ supp (T ) .

Proof. For instance, we will work in the case A = S ′, the other cases being similar.
According to Lemma 54, it should be clear that ∂α is well defined and linear from
S ′ into S ′. So, given T ∈ S ′ and given a bounded subset B1 of S,

∥∂αT∥S′,B1
= sup

ϕ∈B1

|(∂αT ) (ϕ)| = sup
ϕ∈B1

|T (∂αϕ)|

≤ sup
ϕ∈B2

|T (ϕ)| = ∥∂αT∥S′,B2
,

because, according to Lemma 54, the operator ∂α maps bounded subsets of S into
bounded subsets of S. Thus, the continuity is proved.

As for the support of ∂αT , if x0 /∈ supp (T ), by definition, there is an open
neighborhood V of x0 such that T (ϕ) = 0 if supp (ϕ) ⊆ V . According to Lemma
54, supp (∂αϕ) ⊆ V , so

T (∂αϕ) = 0 = (−1)|α| (∂αT ) (ϕ) .

Therefore, x0 /∈ supp (∂αT ).
This completes the proof of the lemma.

The following result is an immediate consequence of Theorem 98.

Corollary 99. If A denotes one of the spaces D′, E ′, or S ′, a convergent sequence
{Tj}j≥1 ⊆ A can be differentiated term by term without altering its convergence.

Theorem 100. The operator ∂α is linear and continuous from D(m)′ into D(m+|α|)′,
for m = 1, 2, ..., and |α| ≤ m.

Proof. By Lemma 76, it should be clear that the operator is well defined and linear
from D(m)′ into D(m+|α|)′. If T ∈ D(m)′ and ϕ belongs to a bounded subset B1 of

D(m+|α|)
K ,

∥∂αT∥D(m+|α|)′,B1
= sup

ϕ∈B1

⏐⏐⏐(∂αT, ϕ)D(m+|α|)′,D(m+|α|)

⏐⏐⏐
= sup

ϕ∈B1

⏐⏐⏐(T, ∂αϕ)D(m)′,D(m)

⏐⏐⏐ .
Lemma 76 tells us that ∂αϕ belongs to a bounded subset B2 of D(m) when ϕ

belongs to a bounded subset B1 of D(m+|α|)
K . Thus,

sup
ϕ∈B1

⏐⏐⏐(T, ∂αϕ)D(m)′,D(m)

⏐⏐⏐ ≤ sup
ψ∈B2

⏐⏐⏐(T, ψ)D(m)′,D(m)

⏐⏐⏐ = ∥T∥D(m)′,B2.

This completes the proof of the theorem.
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That a function f has a partial derivative with respect to, say x1, at a point x,
means that there is

lim
h1→0

f (x1 + h1, x
′)− f (x)

h1
= (∂x1f) (x) .

Now, if h = (h1, 0) and τ−h is the translation operator

τ−h (f) (x) = f (x+ h) ,

we can write

lim
h→0

τ−h (f) (x)− f (x)

h1
= (∂x1f) (x) .

With the obvious meaning, we have, in general,

lim
h→0

τ−h (f) (x)− f (x)

hj
=
(
∂xjf

)
(x) .

It is possible to obtain the same result for a distribution, if we extend the above
notation. In fact, it should be clear that the operator τh defined as

τh (ϕ) (x) = ϕ (x− h)

is linear and continuous from D into itself. Thus, we can define the translation
operator τ−h on D′ as

(τ−h (T ) , ϕ) = (T, τh (ϕ)) , (5.8)

which results from a simple change of variables when T is defined by a locally
integrable function. Since τh maps bounded subsets of D into bounded subsets of
D, the operator τ−h is continuous from D′ into D′.

Theorem 101. There is

lim
h→0

τ−h (T )− T
hj

= ∂xjT ,

where the limit is taken with respect to the strong topology of D′.

Proof. For T ∈ D′, let B′ be the subset of D′ defined as{
τ−h (T )− T

hj

}
0<|hj |<1

. (5.9)

Now, for ϕ ∈ D fixed and 0 < |hj | < 1, we write(
τ−h (T )− T

hj
, ϕ

)
=

(
T,
τh (ϕ)− ϕ

hj

)
. (5.10)
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Let us observe that τh(ϕ)−ϕ
hj

∈ DK for some K ⊆ Rn compact independent of h.

Moreover,

∂α
τh (ϕ)− ϕ

hj
(x) =

τh (∂αϕ) (x)− ∂αϕ (x)

hj

= −
(
∂xj∂

αϕ
)

(θ) ,

for some θ between x− h and x. So,

sup
0<|hj |<1

sup
x∈Rn

⏐⏐∂xj∂αϕ (x)
⏐⏐ <∞.

Thus, according to Remark 22, the subset of D{
τh (ϕ)− ϕ

hj

}
0<|hj |<1

is bounded in D. Therefore,

sup
0<|hj |<1

⏐⏐⏐⏐(τ−h (T )− T
hj

, ϕ

)⏐⏐⏐⏐ = sup
0<|hj |<1

⏐⏐⏐⏐(T, τh (ϕ)− ϕ
hj

)⏐⏐⏐⏐ <∞.

According, again, to Remark 22, B′ is a bounded subset of D′. Therefore, the
strong and the weak topology coincide on B′. Thus, we are left to show that(

τ−h (T )− T
hj

, ϕ

)
→
h→0

(
∂xjT, ϕ

)
.

for each ϕ ∈ D.
Since ∂αϕ has the same properties as ϕ, it will be enough to prove that

τh (ϕ)− ϕ
hj

(x) →
h→0
−∂xjϕ (x)

in C, uniformly with respect to x ∈ Rn.

τ−h (ϕ)− ϕ
hj

(x) + ∂xjϕ (x) = −
(
∂xjϕ

)
(θ) + ∂xjϕ (x)

=
(
∂2xjϕ

)
(ξ) |x− ξ| ,

for some ξ between x and θ. Finally,

sup
x∈Rn

⏐⏐⏐⏐τ−h (ϕ)− ϕ
hj

(x) + ∂xjϕ (x)

⏐⏐⏐⏐ ≤ sup
x∈Rn

⏐⏐⏐(∂2xjϕ) (x)
⏐⏐⏐ |h| →

h→0
0.

This completes the proof of the theorem.
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A similar result can be proved for T ∈ S ′ and for T ∈ E ′.
One of the early goals of the theory of distributions was to be able to take any

number of derivatives of a continuous function. The following result tells us that, in
the end, distributions fit pretty tightly into that initial goal.

Theorem 102. (for the proof, see [25], p. 82, Theorem XXI) Given T ∈ D′ and
given an open and bounded subset Ω of Rn, there is a continuous function f : Ω→ C
and a number m ∈ N such that

T |Ω =
∂nm

∂xm1 ...∂xmn
Tf

on D (Ω).

Remark 103. Theorem 102 shows that every distribution restricted to an open and
bounded subset of Rn has finite order. Since there are distributions of infinite order,
the assumption “Ω is bounded” cannot be dropped.

Theorem 104. (for the proof, see [25], p. 239, Theorem VI) Given T ∈ S ′, there
is an slowly increasing and continuous function f : Rn → C and an n-tuple α ∈ Nn
so that

T = ∂αTf

on S.

Remark 105. In view of 2) in Example 59, Theorem 104 justifies the name tem-
pered, given to the distributions in S ′. Let us observe that Theorem 104 and Theo-
rem 100 imply that every tempered distribution has finite order.

Remark 106. According to Theorem 77 and Theorem 100, the equality (5.3) allows
us to say that pv 1

x has order ≤ 1, which is the optimal result. Likewise, (5.4) implies
that fp 1

x2
has order ≤ 2, which is also optimal. However, (5.5), (5.6) and (5.7) do

not yield optimal results.

Theorem 107. Let T ∈ E ′ and let U ⊆ Rn be an open and bounded neighborhood
of supp (T ). Then, there is a finite number of n-tuples α and a finite family {fα}α
of continuous functions fα : Rn → C, so that supp (fα) ⊆ U and

T =
∑
α

∂αTfα

on E.

Proof. According to Theorem 62, if θ ∈ D (U) is equal to one on an open neighbor-
hood of supp (T ), by definition we have

(T, ϕ) = (T, θϕ) ,
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for all ϕ ∈ E .

Furthermore, in view of Theorem 102, there is a continuous function f : U → C
and an n-tuple β so that

T = ∂βTf

on D (U).

Since supp (θϕ) ⊆ U ,

(T, θϕ) =
(
∂βTf , θϕ

)
= (−1)|β|

(
Tf , ∂

β (θϕ)
)

.

Theorem 4 implies that

(T, θϕ) = (−1)|β|
β∑
γ=0

(
β

γ

)(
Tf ,
(
∂β−γθ

)
(∂γϕ)

)

= (−1)|β|
β∑
γ=0

(
β

γ

)∫
U
f (x)

(
∂β−γθ

)
(x) (∂γϕ) (x) dx

=

⎛⎝ β∑
γ=0

(−1)|β+γ|
(
β

γ

)
∂γT(∂β−γθ)f , ϕ

⎞⎠ ,

for every ϕ ∈ E .

This completes the proof of the theorem.

Remark 108. Theorem 107 shows that every distribution with compact support
has finite order. However, 1) in Example 96 shows that there is not m ∈ N so that
E ′ ⊆ D′(m).

Theorem 109. (for the proof, see [25], p. 93, Theorem XXVIII) Let T ∈ E ′ and let
us assume that T has order ≤ m. Then, T (ϕ) = 0 if ϕ ∈ E and (∂αϕ) |supp (T ) = 0
for |α| ≤ m.

Using Theorem 109, the result that follows characterizes those distributions in
E ′ that are concentrated on a point.

Theorem 110. Given T ∈ E ′, the following statements are equivalent:

1. The distribution T is concentrated on {a}.

2.

T =
∑

|α|≤m

cα∂
αδa,

for some m ∈ N and cα ∈ C.
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Proof. It should be clear that 2) ⇒ 1). Conversely, if T has order ≤ m, given ϕ ∈ E
we write its Taylor expansion about a as

ϕ (x) =
∑

|α|≤m

(∂αϕ) (a)

α!
(x− a)α

+
∑

|α|=m+1

m+ 1

α!

(∫ 1

0
(∂αϕ) (a+ s (x− a)) ds

)
(x− a)α .

Let

ϕα (x) =

(∫ 1

0
(∂αϕ) (a+ s (x− a)) ds

)
,

for |α| = m+ 1 fixed. It should be clear that ϕα ∈ E . Given β ∈ Nn with |β| ≤ m,(
∂β ((x− a)α ϕα (x))

)
x=a

=
∑
γ≤β

(
β

γ

)
∂γx ((x− a)α)x=a

(
∂β−γϕα

)
x=a

= 0.

Therefore, Theorem 109 implies that (T, (x− a)α ϕα (x)) = 0. Then,

(T, ϕ) =
∑

|α|≤m

(∂αϕ) (a)

α!
(T, (x− a)α)

=

⎛⎝ ∑
|α|≤m

(−1)|α|

α!
(T, (x− a)α) ∂αδa, ϕ

⎞⎠ .

This completes the proof of the theorem.

Theorem 111. (see [25], p. 54, Theorem III; for the proof, see [25], p. 53, Theorem
II) Let f : R→ C be a continuous function. Let us assume that f ′ exists a.e. and
that it is equal to a locally integrable function g. Then, if f is the indefinite integral
of g,

d

dx
Tf = Tg.

Corollary 112. The distribution Tln|x| is tempered.

Proof.
d

dx
(x ln |x| − x) = ln |x|

for x ̸= 0, where x ln |x| − x, defined as zero for x = 0, is a slowly increasing
continuous function. Therefore, x ln |x| − x defines a tempered distribution.

In view of Theorem 98, d
dxTx ln|x|−x belongs to S ′.
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According to Theorem 111,

d

dx
Tx ln|x|−x = Tln|x|,

so the distribution Tln|x| is tempered.

This completes the proof of the corollary.

The following theorem extends to distributions a result well known for functions.

Theorem 113. Given T ∈ D′ (R), dT
dx = 0 if, and only if, T is the distribution

defined by a constant function.

Proof. If T = Tc for some constant function c,(
dTc
dx

, ϕ

)
= −c

∫
R

dϕ

dx
(x) dx = 0,

since the function ϕ has compact support.

Conversely, given a fixed function α in D (R) with integral one, we can write
ϕ ∈ D (R) as

ϕ = ϕ− α
∫
R
ϕ (x) dx+ α

∫
R
ϕ (x) dx

= ϕ1 + α

∫
R
ϕ (x) dx,

where ∫
R
ϕ1 (x) dx = 0.

We claim that {
ϕ ∈ D (R) :

∫
R
ϕ (x) dx = 0

}
=

{
ϕ ∈ D (R) :

∫ x

−∞
ϕ (t) dt ∈ D (R)

}
. (5.11)

If ϕ ∈ D (R), then supp (ϕ) ⊆ [a, b] for some a, b ∈ R. Therefore, for all x > b,∫ x

a
ϕ (t) dt =

∫ b

a
ϕ (t) dt.

If
∫
R ϕ (x) dx = 0,

0 =

∫
R
ϕ (x) dx =

∫ b

a
ϕ (t) dt.

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 1 – 137

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


74 Josefina Alvarez

So, ∫ x

−∞
ϕ (t) dt =

∫ x

a
ϕ (t) dt = 0

for x > b. Likewise, it should be clear that∫ x

−∞
ϕ (t) dt = 0,

for every x < a.

Conversely, if
∫ x
−∞ ϕ (t) dt ∈ D (R), there is b ∈ R so that∫ x

−∞
ϕ (t) dt = 0,

for every x > b. As a consequence,
∫
R ϕ (x) dx = 0.

Therefore, we have proved the equality (5.11).

Then,

(T, ϕ) = (T, ϕ1) + (T, α)

∫
R
ϕ (x) dx

=

(
T,

d

dx

(∫ x

−∞
ϕ1 (t) dt

))
+
(
T(T,α), ϕ

)
−
(
T ′,

∫ x

−∞
ϕ1 (t) dt

)
+
(
T(T,α), ϕ

)
,

where T(T,α) is the distribution defined by the function identically equal to the
complex number (T, α). Therefore,

T = T(T,α).

This completes the proof of the theorem.

The search for primitives of a distribution goes hand in hand with the calculation
of derivatives. Schwartz’s book dedicates quite a bit of space to this subject (see
[25], Chapter II, Sections 4-6).

6 Tensor product, convolution product, and multiplica-
tive product, of distributions

As we did in the previous section with the derivative of a distribution, we will define
each of these products in such a manner as to agree with the usual definition, when
considering functions.
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6.1 Tensor product

We begin with the tensor product of two functions.

Definition 114. Given f : Rn → C and g : Rm → C, the pointwise multiplication
f (x) g (y) defines a new function from Rn × Rm into C, denoted f ⊗ g and called
the tensor product of f and g.

Lemma 115. Given f : Rn → C and g : Rm → C,

supp (f ⊗ g) = supp (f)× supp (g) .

Proof. If (x0, y0) ∈ supp (f ⊗ g), by definition, there is a sequence {(xj , yj)}j≥1 in

Rn+m so that (xj , yj)→ (x0, y0) as j →∞ and f (xj) g (yj) ̸= 0 for all j ≥ 1. Then,
it should be clear, again by definition, that x0 ∈ supp (f) and y0 ∈ supp (g).

Conversely, if (x0, y0) ∈ supp (f) × supp (g), there are sequences {xj}j≥1 and
{yj}j≥1 converging to x0 and y0, respectively, as j → ∞, so that f (xj) ̸= 0 and
g (yj) ̸= 0 for all j ≥ 1.

Therefore, the sequence {(xj , yj)}j≥1 converges to (x0, y0) as j →∞ and (f ⊗ g) (xj , yj) ̸=
0 for all j ≥ 1. So, (x0, y0) ∈ supp (f ⊗ g).

This completes the proof of the lemma.

Remark 116. Definition 114 can be extended, associatively, to functions fl : Rnl →
C for l = 3, 4, ... as

(f1 ⊗ f2 ⊗ ...⊗ fl−1)⊗ fl = (f1 (a) f2 (b) ...fl−1 (y)) fl (z) .

Example 117. The n-dimensional Heaviside function Hn defined in 6) of Example
96, is the tensor product of n one-dimensional Heaviside functions Hx1 , ...,Hxn (see
Definition 11).

Hn = Hx1 ⊗ ...⊗Hxn .

In order to extend Definition 114 to distributions, we need to work simultane-
ously with test functions having different domains and acting on different variables.
Therefore, it is convenient to indicate Dx, Dy, and Dx,y, the space of test functions
defined on Rn, Rm, and Rn × Rm, respectively.

For the purpose of defining D (Rn × Rm), L1
loc (Rn × Rm), etc., or whenever it is

convenient, we may identify Rn × Rm with Rn+m.

Definition 118. Let X,Y, Z be topological linear spaces. A bilinear map F : X ×
Y → Z is hypocontinuous if it satisfies the following conditions:

1. It is separately continuous. That is, F (x, ·) : Y → Z is continuous for each
x ∈ X fixed, and F (·, y) : X → Z is continuous for each y ∈ Y fixed.
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2. For every bounded set X ⊆X, the linear map F (x, ·) : Y → Z is continuous,
uniformly on x ∈ X .

3. For every bounded set Y ⊆Y , the linear map F (·, y) : X → Z is continuous,
uniformly on y ∈ Y.

Remark 119. Condition 2) in Definition 118 says that the family of linear maps
{F (x, ·)}x∈X is equicontinuous.

Likewise, condition 3) in Definition 118 says that the family of linear maps
{F (·, y)}y∈Y is equicontinuous.

The notion of hypocontinuity is stronger than separate continuity and weaker
that continuity.

For more on hypocontinuity, see ([26], pp. 107 and 300).

Definition 120. Given k = 0, 1, ..., let E(k) be the complex linear space consisting
of those functions ϕ : Rn → C that are continuous and have continuous derivatives
of order ≤ k. The space E(k) is a Fréchet space with the topology defined by the
countable family of norms

∥ϕ∥k,Bl
= sup

|α|≤k
sup
x∈Bl

|(∂αϕ) (x)| ,

where Bl = {x ∈ Rn : |x| ≤ l} for l = 1, 2, ... and k is fixed.

Theorem 121. ([25], p. 112) The map

(f, g)→ f ⊗ g

is bilinear and continuous from Ex×Ey into Ex,y and it is bilinear and hypocontinuous

from Dx ×Dy into Dx,y and from E(k)x ×D(k)
y into D(k)

x,y.

Let us observe that when the functions f and g in Definition 114 are locally
integrable on Rn and Rm respectively, the tensor product f ⊗ g is locally integrable
on Rn × Rm.

Thus, given ϕ ∈ Dx,y, Fubini’s theorem tells us that

(Tf⊗g, ϕ) =

∫
Rn×Rm

f (x) g (y)ϕ (x, y) dxdy

=

∫
Rn

(∫
Rm

g (y)ϕ (x, y) dy

)
f (x) dx

=

∫
Rm

(∫
Rn

f (x)ϕ (x, y) dx

)
g (y) dy.
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We claim that these iterated integrals can be written, in the sense of distributions,
as (

T(f⊗g), ϕ
)
D′

x,y ,Dx,y
=

(
Tf(x),

(
Tg(y), ϕ (x, y)

)
D′

yDy

)
D′

xDx

=
(
Tg(y),

(
Tf(x), ϕ (x, y)

)
D′

xDx

)
D′

yDy

.

First of all, for each x ∈ Rn, the function ϕ (x, ·) is smooth and supp (ϕ (x, ·)) is con-
tained in the projection of supp (ϕ) onto Rm. Thus, ϕ (x, ·) ∈ Dy, so (Tg, ϕ (x, ·))D′

yDy

is well defined for each x ∈ Rn. Likewise, (Tf , ϕ (·, y))D′
xDx

is well defined for each
y ∈ Rm.

According to Theorem 6 and Theorem 8, the functions

λ (x) = (Tg, ϕ (x, ·))D′
yDy

and
ψ (y) = (Tf , ϕ (·, y))D′

xDx

are smooth. Moreover, if supp (ϕ) ⊆ K, compact subset of Rn × Rm, the support
of λ is included in K1, the projection of K onto Rn. In fact, if x ∈ Rn\K1, then
(x, y) ∈ (Rn × Rm) \K for every y ∈ Rm. Therefore, λ (x) = 0. Since K1 is a
compact subset of Rn, we conclude that λ ∈ Dx. Likewise, ψ ∈ Dy.

Let us observe that if ϕ has separated variables, that is ϕ (x, y) = α (x)β (y),
α ∈ Dx and β ∈ Dy, we have

(Tf⊗g, ϕ)D′
x,y ,Dx,y

= (Tf , α)D′
xDx

(Tg, β)D′
yDy

.

Our goal is to prove that all these statements remain valid when, instead of
Tf and Tg, we consider a pair of arbitrary distributions. To this end, we need the
following result:

Theorem 122. The linear subspace of Dx,y consisting of finite linear combinations
of functions with separated variables is dense in Dx,y.
Proof. Let us fix ϕ ∈ Dx,y. We can assume that there are compact sets K1 ⊆ Rn
and K2 ⊆ Rm so that supp (ϕ) ⊆ K1 ×K2. Moreover, let k, k′ ≥ 1 be so that, for
some ε > 0,

ε-neigbordhood (K1)× ε-neigbordhood (K2)

⊆ {x ∈ Rn : |x| ≤ k} × {y ∈ Rm : |y| ≤ k}
⊆

{
(x, y) ∈ Rn × Rm : |(x, y)| ≤ k′

}
.

According to (4.1) and Theorem 90, given l = 0, 1, ..., there is a sequence {Pj}j≥1
of complex polynomial functions such that {∂αPj}j≥1 converges to ∂αϕ as j →∞,
uniformly with respect to (x, y) ∈ Bk′ and α ∈ Nn with |α| ≤ l.

Now, let ψ1 ∈ Dx and ψ2 ∈ Dy be test functions satisfying the following proper-
ties:
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1. 0 ≤ ψ1 (x) ≤ 1 for all x ∈ Rn, ψ1 (x) = 1 for x ∈ ε/2-neigbordhood(K1),
supp (ψ1) ⊆ ε-neigbordhood(K1).

2. 0 ≤ ψ2 (y) ≤ 1 for all y ∈ Rm, ψ2 (y) = 1 for x ∈ ε/2-neigbordhood(K2),
supp (ψ2) ⊆ ε-neigbordhood(K2).

Then, the sequence {ψ1ψ2Pj}j≥1 converges to ∂αϕ as j → ∞, uniformly with
respect to (x, y) ∈ K1 ×K2 and α ∈ Nn with |α| ≤ l.

Furthermore, it should be clear that, for each j ≥ 1, the function ψ1 (x)ψ2 (y)P (x, y)
is a finite linear combination of functions with separated variables.

This completes the proof of the theorem.

Remark 123. According to Theorem 53, Dx,y is dense in Sx,y and in Ex,y. Therefore,
Theorem 122 implies that the linear subspace of Dx,y consisting of finite linear
combinations of functions with separated variables is dense in Sx,y and in Ex,y.

Theorem 124. Let T ∈ D′
x and S ∈ D′

y.

1. If ϕ ∈ Dx,y, the function λ (x) = (Sy, ϕ (x, y))D′
yDy

is well defined and belongs

to Dx. Likewise, the function ψ (y) = (Tx, ϕ (x, y))D′
xDx

is well defined and
belongs to Dy.

2. The maps

ϕ→
(
Tx, (Sy, ϕ (x, y))D′

yDy

)
D′

xDx

(6.1)

and

ϕ→
(
Sy, (Tx, ϕ (x, y))D′

xDx

)
D′

yDy

(6.2)

belong to D′
x,y.

3. (
Tx, (Sy, ϕ (x, y))D′

yDy

)
D′

xDx

=
(
Sy, (Tx, ϕ (x, y))D′

xDx

)
D′

yDy

, (6.3)

for all ϕ ∈ Dx,y.

Proof. For x ∈ Rn fixed, the function y → ϕ (x, y) has compact support contained
in the projection onto Rm of supp (ϕ). Moreover, it should be clear that it is
smooth. Therefore, the function λ is well defined. If {xj}j≥1 converges to x in Rn
as j → ∞, the sequence {ϕ (xj , ·)}j≥1 converges to ϕ (x, ·) in Dy as j → ∞. Thus,
λ (xj) → λ (x) in C as j → ∞. So, λ is continuous on Rn. With the notation used
in Theorem 101,

λ (x+ h)− λ (x)

h1
=

(
Sy,

ϕ (x+ h, y)− ϕ (x, y)

h1

)
D′

yDy

.
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Let us show that there is

lim
h→0

ϕ (x+ h, ·)− ϕ (x, ·)
h1

= (∂x1ϕ) (x, ·) (6.4)

in Dy for each x ∈ Rn. If we fix k = 0, 1, ..., β ∈ Nn with |β| ≤ k and h ∈ R with
|h| ≤ 1,(
∂βyϕ

)
(x+ h, y)−

(
∂βyϕ

)
(x, y)

h1
−
(
∂x1∂

β
yϕ
)

(x, y) =
(
∂x1∂

β
yϕ
) (
θ, x′, y

)
−
(
∂x1∂

β
yϕ
)

(x, y)

=
(
∂2x21

∂βyϕ
) (
ξ, x′, y

)
(θ − x1) ,

where θ belongs to the segment with end points x1 and x1 + h1, while ξ belongs to
the segment with end points θ and x1. Thus,⏐⏐⏐⏐⏐⏐

(
∂βyϕ

)
(x+ h, y)−

(
∂βyϕ

)
(x, y)

h1
−
(
∂x1∂

β
yϕ
)

(x, y)

⏐⏐⏐⏐⏐⏐
≤

(
sup

|α|≤k+2
sup

(x,y)∈Rn×Rm

|(∂αϕ) (x, y)|

)
|θ − x1| →

h→0
0,

where α ∈ Nn+m. Since

suppy

⎛⎝
(
∂βyϕ

)
(x+ h, y)−

(
∂βyϕ

)
(x, y)

h1

⎞⎠ ⊆ K2,

where K2 is a compact subset of Rm, we conclude that (6.4) is true.

In the same way, using induction on the order of the partial derivatives of λ, we
conclude that λ ∈ Dx.

With the obvious change of notation, we can prove in the exact same manner
that the function ψ is well defined and it belongs to Dy. Thus, we have shown that
1) is true.

Moreover, for each β ∈ Nn and each ν ∈ Nm,(
∂βλ

)
(x) =

(
Sy,
(
∂βxϕ

)
(x, y)

)
D′

yDy

and

(∂γψ) (y) =
(
Tx,
(
∂γyϕ

)
(x, y)

)
D′

xDx
.

Let us now prove that the map (6.1 belongs to D′
x,y. To begin, it should be clear

that it is linear. So, it remains to prove that it is continuous on Dx,y. According
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to Theorem 70, it suffices to show that it satisfies (4.12). That is to say, that given
K ⊆ Rn × Rm there is lK ∈ N and CK,l > 0 so that⏐⏐⏐⏐(Tx, (Sy, ϕ (x, y))D′

yDy

)
D′

xDx

⏐⏐⏐⏐
≤ CK,l sup

|β|+|γ|≤lK
sup

(x,y)∈Rn×Rm

⏐⏐⏐(∂βx∂γyϕ) (x, y)
⏐⏐⏐ ,

for all ϕ ∈ Dx,y.
In fact, let K1 be the projection of K onto Rn. According to 1), the function

λ (x) = (Sy, ϕ (x, y)) belongs to Dx,K1 . Since T ∈ D′
x, Theorem 70 implies that there

is l1,K1 ∈ N and CK1,l1 > 0 so that⏐⏐⏐⏐(Tx, (Sy, ϕ (x, y))D′
yDy

)
D′

xDx

⏐⏐⏐⏐ ≤ CK1,l1 sup
|β|≤l1,K1

sup
x∈Rn

⏐⏐⏐∂βx ((Sy, ϕ (x, y))D′
yDy

)⏐⏐⏐
= CK1,l1 sup

|β|≤l1,K1

sup
x∈Rn

⏐⏐⏐⏐(Sy,(∂βxϕ) (x, y)
)
D′

yDy

⏐⏐⏐⏐ .
For every x ∈ Rn, the function

(
∂βxϕ

)
(x, y) belongs to Dy,K2 where K2 is the

projection of K onto Rm. Since S ∈ D′
y, there is l2,K2 ∈ N and CK2,l2 > 0 so that⏐⏐⏐⏐(Tx, (Sy, ϕ (x, y))D′
yDy

)
D′

xDx

⏐⏐⏐⏐
≤ CK1,l1CK2,l2 sup

|β|≤l1,K1
|γ|≤l2,K2

sup
(x,y)∈Rn×Rm

⏐⏐⏐(∂βx∂γyϕ) (x, y)
⏐⏐⏐ .

Thus, condition (4.12) is satisfied, so the map (6.1) belongs to D′
x,y. In exactly

the same manner, with the obvious change of notation, we can verify that the map
(6.2) also belongs to D′

x,y. So, we have proved 2).
As for 3), it should be clear that the equality (6.3) is true when ϕ is a finite linear

combination of functions with separated variables. Then, Theorem 122 implies that
(6.3) holds for every ϕ ∈ D′

x,y.
This completes the proof of the theorem.

Remark 125. Statement 1) in Theorem 124 is a distributional version of Theorem
6 and Theorem 8.

Corollary 126. Given T ∈ D′
x and S ∈ D′

y, there is a distribution W ∈ D′
x,y such

that
(W,ϕ)D′

x,y ,Dx,y
= (T, α)D′

xDx
(S, β)D′

yDy
,

when ϕ (x, y) = α (x)β (y) for α ∈ Dx and β ∈ Dy. Moreover, W is unique.
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Proof. Either one of (6.1) or (6.2) proves that W exists. As for the uniqueness, it
follows from Theorem 122.

This completes the proof of the corollary.

Definition 127. Given T ∈ D′
x and S ∈ D′

y, the distribution W is called the tensor
product of T and S, denoted T ⊗ S.

Remark 128. According to Theorem 124 and Corollary 126, the distribution T ⊗S
can be defined as the map

ϕ→
(
Tx, (Sy, ϕ (x, y))D′

yDy

)
D′

xDx

or the map

ϕ→
(
Sy, (Tx, ϕ (x, y))D′

xDx

)
D′

yDy

,

for every ϕ ∈ Dx,y.
Let us observe that

(T ⊗ S, ϕ) =
(
Tx, (Sy, ϕ (x, y))D′

yDy

)
D′

xDx

=
(
Sy, (Tx, ϕ (x, y))D′

xDx

)
D′

yDy

for all ϕ ∈ Dx,y, which can be interpreted as a Fubini’s theorem for distributions.

In what follows, we will not label the pairings, unless it is necessary for clarity.

Theorem 129. Given T ∈ D′
x and S ∈ D′

y,

supp (T ⊗ S) = supp (T )× supp (S) (6.5)

and
∂βx∂

γ
y (T ⊗ S) = ∂βxT ⊗ ∂γyS, (6.6)

for all β ∈ Nn and for all γ ∈ Nm.

Proof. If x ∈ supp (T ), and y ∈ supp (S), let U1 ⊆ Rn and U2 ⊆ Rm be open
neighborhoods of x and y, respectively. Then, U = U1 × U2 ⊆ Rn × Rm is an open
neighborhood of (x, y).

Furthermore, let α1 ∈ Dx (U1) and α2 ∈ Dy (U2) be such that (T, α1) ̸= 0 and
(S, α2) ̸= 0. Thus, (T ⊗ S, α1 ⊗ α2) ̸= 0. So, (x, y) ∈ supp (T ⊗ S).

Conversely, if (x, y) ∈ supp (T ⊗ S), there is an open neighborhood U ⊆ Rn×Rm
of (x, y) and a function ϕ ∈ Dx,y so that (T ⊗ S, ϕ) ̸= 0.

Since (T ⊗ S, ϕ) = (Tx, (Sy, ϕ (x, y))), we conclude that T is different from zero
on the test function (Sy, ϕ (x, y)) ∈ Dx (U1), for some open neighborhood U1 ⊆ Rn
of x. Thus, x ∈ supp (T ).
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Using the representation (T ⊗ S, ϕ) = (Sy, (Tx, ϕ (x, y))), we conclude, in the
same manner, that y ∈ supp (T ). Thus, we have proved (6.5).

As for (6.6), according to Theorem 124, if ϕ ∈ Dx,y,(
∂βx∂

γ
y (T ⊗ S) , ϕ

)
= (−1)|β|+|γ|

(
T ⊗ S, ∂βx∂γyϕ

)
= (−1)|β|+|γ|

(
Tx,
(
Sy,
(
∂βx∂

γ
y

)
ϕ (x, y)

))
= (−1)|β|

(
Tx,
(
∂γySy,

(
∂βx∂

γ
y

)
ϕ (x, y)

))
= (−1)|β|

(
Tx, ∂

β
x

(
∂γySy,

(
∂γy
)
ϕ (x, y)

))
=

(
∂βxTx,

(
∂γySy,

(
∂γy
)
ϕ (x, y)

))
=

(
∂βT ⊗ ∂γS, ϕ

)
.

This completes the proof of the theorem.

Remark 130. Definition 127 can be extended to distributions Tl ∈ D′ (Rnl) for
l = 3, 4, .... The resulting product is associative. That is, we can insert a parenthesis
anywhere. For instance,

(T1 ⊗ T2 ⊗ ...⊗ Tl−1)⊗ Tl = T1 ⊗ (T2 ⊗ ...⊗ Tl−1 ⊗ Tl)
= T1 ⊗ T2 ⊗ ...⊗ (Tl−1 ⊗ Tl) ,

etc..

The following result is an immediate consequence of (6.5) and Theorem 62.

Corollary 131. If T ∈ E ′x and S ∈ E ′y, the tensor product T ⊗ S belongs to E ′x,y.

Theorem 132. (for the proof, see [25], p. 110, Theorem VI) The map

(T, S)→ T ⊗ S

is bilinear and continuous from D′
x ×D′

y into D′
x,y, from D

(k)′
x ×D(k)′

y into D(k)′
x,y for

k = 0, 1, ..., and from E ′x × E ′y into E ′x,y.

Remark 133. It should be clear that the construction of the tensor product given
in Theorem 124, can be extended to distributions T, S in S ′.

Example 134. 1. Given a = (a1, ..., an) ∈ Rn, the n-dimensional Dirac mea-
sure δa, as defined in 2) of Example 23, is the tensor product of the n one-
dimensional Dirac measures δa1 , ..., δan .

δa = δa1 ⊗ ...⊗ δan .
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2. If β = (1, ..., 1) ∈ Nn and 0 = (01, ..., 0n),

∂βxTHn =
(
∂x1THx1

)
⊗ ...⊗

(
∂xnTHxn

)
= δ01 ⊗ ...⊗ δ0n = δ0.

3. The tensor product can be used to extend a distribution defined on a linear
subspace. Indeed, let T ∈ D′ (Rn) and let δ0 be the Dirac measure on Rk.
Then, it should be clear that the map

D
(
Rn+k

)
→ C

ϕ → (T ⊗ δ0) (ϕ) = (Tx, ϕ (x, 0))

is a distribution in D′ (Rn+k).
4. There is a version of 3) for Radon measures.

Indeed, if T is a Radon measure on Rn, let µT : Bn → [0,∞] be the unique
regular Borel measure that Theorem 85 associates with T . Furthermore, ac-
cording to 2) in Example 86, let µ0 : Bk → [0,∞) be the measure associated
with the Dirac measure δ0. Remark 83, tells us that µ0 is regular.

Let µT ×µ0 : Bn×Bk → [0,∞] be the regular Borel measure that Theorem 85
associates with T ⊗ δ0.

Let us recall that if Bn, Bk, and Bn+k are the Borel σ-algebras on Rn, Rk, and
Rn+k, respectively, the product σ-algebra Bn × Bk is equal to Bn+k.

The measure µT × µ0 is defined as

(µT × µ0) (A) =

∫
Rn

χA (x, 0) dµT ,

where χA is the characteristic function of A ∈ Bn × Bk.

Therefore, µT × µ0, called the regular Borel product of T and δ0 ([7], p. 245),
is an extension to Rn × Rk of µT .

Let us observe that µT × µ0 : Bn+k → [0,∞] and the Lebesgue measure λn+k
on Rn+k restricted to Bn+k, are mutually singular.

Indeed, if Xn = {(x, 0) : x ∈ Rn}, then λn+k (Xn) = 0 and (µT × µ0)
(
Rn+k\Xn

)
=

0.

Finally, for ϕ ∈ D
(
Rn+k

)
,

(T ⊗ δ0) (ϕ) =

∫
Rn

ϕ (x, 0) dµT .
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6.2 Convolution product

According to Young’s convolution theorem (see, for instance, [29], p. 146, Theorem
9.2 and p. 145, Theorem 9.1), if f, g ∈ L1, the convolution f ∗ g ∈ L1. Thus, given
ϕ ∈ D,

(Tf∗g, ϕ) =

∫
Rn

(f ∗ g) (x)ϕ (x) dx

=

∫
Rn

(∫
Rn

f (x− y) g (y) dy

)
ϕ (x) dx∫

Rn×Rn

f (x) g (y)ϕ (x+ y) dxdy, (6.7)

Since f (x) g (y) ∈ L1 (Rn × Rn), (6.7) can be interpreted as the
(
L1, L∞) pairing

(f ⊗ g, ϕ (x+ y))L1,L∞ .

Given T, S ∈ D′, we would want to define the convolution T ∗ S as

(T ⊗ S, ϕ (x+ y)) , (6.8)

for ϕ ∈ D. Unfortunately, (6.8) is not defined as a (D′,D) pairing, as shown in 1)
of the lemma that follows.

Lemma 135. Given ϕ ∈ D,

1. If ϕ is not identically zero,

suppx,y (ϕ (x+ y)) ⊇ {(x, y) ∈ Rn × Rn : x+ y = a with ϕ (a) ̸= 0} . (6.9)

Since the right-hand side of (6.9) consists of affine subspaces of Rn×Rn, (6.9)
implies ϕ (x+ y) has compact support when, and only when, ϕ is identically
zero.

2.

suppx,y (ϕ (x+ y)) = {(x, y) ∈ Rn × Rn : x+ y ∈ supp (ϕ)} . (6.10)

Proof. By definition of support of a function, suppx,y (ϕ (x+ y)) contains all the
points (x, y) where the function is not zero. So, (6.9) is true.

If (x0, y0) does not belong to the right-hand side of (6.10), by the continuity
of the map (x, y) → x + y, there are open neighborhoods U and V of x0 and y0,
respectively, such that

U + V ⊆ (Rn × Rn) \ {(x, y) ∈ Rn × Rn : x+ y ∈ supp (ϕ)} .
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Then, ϕ (x+ y) is zero on U × V , from which we conclude that (x0, y0) /∈
suppx,y (ϕ (x+ y)).

Conversely, if (x0, y0) does not belong to the left-hand side of (6.10), there are
open neighborhoods U and V of x0 and y0, respectively, such that

U + V ⊆ (Rn × Rn) \suppx,y (ϕ (x+ y)) .

Therefore, ϕ (x+ y) = 0 for all (x, y) ∈ U × V . In other words, ϕ (z) = 0 for
every z in the open subset U+V of Rn. So, (x0, y0) does not belong to the right-hand
side of (6.10). Thus, we have proved 2).

This completes the proof of the lemma.

Remark 136. When the intersection of supp (T ⊗ S) and suppx,y (ϕ (x+ y)) is
compact, the pairing (T ⊗ S, ϕ (x+ y)) can be defined as in Lemma 65. The next
result provides an example of this situation.

Theorem 137. Given T, S ∈ D′, let us assume that at least one of them has compact
support.

1. We can define the pairing (6.8) as a distribution in D′, which is denoted T ∗S
and it is called the convolution of T and S.

2.

supp (T ∗ S) ⊆ supp (T ) + supp (S) .

Proof. Let us say that T has compact support. Then, given ϕ ∈ D, we claim that
supp (T ⊗ S)

⋂
suppx,y (ϕ (x+ y)) is compact.

Indeed, let us recall that supp (T ⊗ S) = supp (T )× supp (S). It should be clear
that the intersection is a closed subset of Rn ×Rn. Let us prove that it is bounded.

There are C1 > 0 and C2 > 0 so that |x| ≤ C1 for x ∈ supp (T ) and |z| ≤ C2 for
z ∈ supp (ϕ). Then, if (x, y) ∈ supp (T ⊗ S)

⋂
suppx,y (ϕ (x+ y)), we have

|(x, y)| =
(
|x|2 + |y|2

)1/2
≤ |x|+ |y|

≤ 2 |x|+ |x+ y| ≤ 2C1 + C2.

Therefore, Lemma 65 implies that the pairing (T ⊗ S, ϕ (x+ y)) can be defined,
using an appropriate cut-off function α ∈ D

(
R2n

)
.

Let us show that the pairing defines a distribution in D′. It should be clear that
it is linear on ϕ.

As for the continuity, let {ϕj}j≥1 be a sequence converging to zero in DK for
K ⊆ Rn compact. Let

Bl = {(x, y) ∈ Rn × Rn : |(x, y)| < l}
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be so that
supp (T ⊗ S)

⋂
{(x, y) ∈ Rn × Rn : x+ y ∈ K} ⊆ Bl.

According to Remark 66, we can choose α ∈ D
(
R2n

)
so that α (x, y) = 1 for

x ∈ B2l and supp (α) ⊆ B3l.
Then, αϕj ∈ D

(
R2n

)
and we can write (T ⊗ S, α (x, y)ϕj (x+ y)), for all j ≥ 1.

It should be clear that {αϕj}j≥1 converges to zero in DB3l

(
R2n

)
. Thus,

(T ⊗ S, α (x, y)ϕj (x+ y)) →
j→∞

0

in C. So, we have proved 1).
To prove 2), let us observe that the set supp (T )+supp (S) is closed in Rn because

supp (S) is closed and supp (T ) is compact. If

U = Rn\ (supp (T ) + supp (S)) ,

let ϕ ∈ D (U) and let α ∈ D
(
R2n

)
be a cut-off function as in 1). We claim that

supp (T ⊗ S)
⋂
suppx,y (α (x, y)ϕ (x+ y)) = ∅.

Indeed, if there is (x0, y0) in the intersection, we would have x0 ∈ supp (T ),
y0 ∈ supp (S) and x0 + y0 ∈ supp (ϕ), which is not possible, according to 2) in
Lemma 135.

Then, according to Lemma 41, (T ∗ S, ϕ) = 0. Thus, we have proved 2).
This completes the proof of the theorem.

Remark 138. 1. Under the hypotheses of Theorem 137, if we fix a compact set
K ⊆ Rn, it should be clear that we can choose the cut-off function α (x, y)
independently of ϕ ∈ DK .

2. Iterating the process in Theorem 137, we can define the convolution of n
distributions, when at least n− 1 of them have compact support.

Example 139. 1. Given T ∈ D′,

(T ∗ δ0, ϕ) = (Tx, (δ0,y, ϕ (x+ y))) = (T, ϕ)

for ϕ ∈ D.

2. More generally, given a ∈ Rn,

(T ∗ δa, ϕ) = (Tx, (δa,y, ϕ (x+ y))) = (T, ϕ (·+ a))

=
(1)

(T, τ−a (ϕ)) = (τa (T ) , ϕ) .

We have used (5.8) in (1).

So, the translation operator, acting on a distribution, can be expressed as a
convolution.
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3. Since the sum of two compact sets is compact, the convolution product defines
a structure of commutative algebra on E ′, having δ0 as the unit.

4. Given α ∈ Nn and T ∈ D′,

∂αT = (∂αT ) ∗ δ0 = T ∗ (∂αδ0) .

Thus, a distributional derivative can be written as a convolution.

5. More generally, if P (X) is a complex polynomial, we can perform the formal
substitution

X = (X1, ..., Xn)→ ∂ = (∂x1 , ..., ∂xn) .

Then, P (∂) becomes a linear differential operator with constant coefficients,
for which

P (∂)T = (P (∂)T ) ∗ δ0 = T ∗ (P (∂) δ0) .

Theorem 140. (for the proof, see [25], p. 157, Theorem IV and Theorem V)

1. The map

(T, S)→ T ∗ S

is bilinear and continuous from E ′ × E ′ into E ′.

2. The map

(T, S)→ T ∗ S

is bilinear and hypocontinuous from E ′ ×D′ into D′.

Theorem 141. Given T ∈ E ′, the map

D → C
ϕ →

(
T,
∫
Rn ϕ (·+ y) dy

) (6.11)

defines a distribution in D′. Furthermore,(
T,

∫
Rn

ϕ (·+ y) dy

)
=

∫
Rn

(Tx, ϕ (x+ y)) dy (6.12)

for all ϕ ∈ D.

Proof. According to Theorem 6 and Theorem 8, the function

x→
∫
Rn

ϕ (·+ y) dy

is smooth. Thus, (6.11) is well defined. It should be clear that it is linear.
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As for the continuity, if ϕj → 0 in DK as j →∞ for K ⊆ Rn compact, let θ ∈ D
be a cut-off function that equals one on an open neighborhood of supp (T ). Moreover,
let K1 be a compact subset of Rn such that for x ∈ supp (θ), suppy (ϕj (x+ y)) ⊆ K1

for all j ≥ 1.
Then, for each α ∈ Nn, there is Cθ,α > 0 so that⏐⏐⏐⏐∂αx (θ (x)

∫
Rn

ϕj (x+ y) dy

)⏐⏐⏐⏐ =

⏐⏐⏐⏐∫
Rn

∂αx (θ (x)ϕj (x+ y)) dy

⏐⏐⏐⏐
≤ Cθ,αmeas (K1) sup

β≤α
sup
x∈Rn

⏐⏐⏐(∂βϕj) (x)
⏐⏐⏐ →
j→∞

0.

Thus, (
T, θ (·)

∫
Rn

ϕj (·+ y) dy

)
→
j→∞

0.

As for (6.12), according to Theorem 107 and Theorem 8, we can write(
T, θ (·)

∫
Rn

ϕ (·+ y) dy

)
=

(∑
α

∂αTfα , θ (·)
∫
Rn

ϕ (·+ y) dy

)

=
∑
α

(−1)|α|
∫
Rn

fα (x)

(∫
Rn

∂αx (θ (x)ϕ (x+ y)) dy

)
dx

=
∑
α

(−1)|α|
∫
Rn

(∫
Rn

fα (x) ∂αx (θ (x)ϕ (x+ y)) dx

)
dy

=

∫
Rn

(∑
α

(−1)|α| Tfα(x), ∂
α
x (θ (x)ϕ (x+ y))

)
dy

=

∫
Rn

(
T, θ (·)

∫
Rn

ϕ (·+ y) dy

)
.

This completes the proof of the theorem.

So far, we have defined the convolution T ∗ S assuming that at least one of the
distributions T and S has compact support. We will see now that T ∗ S can be
defined under weaker assumptions.

We begin with the following two results, which are due to János Horváth.

Theorem 142. ([16], p. 383) Let us fix two closed sets E,F ⊆ Rn. Then, the
following statements are equivalent:

1. For every compact set K ⊆ Rn, the set

(E × F )
⋂
{(x, y) ∈ Rn × Rn : x+ y ∈ K} (6.13)

is a compact subset of Rn × Rn.
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2. For every compact set K ⊆ Rn, the set

E
⋂

(K − F ) (6.14)

is a compact subset of Rn.

Proof. To prove 1) ⇒ 2), let x0 belong to (6.14). Then, x0 ∈ E and there is
y0 ∈ F so that x0 + y0 ∈ K. Therefore (x0, y0) belongs to (6.13), which is compact,
by hypothesis. There are compact subsets K1 and K2 such that the set (6.13) is
contained in K1 ×K2. So, x0 ∈ K1, which implies that (6.14) is compact.

Conversely, if (x0, y0) belongs to (6.13), we have that x0 ∈ E, y0 ∈ F and
x0+y0 ∈ K. Therefore, x0 ∈ E and it also belongs to K−F since x0 = (x0 + y0)−y0.
On the other hand, y0 ∈ F and it also belongs to K − (E

⋂
(K − F )) since y0 =

(x0 + y0)− x0.
That is to say,

(E × F )
⋂
{(x, y) ∈ Rn × Rn : x+ y ∈ K}

⊆
[
E
⋂

(K − F )
]
×
[
F
⋂(

K −
(
E
⋂

(K − F )
))]

. (6.15)

Since both sets in the cartesian product (6.15) are compact, we conclude that
(6.13) is compact. Thus, 2) ⇒ 1).

This completes the proof of the theorem.

Corollary 143. ([16], p. 384)

1. The set E
⋂

(K − F ) is the projection of the set (6.13) onto Rnx.

2. The set F
⋂

(K − E) is the projection of the set (6.13) onto Rny .

3. The set E
⋂

(K − F ) is compact if, and only if, the set F
⋂

(K − E) is com-
pact.

Proof. By definition, if x0 ∈ E
⋂

(K − F ), there is y0 ∈ F so that (x0, y0) ∈ E × F
and x0 + y0 ∈ K. Thus, (x0, y0) belongs to (6.13).

Conversely, if x0 belongs to the projection of (6.13) onto Rnx, there is y0 ∈ Rn so
that (x0, y0) belongs to (6.13).

Therefore, x0 ∈ E, y0 ∈ F and x0 +y0 belongs to K. So, x0 ∈ K−F also. Thus,
we have proved 1).

The proof of 2) is similar, reverting the roles of E and F .
As for 3), if E

⋂
(K − F ) is compact, the set (6.13) is compact by Theorem 142,

and its projection onto Rny must be compact as well.
Conversely, according to Theorem 142, it suffices to show that if F

⋂
(K − E) is

compact, the set (6.13) is compact also.
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So, if (x0, y0) belongs to (6.28), y0 ∈ F and (x0 + y0) ∈ K, that is, y0 ∈ K − E.
Moreover, x0 ∈ E and it also belongs to K − (F

⋂
(K − E)), since x0 =

(x0 + y0)− y0. So,

(E × F )
⋂
{(x, y) ∈ Rn × Rn : x+ y ∈ K}

⊆
[
K −

(
F
⋂

(K − E)
)]
×
[
F
⋂

(K − E)
]

. (6.16)

Since both sets in the cartesian product (6.16) are compact, we conclude that
(6.13) is compact and therefore, E

⋂
(K − F ) is compact.

This completes the proof of the corollary.

We now use Theorem 142 and Corollary 143 to prove the following result:

Theorem 144. If T and S belong to D′, let E = supp (T ), F = supp (S).
Moreover, let us assume that the equivalent conditions 1) and 2) in Theorem 142

are true for these particular choices of E and F .
Then, if we fix K ⊆ Rn compact, the pairing

(Tx × Sy, ϕ (x+ y)) (6.17)

can be defined, for every ϕ ∈ DK , in any of the following three ways: Using an
appropriate cut-off function α (x, y) ∈ D

(
R2n

)
, using an appropriate cut-off function

θ (x) ∈ Dx, or using an appropriate cut-off function η (y) ∈ Dy. Moreover, all three
definitions coincide.

Proof. By Lemma 65, we know that (6.17) can be defined as

(Tx × Sy, α (x, y)ϕ (x+ y))D′
x×D′

y ,Dx,y
, (6.18)

where α (x, y) ∈ D
(
R2n

)
is a cut-off function α (x, y) ∈ D

(
R2n

)
that equals one on

an open neighborhood of the set (6.13).
Moreover, Lemma 65 also shows that the pairing does not depend on the function

α satisfying the stated condition.
Next, let us pick a cut-off function θ (x) ∈ Dx that equals one on an open

neighborhood of the compact set E
⋂

(K − F ). We define (6.17) as

(Tx × Sy, θ (x)ϕ (x+ y))D′
x×D′

y ,Dx,y
. (6.19)

Then, (6.19) does not depend on the function θ (x) satisfying the stated condi-
tion.

Indeed, if θ1 (x) is another function like θ (x), we claim that

(E × F )
⋂
supp [(θ (x)− θ1 (x))ϕ (x+ y)] = ∅ (6.20)
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for all ϕ ∈ DK .
In fact, if (x0, y0) belongs to the set in (6.20), according to 4) in Example 12, x0

belongs to supp (θ − θ1) as well as it belongs to E, while y0 ∈ F and x0 + y0 ∈ K.
However, since θ (x)− θ1 (x) = 0 for x in an open neighborhood of E

⋂
(K − F ),

x0 cannot belong to E
⋂

(K − F ), which is a contradiction.
Therefore, (6.20) is true and, according to Lemma 41,

(Tx × Sy, (θ (x)− θ1 (x))ϕ (x+ y))D′
x×D′

y ,Dx,y
= 0

for all ϕ ∈ DK .
If we pick a cut-off function η (y) ∈ Dy that equals one on an open neighborhood

of the compact set F
⋂

(K − E), we define (6.17) as

(Tx × Sy, η (y)ϕ (x+ y))D′
x×D′

y ,Dx,y
. (6.21)

If η1 (y) is another function like η (y), we claim that

(E × F )
⋂
supp [(η (y)− η1 (y))ϕ (x+ y)] = ∅. (6.22)

for all ϕ ∈ DK .
Indeed, if (x0, y0) belongs to the set in (6.22), then y0 belongs to supp (η − η1)

and to F , while x0 ∈ E and x0+y0 ∈ K. This means that y0 belongs to F
⋂

(K − E).
However, y0 cannot belong to F

⋂
(K − E) because η (y) − η1 (y) = 0 for x in an

open neighborhood of E
⋂

(K − F ).
Therefore, (6.22) holds and

(Tx × Sy, (η (y)− η1 (y))ϕ (x+ y))D′
x×D′

y ,Dx,y
= 0

for all ϕ ∈ DK .
Let us see that (6.18) and (6.19) are equal. To that effect, we pick a cut-off

function α (x, y) ∈ D
(
R2n

)
that equals one on an open neighborhood of the set

(6.13). We also pick a cut-off function θ (x) ∈ Dx that equals one on an open
neighborhood of the compact set E

⋂
(K − F ). We claim that

(E × F )
⋂
supp [(α (x, y)− θ (x))ϕ (x+ y)] = ∅. (6.23)

Indeed, if (x0, y0) belongs to (6.23), then x0 ∈ E, y0 ∈ F , x0 + y0 ∈ K, and
(x0, y0) ∈ supp (α (x, y)− θ (x)). In particular, (x0, y0) ∈ E

⋂
(K − F ). But, ac-

cording to 1) in Corollary 143, E
⋂

(K − F ) is the projection of (6.13) onto Rnx.
Therefore, α (x, y)− θ (x) = 0 for all (x, y) in an open neighborhood of (x0, y0).
So, (x0, y0) cannot belong to supp (α (x, y)− θ (x)). Thus, (6.23) holds and

(Tx × Sy, (α (x, y)− θ (x))ϕ (x+ y))D′
x×D′

y ,Dx,y
= 0
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for all ϕ ∈ DK .
Finally,

(E × F )
⋂
supp [(α (x, y)− η (y))ϕ (x+ y)] = ∅,

because, according to 2) in Corollary 143, F
⋂

(K − E) is the projection of (6.13)
onto Rny .

This completes the proof of the theorem.

Remark 145. Under the hypotheses of Theorem 144, the pairing (Tx × Sy, ϕ (x+ y))
defined in any of the three equivalent ways, is a distribution in D′, denoted T ∗ S.

In fact, an examination of the proof of Theorem 137, will show that it only uses
the compactness of the set supp (T ⊗ S)

⋂
suppx,y (ϕ (x+ y)).

Thus, it applies to the present situation, using an appropriate cut-off function
α (x, y).

Theorem 144 implies that the same conclusion holds, when using any of the other
two ways of defining the pairing.

Theorem 146. Given T and S in D′, let us assume that the equivalent conditions
1) and 2) in Theorem 142 are true for E = supp (T ), F = supp (S). Then,

1. The convolution product of T and S is commutative. That is to say,

T ∗ S = S ∗ T .

2.
supp (T ∗ S) ⊆ supp (T ) + supp (S) . (6.24)

3. Given α ∈ Nn,
∂α (T ∗ S) = (∂αT ) ∗ S = T ∗ ∂αS.

Proof. To prove 1), we fix a compact subset K of Rn. Let θ (x) be a cut-off function
that equals one on an open neighborhood of the compact set E

⋂
(K − F ) and let

η (y) be a cut-off function that equals one on an open neighborhood of the compact
set F

⋂
(K − E).

Then, if ϕ ∈ DK ,

(T ∗ S, ϕ)
def
= (Tx × Sy, θ (x) η (y)ϕ (x+ y)) .

Proof. According to 3) in Theorem 124,

(Tx × Sy, θ (x) η (y)ϕ (x+ y)) = (Tx, θ (x) (Sy, η (y)ϕ (x+ y)))

= (Sy, η (y) (Tx, θ (x)ϕ (x+ y))) .

Let us recall that E
⋂

(K − F ) is the projection onto Rnx of the set (6.13), while
F
⋂

(K − E) is the projection onto Rny of the set (6.13).
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Thus, θ (x) η (y) is a cut-off function that is equal to one on an open neighborhood
of the set (6.13).

Moreover, the set

(F × E)
⋂
{(y, x) ∈ Rn × Rn : y + x ∈ K} , (6.25)

is contained in (F
⋂

(K − E))× E
⋂

(K − F ).

Therefore, the cut-off function η (y) θ (x) is equal to one on an open neighborhood
of the set (6.25). So,

(Sy, η (y) (Tx, θ (x)ϕ (x+ y))) = (Sy × Tx, η (y) θ (x)ϕ (y + x))

def
= (S ∗ T, ϕ)

and we have proved 1).

To prove 2), we begin by showing that the set E + F is closed.

Indeed, if z0 belongs to the closure of E+F , there is a sequence {(xj , yj)}j≥1 so
that {xj + yj}j≥1 converges to z0 as j →∞. Let K be the set consisting of z0 and
the points (xj , yj) for all j ≥ 1. The set K is compact.

Therefore, Theorem 142 and Corollary 143 hold for K. In particular, xj belongs
to the compact set E

⋂
(K − F ) for all j ≥ 1. Therefore, there is a subsequence

{xjk}k≥1, converging to some a ∈ E as k →∞.

So, xjk + yjk converges to z0 as j → ∞, and consequently, the subsequence
{yjk}k≥1 ⊆ F must converge in F as k →∞. Since it converges to z0−a as j →∞,
we conclude that z0 − a ∈ F .

That is to say, z0 = a + (z0 − a) ∈ E + F . So, we have proved that E + F is
closed.

Now we are ready to prove (6.24).

If x0 /∈ E +F , there is an open neighborhood U of x0 so that U ⊆ Rn\ (E + F ).
If ϕ ∈ D (U),

(E × F )
⋂
suppx,y (ϕ (x+ y)) = ∅.

Indeed, if (x1, y1) belongs to the intersection, we must have x1 ∈ E, y1 ∈ F and
x1 + y1 ∈ supp (ϕ). That is, x1 + y1 ∈ (E + F )

⋂
(supp (ϕ)), which is not possible.

Thus, we have proved 2).

Finally, according to (6.6),

((∂αT ) ∗ S, ϕ) = ((∂αT )x ⊗ Sy, ϕ (x+ y)) =
(
Tx ⊗ (∂αS)y , ϕ (x+ y)

)
= (∂αx (Tx ⊗ Sy) , ϕ (x+ y)) ,

for all ϕ ∈ D.

This completes the proof of the Theorem.
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Remark 147. As shown in Theorem 137, if at least one of T, S ∈ D′ has compact
support, given ϕ ∈ D, the condition

(supp (T )× supp (S))
⋂
suppx,y (ϕ (x+ y)) is compact, (6.26)

holds.
However, there are other instances when (6.26) is true. For example, let us

assume that supp (T ) and supp (S) are both contained in the region

Γa = {x ∈ Rn : x1 ≥ a1, ..., xn ≥ an}

for a1, ..., an fixed.
Then, for ϕ ∈ D, condition (6.26) holds. In fact, since the set in (6.26) is always

closed, we only need to prove that it is bounded.
If (x, y) belongs to the set in (6.26), then xj , yj ≥ aj for all j. Moreover, there

is C = Csupp(ϕ) > 0 so that |xj + yj | ≤ C for all j. Therefore, aj ≤ xj , yj ≤ C − aj
for all j.

The distribution THn associated with the n-dimensional Heaviside function Hn

defined in 6) of Example 96, is an example of this situation.

Remark 148. Theorem 144, Remark 145, Theorem 146, and Remark 147 can be
adapted, in an obvious way, to distributions in D′(m).

Remark 149. An obvious extension of (6.13) to l closed sets, would allow us to
extend Theorem 144, Remark 145, Theorem 146, and Remark 147, to l distributions
T1, ..., Tl ∈ D′, under the appropriate assumption.

The definition

(T1 ∗ ... ∗ Tl)
def
= (T1,a ⊗ ...⊗ Tl,z, ϕ (a+ ...+ z))

produces an associative operation ([16], p. 390, Proposition 8).
However, let us consider, on R, the distributions T1,

dδ0
dx , and TH1 , where T1

is the distribution defined by the function identically equal to one and H1 is the
one-dimensional Heaviside function. Then(

T1 ∗
dδ0
dx

)
∗ TH1 =

dT1
dx
∗ TH1 = 0 ∗ TH1 = 0,

while

T1 ∗
(
dδ0
dx
∗ TH1

)
= T1 ∗ δ0 = T1.

Thus, the fact that in each parenthesis one of the distributions has compact
support, is not enough to guarantee associativity.

Let us observe that the natural extension of condition 1) in Theorem 142, to the
supports of these three distributions, is that the set

(R×{0} × [0,∞))
⋂{

(x, y, z) ∈ R3 : x+ y + z ∈ K
}

is compact for each K ⊆ R compact, which is not true.
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6.3 Multiplicative product

It would be natural to try to define the multiplication T · S of two distributions
T, S ∈ D′ in such a way that Tf · Sg = Tfg, when f and g are locally integrable
functions.

Unfortunately, we can see very quickly that this approach does not work, since
the multiplicative product of two locally integrable functions is not always locally
integrable, so it does not always define a distribution.

However, the multiplicative product of a locally integrable function by, say, a
smooth function, will always be locally integrable. So, we can attempt the following
approach:

Given a distribution T ∈ D′ and a distribution Tα defined by a function α ∈ E ,
we set

(Tα · T, ϕ)
def
= (T, αϕ) ,

for ϕ ∈ D.
It is customary to say that we multiply T by the function α, denoting the result

as αT or, equally, Tα.
The following result shows that the proposed definition of αT is correct.

Theorem 150. 1. For α ∈ E fixed, the map

D → D
ϕ → αϕ

is well defined, linear, and continuous.

2. The map
D → C
ϕ → (T, αϕ)

is a distribution in D′.

Proof. It should be clear that the map in 1) is well defined and it linear.
As for the continuity, if we fix K ⊆ Rn compact and we fix an n-tuple β ∈ Nn,

according to Lemma 4,

sup
x∈Rn

⏐⏐⏐∂β (αϕ) (x)
⏐⏐⏐ ≤ Cβ sup

γ≤β
sup
x∈K
|(∂γα) (x)| sup

γ≤β
sup
x∈Rn

|(∂γϕ) (x)| , (6.27)

for all ϕ ∈ DK .
Therefore, 1) is true.
It should be clear that the map in 2) is linear, so let us prove that it is continuous.
If {ϕj}j≥1 converges to ϕ in D as j →∞, according to 1), the sequence {αϕj}j≥1

converges to αϕ in D as j →∞. So, we have proved 2).
This completes the proof of the theorem.
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Remark 151. Since the map

E × D → D
(α,ϕ) → αϕ

(6.28)

is bilinear, an extension of the estimate (6.27) will show that the map (6.28) is
hypocontinuous, according to Definition 118.

In fact, if we fix K ⊆ Rn compact and we fix an n-tuple β ∈ Nn,⏐⏐⏐∂β (αϕ) (x)
⏐⏐⏐ ≤ Cβ |(∂γα) (x)| |(∂γϕ) (x)|

≤ Cβ sup
|γ|≤|β|

sup
x∈Bk

|(∂γα) (x)| sup
γ≤β

sup
x∈Rn

|(∂γϕ) (x)|

= Cβ ∥α∥|β|,Bk
sup
γ≤β

sup
x∈Rn

|(∂γϕ) (x)|

for all ϕ ∈ DK , where ∥α∥|β|,Bk
is defined as in (4.1).

Corollary 152. 1. If α ∈ D, or if T ∈ E ′, the distribution αT belongs to E ′ and

supp (αT ) ⊆ supp (α)
⋂
supp (T ) .

2. The multiplicative product of l distributions of which at least l−1 are functions
in E, is well defined and it is associative and commutative.

Proof. To prove 1), we fix x0 in Rn\ (supp (α)
⋂
supp (T )). Then, there is an open

neighborhood U of x0 that does not meet (supp (α)
⋂
supp (T )).

Therefore, if ϕ ∈ D (U),

supp (αϕ)
⋂
supp (T ) ⊆ supp (ϕ)

⋂
supp (α)

⋂
supp (T ) = ∅.

So, (T, αϕ) = 0.
The proof of 2) follows from the fact that the multiplicative product of complex-

valued functions is associative and commutative.
This completes the proof of the corollary.

Remark 153. The crucial point in defining the multiplicative product is that a test
function ϕ, multiplied by α, still has to be a test function.

Therefore, there must be a balance between properties of α and properties of ϕ.
So, it should be clear that Theorem 150 and Corollary 152 apply, with the obvious

modifications, if T ∈ D(m)′, and α ∈ E(m) as given by Definition 120.

Theorem 154. (for the proof, see [25], p. 119, Theorem III) The multiplica-
tive product is a bilinear and hypocontinuous map from E × D′ into D′ and from
E(m)×D(m)′ into D(m)′.
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Example 155. As an illustration, we collect here a few additional properties of the
multiplicative product, plus a few examples.

1. The partial derivatives of a multiplicative product are calculated with the usual
rule. That is, in whatever duality the product αT is defined,

∂β (αT ) =

β∑
γ=0

(
β

γ

)
(∂γα) ∂β−γT . (6.29)

Indeed, if ∂β = ∂xj for some 1 ≤ j ≤ n,(
∂xj (αT ) , ϕ

)
= −

(
T, α∂xjϕ

)
= −

(
T, ∂xj (αϕ)−

(
∂xjα

)
ϕ
)

=
(
α∂xjT, ϕ

)
+
((
∂xjα

)
T, ϕ

)
,

while

∂xj∂
β (αT ) =

β∑
γ=0

(
β

γ

)
∂xj

(
(∂γα) ∂β−γT

)
β∑
γ=0

(
β

γ

)((
∂xj∂

γα
)
∂β−γT + (∂γα) ∂xj∂

β−γT
)

.

Since the exact same calculation done in Lemma 4) applies here, we obtain
(6.29).

2. Given α ∈ Ex, β ∈ Ey, T ∈ D′
x and S ∈ D′

y,

(α (x)⊗ β (y)) (Tx ⊗ Sy) = (αT )x ⊗ (βS)y .

According to Theorem 122, to verify this identity we only need to check it on
test functions of the form ϕ1 (x)ϕ2 (y).(

(αT )x ⊗ (βS)y , ϕ1 (x)ϕ2 (y)
)

= ((αT )x ϕ1 (x))
(

(βS)y , ϕ2 (y)
)

(Tx, α (x)ϕ1 (x)) (Sy, β (y)ϕ2 (y))

= (Tx ⊗ Sy, (α (x)⊗ β (y))ϕ1 (x)ϕ2 (y))

= ((α (x)⊗ β (y)) (Tx ⊗ Sy) , ϕ1 (x)ϕ2 (y)) .

3. Given α ∈ E ,
αδ0 = α (0) δ0.

Therefore,
∂β (αδ0) = α (0) ∂β (δ0) ,

for all β ∈ Nn.
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4. For l, k ∈ N and ϕ ∈ D′ (R),(
xlδ

(k)
0 , ϕ

)
= (−1)k

(
xlϕ
)(k)

(0)

= (−1)k
k∑
s=0

(
l

s

)(
xl
)(s)

(0)ϕ(k−s) (0)

=

{
0 if l > k

(−1)k l!ϕ(k−l) (0) if l ≤ k .

Therefore,

xlδ
(k)
0 =

{
0 if l > k

(−1)l l! δ
(k−l)
0 if l ≤ k

.

5.

x

(
pv

1

x

)
= 1. (6.30)

Indeed, given ϕ ∈ D,(
x

(
pv

1

x

)
, ϕ

)
= lim

j→∞

∫
|x|>1/j

xϕ (x)

x
dx

=

∫
Rn

ϕ (x) dx = (T1, ϕ (x)) ,

where T1 denotes the distribution defined by the function identically equal to
one.

Actually, pv 1/x is the only odd distribution that satisfies (6.30).

In fact, if there are two distributions, T and S, so that x (T − S) = 0, then
T − S must be concentrated on {0}. Indeed, if ϕ ∈ D (R\ {0}),

(T − S, ϕ) =
(
x (T − S) ,

ϕ

x

)
= 0.

According to Theorem 110,

T − S =

m∑
k=0

ckδ
(k)
0 .

Then,

0 = x (T − S) =

m∑
k=0

ck xδ
(k)
0 = −

m∑
k=1

ckδ
(k−1)
0 .
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Laurent Schwartz’s Distributions 99

If ϕ ∈ D (R) is equal to one on a neighborhood of zero(
−

m∑
k=1

ckδ
(k−1)
0 , xlϕ

)
= cl+1,

for l = 0, ...,m − 1. Therefore, ck = 0 for 1 ≤ k ≤ m, or T − S = c0δ0. If T
and S are both odd, since it should be clear that δ0 is an even distribution,
the constant c0 must be zero.

Theorem 156. Given T ∈ D′ and α ∈ E, let us assume that supp (T ) and supp (Tα) =
supp (α) satisfy the equivalent conditions 1) and 2) in Theorem 142.

Then,

1. The pairing (T ∗ Tα, ϕ) is well defined as a distribution in D′, for every ϕ ∈ D.

2. The pairing (Tx, α (y − x)) can be defined for each y ∈ Rn fixed.

3. The function
y → β (y) = (Tx, α (y − x))

belongs to E.

4.
T ∗ Tα = Tβ

on D.

Proof. The set

supp (T )
⋂

(K − supp (α))

is compact for every K ⊆ Rn. Therefore, Theorem 144 tells us that we can define
the pairing (Tx ⊗ Sy, ϕ (x+ y)) as(

Tx ⊗ Tα(y), θ (x)ϕ (x+ y)
)
D′

x,y ,Dx,y
,

where θ ∈ D is a cut-off function equal to one on an open neighborhood of supp (T )
⋂

(K − supp (α)).
So, 1) is true.
Then,(
Tx ⊗ Tα(y), θ (x)ϕ (x+ y)

)
D′

x,y ,Dx,y
=

(
Tx, θ (x)

(∫
Rn

α (y − x)ϕ (y) dy

))
(

(θT )x ,

(∫
Rn

α (y − x)ϕ (y) dy

))
=
(1)

∫
Rn

((θT )x , α (y − x))ϕ (y) dy

=

∫
Rn

(Tx, θ (x)α (y − x))ϕ (y) dy (6.31)
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where, in (1), we have used Theorem 141 for the distribution θT .
Thus, 2) is true as well.
To prove 3), let us first observe that given y0 fixed, the cut-off function θ (x) can

be defined independently of y in an open neighborhood of y0. Therefore, we can
prove that the function β (y), defined as

β (y) = (Tx, θ (x)α (y − x))

belongs to E using the work done in 1) of Theorem 124.
Finally, according to (6.31),

(T ∗ Tα, ϕ) =

∫
Rn

(Tx, θ (x)α (y − x))ϕ (y) dy

=

∫
Rn

β (y)ϕ (y) dy.

So, we have 4).
This completes the proof of the theorem.

Remark 157. Theorem 156 is the distributional version of Lemma 24. The function
β (y) is called a regularization, or smoothing, of the distribution T .

Let us observe that defining the pairings (T ∗ Tα, ϕ) and (Tx, α (y − x)) using a
cut-off function that only depends on x, simplifies the proof of Theorem 156.

Remark 158. Given ψ ∈ D (R), the convolution (pv 1/x) ∗ Tϕ is well defined.
Moreover, it can be written as

lim
j→∞

∫
|x−y|≥1/j

ψ (y)

x− y
dy, (6.32)

for each x ∈ R.
Indeed, ((

pv
1

x

)
∗ Tψ, ϕ

)
=

(
pv

1

x
,

∫
R
ψ (y)ϕ (x+ y) dy

)
=

(
pv

1

x
,

∫
R
ψ (z − x)ϕ (z) dz

)
=
(1)

∫
R

(
pv

1

x
, ψ (z − x)

)
ϕ (z) dz,

for every ϕ ∈ D (R), where we have used in (1) Theorem 156.
The formula (6.32) can be extended to ψ in Lp (R) for 1 < p < ∞, defining a

linear and continuous operator from Lp (R) into itself. This operator is called the
Hilbert transform after the mathematician David Hilbert (1886-1943).
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Laurent Schwartz’s Distributions 101

The Hilbert transform plays a fundamental role in harmonic analysis. Among
other things, it is a foremost example of a class of operators called singular integrals,
defined and studied by Alberto P. Calderón (1920-1998) and Antoni Zygmund (1900-
1992).

Moreover, (6.32) can be written as∫
R

∫
R

ϕ (x)ψ (y)

x− y
dx,

when (supp (ϕ (x)ψ (y)))
⋂{

(x, y) ∈ R2 : x = y
}

= ∅.
This formula is just a tiny example of a spectacular result due to Schwartz [23],

that basically says that for every linear and continuous operator T from D′
y into D′

x,
there is a distribution T ∈ D′

x,y such that

(T (ψ) , ϕ)D′
x,Dx

= (T, ϕ⊗ ψ)D′
x,y ,Dx,y

.

Roughly stated, in the sense of distributions, every linear and continuous oper-
ator is an “integral” operator.

We saw an example of a classical integral operator in Remark 93.
The article [1] gives an overview of these matters. For an in depth presentation,

we refer to the excellent original sources cited therein.

Theorem 159. We have the following continuous and dense inclusions

E ↪→ D′

D ↪→ E ′ .

Proof. It should be clear that the inclusions are well defined by means of identifying
α and Tα.

If {αj}j≥1 converges to zero in E and ϕ ∈ B, a bounded subset of DK for K ⊆ Rn
compact,⏐⏐⏐⏐∫

Rn

αj (x)ϕ (x) dx

⏐⏐⏐⏐ ≤ meas (K) sup
ϕ∈B

sup
x∈Rn

|ϕ (x)| sup
x∈K
|αj (x)| →

j→∞
0.

As for the density of the inclusion, given T ∈ D′, we consider the sequence{
T ∗ Tρj

}
j≥1

.

Let us observe that, for K ⊆ Rn fixed, the set(
supp (T )× supp

(
Tρj
))⋂

{(x, y) ∈ Rn × Rn : x+ y ∈ K}

is contained in a compact set that does not depend on j, for all j ≥ 1. Therefore,
the cut-off function θ can be chosen independently of j.

According to Theorem 156, T ∗ Tρj = Tβj with βj ∈ E .
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Theorem 68 and 2) in Theorem 140, imply that the sequence
{
Tβj
}
j≥1

converges

to T ∗ δ0 in D′ as j →∞.

Finally, T ∗ δ0 = T , as shown in 1) of Example 139.

Since the space D is the inductive limit of the spaces DK , the inclusion D → E ′
will be continuous if, and only if, ([26], p. 268, Corollary 2) the inclusion DK→ E ′
is continuous, for all K ⊆ Rn compact.

Let {αj}j≥1 be a sequence converging to zero in DK as j → ∞. Given B, a
bounded subset of E ,⏐⏐⏐⏐∫

Rn

αj (x)ϕ (x) dx

⏐⏐⏐⏐ ≤ meas (K) sup
ϕ∈B

sup
x∈K
|ϕ (x)| sup

x∈Rn
|αj (x)| →

j→∞
0.

Let us show that the inclusion is dense.

As before, we consider the sequence
{
T ∗ Tρj

}
j≥1

. In this case, the function β

defined in 3) of Theorem 156, belongs to D.

Theorem 68 and 1) in Theorem 140, imply that the sequence
{
Tβj
}
j≥1

converges

to T ∗ δ0 = T in E ′ as j →∞.

This completes the proof of the theorem.

Remark 160. According to Theorem 53, D is dense in E . Therefore, we can say
that D is dense in D′.

So far, we have worked with factors that are, except for one, smooth functions,
or functions that are continuous and have a certain number of continuous partial
derivatives. Can we do better than this?

The first answer, for the negative, was given by Schwartz ([24]). Roughly speak-
ing, Schwartz’s impossibility result, in one of its versions, says the following:

It is not possible to define on D′×D′ an associative and bilinear operation ·, not
necessarily commutative, so that

1. The unit is the distribution T1 defined by the function identically equal to one.

2. The operation · extends the multiplicative product of distributions Tf and Tg
defined by continuous functions f and g. That is,

Tf · Tg = Tfg.

3. The operation · extends the standard multiplicative products(
pv

1

x

)
x = 1,

xδ0 = 0.
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Laurent Schwartz’s Distributions 103

Indeed, if such operation existed, it would have to satisfy, in particular,

0 =

(
pv

1

x

)
· (xδ0)

=

((
pv

1

x

)
x

)
· δ0

= T1 · δ0 = δ0,

which is not possible.

Schwartz also observed that it is not possible, either, to have an associative
bilinear operation · satisfying 1), 2), and Leibniz’s rule

∂xj (T · S) =
(
∂xjT

)
· S + T ·

(
∂xjS

)
.

Therefore, a multiplicative product and a notion of partial derivative cannot
coexist with the Dirac distribution.

In [6], Jean-François Colombeau defined a multiplicative product on D′ by im-
mersing D′ in an associative quotient algebra. The multiplicative operation on the
algebra extends the multiplicative product TfTg = Tfg when f and g belong to
E . However, it does not extend the multiplicative product when f and g are only
continuous.

There are also multiplicative products defined, at least in special cases, by means
of regularizations [2].

The subject of how to multiply distributions, leads naturally to the subject of
how to divide distributions (see [25], Chapter V, Sections 4 and 5). We will briefly
touch upon it, later on.

In this section, we have not considered the spaces S and S ′. Indeed, their rela-
tionship with the convolution product and the multiplicative product is so special,
that it merits to have its own section.

In the meantime, we are pretty much done with the basics of distribution theory
which we set to present.

For much of the remainder of this article, we will study the Fourier transform of
distributions, as a fundamental application of all we have seen so far.

We begin with a refresher section that has definitions and properties pertaining
to the Fourier transform on the spaces L1 and L2. The material we are about to
discuss, besides being of great interest on its own, will prove useful when we attempt
to define the Fourier transform of a distribution.

Let us mention that the Fourier transform is named after the mathematician
Joseph Fourier (1768-1830).
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7 The Fourier transform on L1 and L2 (part I)

We start with a definition.

Definition 161. Given f ∈ L1, we define the Fourier transform of f , denoted f̂ or
F [f ], as

F [f ] (ξ) =

∫
Rn

e2πixξf (x) dx, (7.1)

where xξ = x1ξ1 + ...+ xnξn.

It should be clear that the integral in (7.1) is well defined.

Let us recall that given h ∈ Rn, we defined the translation operator τh as
τh (f) (x) = f (x− h).

The proof of the following result reduces to changing variables in (7.1).

Theorem 162. Given f ∈ L1, h ∈ Rn and k ∈ R, k ̸= 0,

F [τh (f)] (ξ) = e2πihξF [f ] (ξ) ,

F [f (k·)] (ξ) =
1

|k|n
F [f ]

(
ξ

k

)
. (7.2)

Remark 163. As an immediate consequence of (7.2), the Fourier transform of an
odd integrable function is odd, while the Fourier transform of an even integrable
function is even.

Moreover, if f ∈ L1 is odd,

F [f ] (ξ) =

∫
Rn

e2πixξf (x) dx =

∫
Rn

e2πixξ − e−2πixξ

2
f (x) dx

= i

∫
Rn

f (x) sin 2πxξ dx.

while, if f ∈ L1 is even,

F [f ] (ξ) =

∫
Rn

e2πixξf (x) dx =

∫
Rn

e2πixξ + e−2πixξ

2
f (x) dx

=

∫
Rn

f (x) cos 2πxξ dx.

Definition 164. We say that a function f : Rn → C vanishes at infinity if there is

lim
|x|→∞

f (x) = 0. (7.3)

It should be clear that all the functions in D or in S, vanish at infinity.
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Laurent Schwartz’s Distributions 105

Definition 165.

C0 = {f : Rn → C : f is continuous and vanishes at infinity} .

The space C0 is a complex linear space, that becomes a Banach space with the
sup norm.

Lemma 166. The following statements hold:

1. Every function in C0 is uniformly continuous.

2. The space D is dense in C0.

Proof. We begin with 1).

If f ∈ C0, let us fix ε > 0. Then, there is r = rε > 0 so that |f (x)| ≤ ε for
|x| > r. On the other hand, the function f is uniformly continuous on the compact
set Br = {x ∈ Rn : |x| ≤ r}. Therefore, if x, y ∈ Br, there is δ = δε > 0 such that

|f (x)− f (y)| ≤ ε

if |x− y| < δ.

Furthermore,

|f (x)− f (y)| ≤ |f (x)|+ |f (y)| ≤ 2ε

if |x| , |y| > r.

So, we have proved 1).

To prove 2), we fix f ∈ C0. Given ε > 0 there is r > 0 so that |f (x)| ≤ ε for
|x| > r.

Let α ∈ D be a cut-off function that is equal to one on Br = {x ∈ Rn : |x| ≤ r},
it is zero for |x| ≥ 2r, and it is between 0 and 1 everywhere. Then,

|(1− α (x)) f (x)| ≤ ε

for all x ∈ Rn.

Let fj = (αf) ∗ ρj , where ρj is the function used in the proof of Theorem 25. It
should be clear, from Lemma 24, that fj ∈ D.

Thus, to prove that the sequence {fj}j≥1 converges to f in C0, it suffices to show
that fj (x)→ α (x) f (x) uniformly with respect to x in Rn as j →∞.

|fj (x)− α (x) f (x)| =

⏐⏐⏐⏐⏐
∫
|y|≤1/j

α (x− y) f (x− y) ρj (y) dy − α (x) f (x)

∫
|y|≤1/j

ρj (y) dy

⏐⏐⏐⏐⏐
≤

∫
|y|≤1/j

|α (x− y) f (x− y)− ϕ (x)| ρj (y) dy.

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 1 – 137

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


106 Josefina Alvarez

Since αf is uniformly continuous, we can say that given ε > 0, there is j0 =
j0,ε ≥ 1 so that

|α (x− y) f (x− y)− α (x) f (x)| ≤ ε,

when |y| ≤ 1/j for j ≥ j0, for all x ∈ Rn.

So, |fj (x)− α (x) f (x)| ≤ ε for all x ∈ Rn. Finally,

|fj (x)− f (x)| ≤ |fj (x)− α (x) f (x)|+ |(1− α (x)) f (x)| ≤ 2ε

for j ≥ j0 and for all x ∈ Rn.

This completes the proof of the lemma.

Theorem 167. 1. The Fourier transform F is a linear and continuous operator
from L1 into C0.

2.

∥F∥L1,C0 = 1,

where ∥·∥L1,C0 indicates the operator norm.

3. The image F
[
L1
]
is a proper linear subspace of C0.

4. The image F
[
L1
]
is a dense linear subspace of C0.

Proof. To prove 1), let us begin by proving that given f ∈ L1, F [f ] is a continuous
function. We fix ξ0 ∈ Rn and let {ξj}j≥1 be a sequence converging to ξ0 in Rn as
j →∞.

Then, the sequence
{∫

Rn e
2πixξjf (x)

}
j≥1

converges pointwise to e2πixξ0f (x) in

C as j →∞ and
⏐⏐e2πixξjf (x)

⏐⏐ = |f (x)| for every j ≥ 1.

Therefore, Lebesgue’s dominated convergence theorem implies that {F [f ] (ξj)}j≥1
converges to F [f ] (ξ) in C as j →∞. So, F [f ] is continuous on Rn.

To prove (7.3), we begin with a few observations.

First of all,

|F [f ] (ξ)| ≤ ∥f∥L1 (7.4)

for all ξ ∈ Rn, so F [f ] is bounded on Rn.

Moreover, if {fj}j≥1 converges to f in L1 as j →∞, the sequence {F [fj ] (ξ)}j≥1
converges to F [f ] (ξ) in C, uniformly on ξ, as j →∞.

Furthermore, suppose that, for each j ≥ 1, there is lim|ξ|→∞F [fj ] (ξ) = 0.

We write

|F [f ] (ξ)| ≤ |F [fj ] (ξ)−F [f ] (ξ)|  
(1)

+ |F [fj ] (ξ)|  
(2)

.

Therefore, given ε > 0,

(1) ≤ ∥fj − f∥L1 ≤ ε
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for j ≥ j0,ε.
If we fix j > j0,ε in (2), there is Mj,ε > 0 so that

(2) ≤ ε

for |ξ| ≥Mj,ε.
Finally,

|F [f ] (ξ)| ≤ 2ε

for |ξ| ≥Mj,ε.
So, it only remains to find such a sequence {fj}j≥1.
We select linear combinations of characteristic functions of rectangles, which are

known to be dense in L1.
If R = [a1, b1]× ...× [an, bn], with al < bl for every 1 ≤ l ≤ n,

F
[
χ[al,bl]

]
(ξl) =

{ ∫ bl
al
e2πixlξldxl = e2πiblξl−e2πialξl

2πiξl
if ξl ̸= 0

bl − al if ξl = 0
.

Therefore,

F [χR] (ξ) =
n∏
l=1

F
[
χ[al,bl]

]
(ξl) →

|ξ|→∞
0.

It should be clear that the map f → F [f ] is linear. As for the continuity, it
follows from (7.4). So we have proved 1).

To prove 2), we consider the characteristic function of the cube Q = [−1, 1]n.
We have

∥χQ∥L1 = 2n.

Moreover,

F
[χ[−1,1]

2

]
(ξ) =

{ ∫ 1
−1

e2πiuv

2 du = sin 2πv
2πv if v ̸= 0

1 if v = 0
.

Therefore, χQ
2n


L1

= 1

and

sup
ξ∈Rn

⏐⏐⏐F [χQ
2n

]
(ξ)
⏐⏐⏐ = 1.

In view of (7.4), 2) is proved.
We postpone the proof of 3) and 4) until Section 9.

Remark 168. It is not known how to characterize explicitly the complex linear
space F

[
L1
]
.
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Theorem 169. 1. Given f ∈ E(m) for some m = 1, 2, ..., we assume that ∂αf
belongs to L1 for all α ∈ Nn with |α| ≤ m. Then,

F [∂αf ] (ξ) = (−2πiξ)αF [f ] (ξ) . (7.5)

2. Suppose that the functions f and |x|m f are integrable, for some m ≥ 1. Then,
F [f ] belongs to E(m) and

(∂αF [f ]) (ξ) = F [(2πix)α f ] (ξ) (7.6)

for |α| ≤ m.

Proof. To prove 1), let us begin by showing that (7.5) holds for ∂α = ∂xj . Moreover,
to simplify the notation, let us assume that j = 1.

Let {al}l≥1 be an increasing sequence in R going to∞ as l→∞, and let {bl}l≥1

be a decreasing sequence in R going to −∞ as l→∞. So, al < bl for l large enough.
With the usual notation, we first integrate by parts on the variable x1.∫ bl

al

e2πix1ξ1∂x1f
(
x1, x

′) dx1
= f

(
bl, x

′)− f (al, x′)− 2πiξ1

∫ bl

al

e2πix1ξ1f
(
x1, x

′) dx1.
Therefore, ∫

Rn−1

e2πix
′ξ′
(∫ bl

al

e2πix1ξ1∂x1f
(
x1, x

′) dx1) dx′
=

∫
Rn−1

e2πix
′ξ′f

(
bl, x

′) dx′  
(1)

−
∫
Rn−1

e2πix
′ξ′f

(
al, x

′)  
(2)

+ (−2πiξ1)F [f ] (ξ) .

We claim that each of the terms (1) and (2) converges to zero as l → ∞, for
particular sequences {al}l≥1 and {bl}l≥1.

Let

F (x1) =

∫
Rn−1

⏐⏐f (x1, x′)⏐⏐ dx′.
According to Fubini’s theorem, the function F is defined a.e. and integrable on

R. Therefore, for each l = 1, 2, ... fixed, the set{
x1 > 0 : F (x1) >

1

l

}
has finite measure.
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So, we can find an increasing sequence {bl}l≥1 going to ∞ as l → ∞, so that
F (bl) ≤ 1/l for every l.

Since the set {
x1 < 0 : F (x1) >

1

l

}
has also finite measure, there is a decreasing sequence {al}l≥1 going to −∞ as l→∞,
so that F (al) ≤ 1/l. Moreover, al < bl for l large enough.

Finally, for these particular sequences,

|(1)|+ |(2)| ≤ F (bl) + F (al) ≤
2

l
→
l→∞

0.

If we assume that m ≥ 2, since ∂αf belongs to L1 for all α ∈ Nn with |α| ≤ m−1,
we can repeat what we just did, with ∂αf instead of f , for |α| ≤ m− 1.

This completes the proof of 1).
To prove 2), we observe that given s ∈ N, s ≤ m,

|x|s |f (x)| ≤
{

|f (x)| if |x| ≤ 1
|x|m |f (x)| if |x| ≥ 1

.

So, the function |x|s |f (x)| is integrable as well. If ∂ξl1 ...∂ξlh is any partial deriva-
tive of order s ≤ m,⏐⏐⏐∂ξl1 ...∂ξlh (e2πixξ) f (x)

⏐⏐⏐ =
⏐⏐⏐(2πix1)l1 ... (2πixn)ln

⏐⏐⏐ |f (x)|

for l1 + ...+ ln = s.
Since ⏐⏐⏐(2πix1)l1 ... (2πixn)ln

⏐⏐⏐ = (2π)s
(
x2l11 ...x2lnn

)1/2
≤ Cn,s |x|s

for some Cn,s > 0, we conclude that ∂ξl1 ...∂ξlh

(
e2πixξ

)
f (x) is integrable as a function

of x.
According to Theorem 6 and Theorem 8, F [f ] belongs to E(m) and (7.6) is true.
So, we have proved 2).
This completes the proof of the theorem.

Remark 170. Theorem 169 says that derivability of f translates into F [f ] going
to zero faster at infinity. It also says that integrability of |x|m f (x) for increasing
values of m, implies that F [f ] has continuous partial derivatives of higher order.

Definition 171. Given f ∈ L1, we define the conjugate Fourier transform of f ,
denoted F [f ], as

F [f ] (ξ) =

∫
Rn

e−2πixξf (x) dx. (7.7)
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Remark 172.
F [f ] = F

[
f
]
, (7.8)

where · denotes the complex conjugate of the function ·.
Therefore, F has the properties stated in Theorem 167. Moreover,

F [∂αf ] (ξ) = (2πiξ)αF [f ] (ξ)

and (
∂αF [f ]

)
(ξ) = F [(−2πix)α f ] (ξ) ,

under the hypotheses of Theorem 169.

Let us observe that when we talk about the Fourier transform, or the conjugate
Fourier transform, we mean the transform of a fixed function as well as the operator
from one space into another.

We now enounce two classical theorems, which of course have classical proofs.
However, we will postpone their proofs until we define the Fourier transform in the
context of distributions. At that time we will able to prove them, using results from
the theory of distributions.

Theorem 173. If the functions f and f̂ are both integrable,

F
[
f̂
]

= f a.e..

Theorem 174. The linear and continuous operator

F : L1 → F
[
L1
]
⊆ C0

is injective, in the sense that given g ∈ F
[
L1
]
there is f ∈ L1, uniquely determined

a.e., so that F [f ] = g.

Remark 175. 1. If the integrable function f does not belong to C0, Theorem
173 implies that f̂ is not integrable. Therefore, F

[
L1
]
" L1.

2. According to 1), the operator F−1 : F
[
L1
]

:→ L1 coincides with F only on
F
[
L1
]⋂

L1.

We now move on to the Fourier transform on L2. For clarity, we will denote F2

the operator we are about to define. Since L2 is not contained in L1, we can only
use (7.1) when f ∈ L1

⋂
L2.

Theorem 176. The linear operator

L1
⋂
L2 ←↩ S F→ L2 (7.9)

is well defined and
∥F [ϕ]∥L2 = ∥ϕ∥L2

for every ϕ ∈ S.
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As we did with Theorem 173 and Theorem 174, we postpone the proof of Theo-
rem 176.

With Theorem 176 in hand, the definition of F2 is just a straightforward appli-
cation of the following, well known, extension principle:

Theorem 177. Let X be a normed linear space, let Y be a Banach space, and let X1

be a dense and linear subspace of X. Then, given a linear and continuous operator

X ←↩ X1
T→ Y

there is one, and only one, linear and continuous operator T : X → Y such that

1. T |X1 = T1.

2. ∥T∥X,Y = ∥T1∥X1,Y
.

Theorem 178. There is a unique, linear, and continuous operator

L2 F2→ L2

that extends (7.9). Moreover,

∥F2 [f ]∥L2 = ∥f∥L2 (7.10)

for every f ∈ L2.

Remark 179. 1. The equality (7.10) is named Parseval’s identity after the math-
ematician Marc Antoine Parseval (1755-1836).

Parseval’s identity shows that F2 is an isometry of L2 into itself.

2. In the same way as with F2, we can define the extension F2 of the conjugate
Fourier transform, which also satisfies

F2 [f ] = F2

[
f
]

,

by virtue of the extension principle.

The proof of the following two results will be given in Section 9.

Theorem 180. The operators F2 and F2 are isomorphisms of L2 onto itself, and
they are inverse of each other. Moreover, they preserve the scalar product in L2.

That is to say,

(f, g)L2

def
=

∫
Rn

f (x) g (x)dx =
(1)

∫
Rn

F2 [f ] (ξ)F2 [g] (ξ)dξ

def
= (F2 [f ] ,F2 [g])L2 . (7.11)
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Equality (1) is named Plancherel’s identity, after the mathematician Michel
Plancherel (1885-1967).

Theorem 181. Given f ∈ L1
⋂
L2,

F [f ] = F2 [f ] a.e..

Remark 182. 1. Strictly speaking, F2 and F2 operate between two different
copies of L2, which are L2

x and L2
ξ .

That is to say, the graph of F2, and the graph of F2, are subsets of L2
x × L2

ξ ,
which, in physics terms, is called the phase space, where x is associated with
position and ξ is associated with momentum. From the mathematics point of
view, we will always identify the variables x and ξ.

2. The definition of the operator F : L1 → C0, by means of an integral, is
straightforward. However, it presents two difficulties: How to characterize the
image and how to compute the inverse.

On the other hand, the definition of the operator F2 requires more labor, by
means of the extension principle. However, once that is done, none of the
difficulties described before exist. In that respect, we could say that the L2-
theory of the Fourier transform is more symmetrical, perhaps more elegant,
than the L1-theory.

3. Once Theorem 181 is proved, we will be able to remove the sub-index from
F2.

We begin to study these matters in the next section.

8 The Fourier transform on S and S ′

If we fix f ∈ L1, the function f̂ , being continuous, defines a distribution in D′.
If ϕ ∈ D,(

T
f̂
, ϕ
)
D′,D

=

∫
Rn

f̂ (x)ϕ (x) dx =

∫
Rn

(∫
Rn

e2πiyxf (y) dy

)
ϕ (x) dx

=

∫
Rn

(∫
Rn

e2πiyxϕ (x) dx

)
f (y) dy

=

∫
Rn

ϕ̂ (y) f (y) dy  
(1)

.

Although the integral (1) is well defined, it does not provide a pairing (Tf , ϕ̂)D′,D.
To see why, we begin with the following result:
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Lemma 183. The statements that follow are true:

1.

e2πixz =
∑
α∈Nn

(2πix)α

α!
zα, (8.1)

for all x ∈ Rn, z ∈ Cn.

2. The series (8.1) converges, absolutely and uniformly, for x in each compact
subset of Rn and z in each compact subset of Cn.

Proof. To prove 1) we write

e2πixz =
∑
j≥0

(2πi)j

j!
(xz)j ,

for x ∈ Rnand z ∈ Cn, fixed.

According to Lemma 1,

(xz)j = (x1z1 + ...+ xnzn)j =
∑
|α|=j

j!

α!
xαzα.

Therefore,

∑
j≥0

(2πi)j

j!
(xz)j =

∑
j≥0

(2πi)j

j!

∑
|α|=j

j!

α!
xαzα =

∑
α∈Nn

(2πix)α

α!
zα.

So, 1) is proved.

For 2), let us assume that |xj | ≤ R and |zj | ≤ R′, for R,R′ > 0 and 1 ≤ j ≤ n.

∑
α∈Nn

⏐⏐⏐⏐(2πix)α

α!
zα
⏐⏐⏐⏐ =

∑
α1,...,αn≥0

n∏
l=1

⏐⏐⏐⏐(2πixl)αl

αl!
zαl
l

⏐⏐⏐⏐
=

n∏
l=1

∑
αl≥0

⏐⏐⏐⏐(2πixl)αl

αl!
zαl
l

⏐⏐⏐⏐ ≤ n∏
l=1

∑
αl≥0

(2πR)αl

αl!
R′αl . (8.2)

Since each of the n series in (8.2) converges, we have proved 2).

This completes the proof of the lemma.

Lemma 184. If ϕ ∈ D, the function ϕ̂ has an extension Φ to Cn that is an entire
function, that is to say, it is a holomorphic function on Cn.
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Proof. The integral ∫
supp(ϕ)

e2πixξϕ (x) dx

is still defined if we substitute ξ for the variable z ∈ Cn.
According to Lemma 183,

Φ (z) =

∫
supp(ϕ)

e2πixzϕ (x) dx =
∑
α≥0

1

α!

(∫
supp(ϕ)

(2πix)α ϕ (x) dx

)
zα.

This completes the proof of the lemma.

As an immediate consequence of Lemma 184, the smooth function Φ (ξ) = ϕ̂ (ξ)
cannot have compact support, unless it is the identically zero function. Therefore,
although the integral (1) suggests that given T ∈ D′, we might attempt to state the
definition (

T̂ , ϕ
)
D′,D

= (T, ϕ̂)D′,D ,

this is not possible.
One of Schwart’s great achievements was the realization that the space S, which

he defined, is a natural domain for F and F2. On S, both operators have all the
good features and none of the inconveniences. Schwartz also observed that the L1

and the L2 theories, as well as, in general, the Lp-theory for 1 ≤ p ≤ ∞, can be
seen as part of the theory of the Fourier transform on the space S ′ of tempered
distributions.

Theorem 185. The operator

S F→ S
is well defined, linear, and continuous.

Proof. Since S ⊆ L1, given ϕ ∈ S, F [ϕ] is defined by means of an integral, as in
(7.1).

It should be clear that the map ϕ→ F [ϕ] is linear.
Moreover, according to Corollary 58 and Theorem 169,⏐⏐⏐ξβ (∂αF [ϕ]) (ξ)

⏐⏐⏐ =
⏐⏐⏐ξβF [(2πix)α f ] (ξ)

⏐⏐⏐
= (2π)−|β|

⏐⏐⏐F [∂β ((2πix)α f)
]

(ξ)
⏐⏐⏐ .

Therefore, after using Leibniz’s rule, we have, as in the proof of Theorem 57,⏐⏐⏐ξβ (∂αF [ϕ]) (ξ)
⏐⏐⏐

≤ Cα,β,m,n sup
|γ|≤a,|η|≤b

sup
x∈Rn

|xγ (∂ηϕ) (x)|
∫
Rn

(
1 + |x|2

)−m
dx,
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for m > n/2 and for appropriate a, b ∈ N.
Thus, we have proved that F [ϕ] ∈ S and that the Fourier transform is continuous

from S into itself.
This completes the proof of the theorem.

Remark 186. From (7.8), it follows that Theorem 185 also applies to the conjugate
Fourier transform.

Theorem 187.
F
[
F [ϕ]

]
= ϕ (8.3)

and
F [F [ϕ]] = ϕ, (8.4)

for every ϕ ∈ S.

Proof. If we assume that (8.4) is true, using (7.8),

F
[
F [ϕ]

]
= F

[
F [ϕ]

]
= F [F [ϕ]] = ϕ.

So, let us prove (8.4). What we need to show is that

ϕ (y) =

∫
Rn

e−2πiyξϕ̂ (ξ) dξ

=

∫
Rn

(∫
Rn

e2πi(x−y)ξϕ (x) dx

)
dξ, (8.5)

for every ϕ ∈ S and for all y ∈ Rn.
The difficulty is, of course, that we cannot change the order of integration in

(8.5). However, given ψ ∈ S, the double integral∫
Rn×Rn

e2πi(x−y)ξψ

(
ξ

j

)
ϕ (x) dxdξ (8.6)

exists for each j ≥ 1 and equals∫
Rn

e−2πiyξψ

(
ξ

j

)
ϕ̂ (ξ) . (8.7)

With the change of variables x → u/ (j + y) and ξ → jv, the integral (8.6)
becomes ∫

Rn×Rn

e2πiuvψ (v)ϕ

(
u

j
+ y

)
dudv =

∫
Rn

ψ̂ (u)ϕ

(
u

j
+ y

)
du.

That is to say, we have the identity∫
Rn

e−2πiyξψ

(
ξ

j

)
ϕ̂ (ξ) =

∫
Rn

ψ̂ (u)ϕ

(
u

j
+ y

)
du, (8.8)
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for all ϕ,ψ ∈ S.

Using Lebesgue’s dominated convergence theorem, we can take the limit on both
sides of (8.8 as j →∞, to get

ψ (0)F [F [ϕ]] (y) = ϕ (y)

∫
Rn

ψ̂ (u) du.

Therefore, we will have proved (8.4), if we find a function ψ ∈ S so that ψ (0) = 1
and ∫

Rn

ψ̂ (u) du = 1. (8.9)

We claim that all the requirements are fulfilled by the function

ψ (x) = e−π|x|
2

.

According to Example 49, the function ψ belongs to S. Moreover, ψ (0) = 1.

If we were to prove that ψ̂ = ψ, then taking t = 1 and making a change of
variables in 2) of Lemma 91, we would have (8.9).

So, we set

g (ξ) = eπ|ξ|
2

ψ̂ (ξ) .

Since g (0) = 1, to prove that ψ̂ = ψ we only need to verify that ∂ξjg is identically
zero, for all 1 ≤ j ≤ n.

∂ξjg (ξ) = 2πξje
π|ξ|2ψ̂ (ξ) + eπ|ξ|

2

∂ξj ψ̂ (ξ)

=
(1)
eπ|ξ|

2

ψ̂ (ξ) (2πξj − 2πξj) = 0,

where we have used, in (1), Theorem 8.

This completes the proof of the theorem.

Given T ∈ S ′, Theorem 185 implies that the pairing (T,F [ϕ])S′,S is well defined,
and it is a distribution in S ′.

Definition 188. Given T ∈ S ′,

(F [T ] , ϕ)
def
= (T,F [ϕ])S′,S . (8.10)

Likewise, (
F [T ] , ϕ

) def
=
(
T,F [ϕ]

)
S′,S . (8.11)

Theorem 189. 1. The operators F and F are linear and continuous from S ′
into itself.
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2.
F [F [T ]] = T

and
F
[
F [T ]

]
= T ,

for every T ∈ S ′.

Proof. It should be clear that the maps (8.10) and (8.11) are well defined, and are
linear from S ′ into itself.

Let us prove that F is continuous from S ′ into itself.
If B is a bounded subset of S, according to Theorem 185, the image F [B] is a

bounded subset of S.
Therefore,

∥F [T ]∥S′,B = sup
ϕ∈B
|(F [T ] , ϕ)| = sup

ϕ∈B
|(T,F [ϕ])|

= sup
ϕ∈B
∥T∥S′,F [B] .

A similar estimate holds for F .
So, 1) is proved.
The proof of 2) follows immediately from Theorem 187.(

F [F [T ]] , ϕ
)

=
(
T,F

[
F [ϕ]

])
= (T, ϕ) ,

for all ϕ ∈ S, and similarly for FF .
This completes the proof of the theorem.

Theorem 190. Given f ∈ L1, there is

lim
j→∞

∫
|ξ|≤j

e−2πixξ f̂ (ξ) dξ = f ,

in the sense of S ′.
That is, for ϕ ∈ S,(

F
[
T
χj f̂(ξ)

]
, ϕ
)
→
j→∞

∫
Rn

f (x)ϕ (x) dx,

where χj denotes the characteristic function of {ξ ∈ R : |ξ| ≤ j}.

Proof. For j ≥ 1 fixed,(
F
[
T
χj f̂(ξ)

]
, ϕ
)

=

∫
|ξ|≤j

f̂ (ξ)F [ϕ] (ξ) dξ =

∫
|ξ|≤j

f̂ (ξ)

(∫
Rn

e−2πixξϕ (x) dx

)
dξ

=

∫
Rn

∫
Rn

e−2πixξχj (ξ) f̂ (ξ)ϕ (x) dxdξ =

∫
Rn

χj (ξ) f̂ (ξ)F [ϕ] (ξ) dξ.

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 1 – 137

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


118 Josefina Alvarez

Lebesgue’s dominated convergence theorem tells us that there is

lim
j→∞

∫
Rn

χj (ξ) f̂ (ξ)F [ϕ] (ξ) dξ =

∫
Rn

f̂ (ξ)F [ϕ] (ξ) dξ

=
(
T
f̂
,F [ϕ]

)
=

(
FF [Tf ] , ϕ

)
= (Tf , ϕ) .

This completes the proof of the theorem.

Remark 191. Theorem 190 expounds the statement made in 2) of Remark 175.

9 The Fourier transform on L1 and L2 (part II)

We begin with the following result:

Lemma 192. Given f ∈ L1,
F [Tf ] = T

f̂
, (9.1)

in the sense of S ′.

Proof. First of all, each side of (9.1) is a tempered distribution.
So, for ϕ ∈ S,(

T
f̂
, ϕ
)

=

∫
Rn

f̂ (ξ)ϕ (ξ) dξ =

∫
Rn

(∫
Rn

e2πixξf (x) dx

)
ϕ (ξ) dξ.

Since the double integral∫
Rn

∫
Rn

e2πixξf (x)ϕ (ξ) dxdξ

exists, Fubini’s theorem implies that the iterated integrals are equal.
That is to say,∫

Rn

(∫
Rn

e2πixξf (x) dx

)
ϕ (ξ) dξ =

∫
Rn

(∫
Rn

e2πixξϕ (ξ) dξ

)
f (x) dx

= (Tf ,F [ϕ]) = (F [Tf ] , ϕ) .

This completes the proof of the lemma.

Remark 193. Similarly, we can show that, given f ∈ L1,

F [Tf ] = TF [f ],

in the sense of S ′.
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We are now ready to prove Theorem 173.

Proof. According to Lemma 192 and 2) in Theorem 189,

TF[f̂] = F
[
T
f̂

]
= F [F [Tf ]] = Tf ,

in the sense of S ′.
In particular, (

TF[f̂], ϕ
)

= (Tf , ϕ) ,

for ϕ ∈ D.
Therefore, Theorem 30 implies that

F
[
f̂
]

= f a.e..

This completes the proof of the theorem.

We go onto proving 3) and 4) in Theorem 167

Proof. To prove 3), we will exhibit a function in C0 that cannot be the Fourier
transform of any function in L1. The example is taken from ([4], pp. 7-8).

We begin with a general observation, that follows from Remark 163.
Given f ∈ L1 (R) odd, and given 0 < r < R fixed,∫ R

r

f̂ (ξ)

ξ
dξ = 2i

∫ R

r

(∫ ∞

0
f (x)

sin 2πxξ

ξ
dx

)
dξ

= 2i

∫ ∞

0
f (x)

(∫ R

r

sin 2πxξ

ξ
dξ

)
dx

= 2i

∫ ∞

0
f (x)

(∫ 2πxR

2πxr

sin y

y
dy

)
dx.

It is a classical application of the theory of residues (see, for instance, [11], p.160),
that the integral

∫∞
0

sin y
y dy converges. Indeed,∫ ∞

0

sin y

y
dy =

π

2
.

Therefore, there is

lim
r→0+,R→∞

⏐⏐⏐⏐∫ R

r

sin y

y
dy

⏐⏐⏐⏐ ,
which implies that there is C > 0 independent of r and R, so that⏐⏐⏐⏐∫ R

r

sin y

y
dy

⏐⏐⏐⏐ ≤ C.
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As a consequence, ⏐⏐⏐⏐⏐
∫ R

r

f̂ (ξ)

ξ
dξ

⏐⏐⏐⏐⏐ ≤ C ∥f∥L1 .

Let us now consider the function G (t) that is the odd extension to R of the
function

g (t) =

{
t
e if 0 ≤ t ≤ e
1
ln t if t ≥ e .

It should be clear that the function G belongs to C0 (R).
According to 4) in Example 23, Remark 163, Lemma 192, and Theorem 173, if

there is a function f ∈ L1 (R) so that F [f ] = G, the function f must be odd.
Indeed, f is odd if, and only if, Tf is odd. Likewise, F [f ] is odd if, and only if,

T
f̂

is odd. Finally, Tf = F
[
T
f̂

]
.

Given 0 < r < e < R, we claim that∫ R

r

G (t)

t
dt →

r→0+,R→∞
∞.

Indeed, ∫ R

r

G (t)

t
dt =

∫ e

r

dt

e
+

∫ R

e

dt

t ln t
=
e− r
e

+ ln (lnR) .

Therefore, there is no odd function f in L1 (R) such that f̂ = G.
Given f ∈ L1

(
Rn−1

)
odd, the function f̂ (ξ)G (t), where f̂ denotes the Fourier

transform on Rn−1, provides an example on Rn.
Now, we are ready to prove 4).
According to 2) in Lemma 166, given f ∈ C0, there is a sequence {fj}j≥1 ⊆ D,

converging to f in C0 as j →∞.
Theorem 187 implies that

F
[
F [fj ]

]
= fj

for all j ≥ 1.
Hence, fj belongs to F

[
L1
]

for all j ≥ 1.
So, we have proved 4) in Theorem 167.
The proof of the theorem is, therefore, complete.

Next, we prove Theorem 174.

Proof. Suppose that there are f1, f2 ∈ L1 so that F [f1] = F [f2] in C0.
Then,

0 = F
[
T
f̂1−f2

]
= FF [Tf1−f2 ] = Tf1−f2 .

Again, Theorem 30 implies that f1 = f2 a.e..
This completes the proof of the theorem.
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We move to the Fourier transform on L2. We begin with the following result:

Lemma 194. Given ϕ,ψ ∈ S,

(ϕ̂, ψ)L2 =
(
ϕ,F [ψ]

)
L2 .

Proof.∫
Rn

(∫
Rn

e2πixξϕ (x) dx

)
ψ (ξ)dξ =

∫
Rn

∫
Rn

e2πixξϕ (x)ψ (ξ)dxdξ

=

∫
Rn

(∫
Rn

e−2πixξψ (ξ)dξ

)
ϕ (x) dx.

This completes the proof of the lemma.

We prove now Theorem 176.

Proof. It should be clear that the linear operator

L1
⋂
L2 ←↩ S F→ L2

is well defined.

Moreover, if we use Lemma 194 with ψ = ϕ̂, and Theorem 187,

∥F [ϕ]∥2L2 = (ϕ̂, ϕ̂)L2 =
(
ϕ,F [ϕ̂]

)
L2 = (ϕ,ϕ)2L2 .

This completes the proof of the theorem.

Let us prove Theorem 178.

Proof. According to Theorem 177, it only remains to prove (7.10).

Given f ∈ L2, let {ϕj}j≥1 be a sequence in S converging to f in L2 as j → ∞.
Theorem 176 implies that

∥F [ϕj ]∥L2 = ∥ϕj∥L2

for every j ≥ 1.

Therefore,

∥F2 [f ]∥L2 = lim
j→∞

∥F [ϕj ]∥L2 = lim
j→∞

∥ϕj∥L2 = ∥f∥L2 .

This completes the proof of the theorem.

Next, we prove Theorem 180.
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Proof. Given f ∈ L2 let {ϕj}j≥1 be sequence in S converging to f in L2 as j →∞.

Then

F2 [F2 [f ]] = lim
j→∞

F [F [ϕj ]] = lim
j→∞

ϕj = f .

Likewise,

F2

[
F2 [f ]

]
= f

for every f ∈ L2.

As for the preservation of the scalar product, given f, g ∈ L2, let {ϕj}j≥1 and

{ψj}j≥1 be sequences in S converging in L2 to f and g, respectively as j →∞.

Then, if we use Lemma 194 with ϕ = ϕj and ψ = ψ̂j , and the continuity of the
scalar product,

(F2 [f ] ,F2 [g])L2 = lim
j→∞

(F2 [ϕj ] ,F2 [ψj ])L2

= lim
j→∞

(ϕj , ψj)L2 = (f, g) .

This completes the proof of the theorem.

Finally, we prove Theorem 181.

Proof. Given f ∈ L1
⋂
L2, let {ϕj}j≥1 be a sequence in S converging to f in L2 as

j →∞. According to Theorem 69, there is limj→∞ TF [ϕj ] = TF2[f ] in S ′. Therefore,

TF2[f ] = lim
j→∞

F
[
Tϕj

]
= F [Tf ] = TF [f ]

in S ′.
Thus,

F2 [f ] = F [f ] a.e..

This completes the proof of the theorem.

According to Theorem 69, if 1 ≤ p ≤ ∞, given f ∈ Lp, the distribution Tf
belongs to S ′. Therefore, F [Tf ] is well defined in the sense of S ′.

Theorem 195. Given 1 ≤ p ≤ 2 fixed, if f ∈ Lp, there is g ∈ Lq, where q is the
conjugate exponent of p, so that F [Tf ] = Tg.

Moreover, there is Cp > 0 so that

∥g∥Lq ≤ Cp ∥f∥Lp . (9.2)

Remark 196. 1. Theorem 195 is one of several theorems known as Hausdorff-
Young theorem. They are named after the mathematicians Felix Hausdorff
(1868-1942) and William H. Young (1863-1942).
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2. Theorem 195 is optimal in the sense that if p > 2, there is a function f ∈ Lp
for which F [Tf ] is not defined by a function g in Lq ([8], p. 263).

3. The optimal constant in (9.2) is

Cp = p1/(2p)q−1/(2q)

([5], p. 94).

4. For a thorough discussion of the Hausdorff-Young theorems, from a historical
point of view, see [3].

10 The interaction of the Fourier transform with the
tensor product, the convolution product, and the
multiplicative product

We begin with the following result:

Theorem 197. Let T ∈ S ′x and S ∈ S ′y.

1. The tensor product T ⊗ S belongs to S ′x,y.

2.
Fx,y [Tx ⊗ Sy] = Fx [Tx]⊗Fy [Sy] , (10.1)

in the sense of S ′x,y.

Proof. According to Theorem 124, T ⊗ S belongs to D′
x,y. To prove that it is a

tempered distribution, we use Theorem 104, and various properties of the tensor
product.

T ⊗ S = (∂αTf )⊗
(
∂βTg

)
= ∂αx ∂

β
y

(
Tf(x)g(y)

)
. (10.2)

Since f : Rn → C and g : Rm → C are slowly increasing and continuous functions,
f (x) g (y) is an slowly increasing and continuous function from Rn+m into C. So, 1)
is proved.

The function e2πixξ has separated variables, so, 2) should be quite expected.
Indeed, to prove 2), it suffices to test each side of (10.1) on functions of the form

ϕ (ξ)ψ (η), for ϕ ∈ Dξ and ψ ∈ Dη.

(Fx,y [Tx ⊗ Sy] , ϕ (ξ)ψ (η)) =
(
Tx ⊗ Sy, ϕ̂ (x) ψ̂ (y)

)
= (Tx, ϕ̂ (x))

(
Sy, ψ̂ (y)

)
= (Fx [Tx]⊗Fy [Sy] , ϕ (ξ)ψ (η)) .

This completes the proof of the theorem.
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Next, we prove a result known as Peetre’s lemma, named after the mathematician
Jaak Peetre (b. 1935).

Lemma 198. Given ξ, η ∈ Rn and r ∈ R,(
1 + |ξ|2

)r
≤ 2|r|

(
1 + |η|2

)r (
1 + |ξ − η|2

)|r|
. (10.3)

Proof. The change of variables x = η and y = ξ− η reduces (10.3) to the equivalent
form (

1 + |x+ y|2
)r
≤ 2|r|

(
1 + |x|2

)r (
1 + |y|2

)|r|
. (10.4)

We have (
1 + |x+ y|2

)
= 1 + ⟨x+ y, x+ y⟩

= 1 + |x|2 + |y|2 + 2⟨x, y⟩,

where ⟨·, ·⟩ is the usual scalar product in Rn.
Since

2⟨x, y⟩ ≤ 2 |x| |y| ≤ |x|2 + |y|2 ,

we can write

1 + |x|2 + |y|2 + 2⟨x, y⟩ ≤ 1 + 2 |x|2 + 2 |y|2 ≤ 2
(

1 + |x|2 + |y|2 + |x|2 |y|2
)

= 2
(

1 + |x|2
)(

1 + |y|2
)

.

Therefore, we have (10.3) for r ≥ 0.
We can write (10.3), for r > 0, as(

1 + |η|2
)−r
≤ 2|r|

(
1 + |ξ|2

)−r (
1 + |ξ − η|2

)|r|
. (10.5)

So, with the exchange ξ → η and η → ξ, (10.5) is (10.3), for r < 0.
This completes the proof of the lemma.

Theorem 199. The following statements hold:

1. The map
S × S → S
(ϕ,ψ) → ϕ ∗ ψ

is well defined, bilinear, and continuous.

2. The multiplicative product

S × S → S
(ϕ,ψ) → ϕψ

is well defined, bilinear, and continuous.
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Proof. Given ϕ,ψ in S and given m ∈ N, if |α| ≤ 2m, and β ∈ Nn, Theorem 6,
Theorem 8, Lemma 4 and Lemma 10.3, imply⏐⏐⏐xα (∂β (ϕ ∗ ψ)

)
(x)
⏐⏐⏐

≤ Cm,n,l sup
x∈Rn

((
1 + |x|2

)m ⏐⏐⏐(∂βϕ) (x)
⏐⏐⏐) sup

x∈Rn

(
1 + |x− y|2

)m+l
|ψ (x)|

×
∫
Rn

(
1 + |x|2

)−l
dy

≤ Cm,n,l sup
|α|≤2m

sup
x∈Rn

⏐⏐⏐xα (∂βϕ) (x)
⏐⏐⏐ sup
|α|≤2m+2l

sup
x∈Rn

|xα (ψ) (x)| ,

for l > n/2.
Therefore, ϕ ∗ ψ ∈ S, and the map is continuous. It should be clear that it is

bilinear.
Thus, we have proved 1).
To prove 2), we invoke again Lemma 4.⏐⏐⏐xα (∂β (ϕψ)

)
(x)
⏐⏐⏐ ≤ Cβ,n sup

γ≤β
sup
x∈Rn

|xα∂γϕ (x)| sup
γ≤β

sup
x∈Rn

|∂γψ (x)| ,

which shows that ϕψ ∈ S and that the map is continuous. It should be clear that
the map is bilinear.

This completes the proof of the theorem.

Lemma 200. Given ϕ,ψ in S,

F
[
ϕF [ψ]

]
= F [ϕ] ∗ ψ, (10.6)

F [ϕF [ψ]] = F [ϕ] ∗ ψ. (10.7)

Proof. To prove the first identity we observe that

F
[
ϕF [ψ]

]
(y) =

∫
Rn

e2πiyξϕ (ξ)

(∫
Rn

e−2πixξψ (x) dx

)
dξ

=

∫
Rn

ϕ (ξ)

(∫
Rn

e2πi(y−x)ξψ (x) dx

)
dξ.

Since ϕ (ξ)ψ (x) is integrable on R2n, we can exchange the order of integration,
to obtain∫

Rn

ψ (x)

(∫
Rn

e2πi(y−x)ξϕ (ξ) dx

)
dξ =

∫
Rn

ψ (x)F [ϕ] (y − x) dx

= (F [ϕ] ∗ ψ) (y) .

The proof of the second identity is similar, if we replace F with F .
This concludes the proof of the lemma.
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Remark 201. 1. If we substitute F [ψ] for ψ in (10.6),

F [ϕψ] = F [ϕ] ∗ F [ψ] ,

while substituting F [ψ] for ψ in (10.7),

F [ϕψ] = F [ϕ] ∗ F [ψ] .

2. If we replace ϕ with F [ϕ] in (10.7), we obtain

F [F [ϕ]F [ψ]] = ϕ ∗ ψ. (10.8)

Then, taking the Fourier transform on both sides of (10.8), gives us

F [ϕ]F [ψ] = F [ϕ ∗ ψ] .

3. If we substitute F [ϕ] for ϕ in (10.6),

F
[
F [ϕ]F [ψ]

]
= ϕ ∗ ψ. (10.9)

Therefore, taking the conjugate Fourier transform on both sides of (10.9),

F [ϕ]F [ψ] = F [ϕ ∗ ψ] .

That is to say, F and F , as operators on S, act between the algebras (S, ∗) and
(S, ·), where · denotes the multiplicative product.

Theorem 202. Given f, g in L1,

F [f ∗ g] = F [f ]F [g] ,

F [f ∗ g] = F [f ]F [g] .

Proof. Let {ϕj}j≥1 and {ψj}j≥1 be sequences in S converging, respectively, to f

and g in L1 as j →∞.
Then, Young’s convolution theorem (see, for instance, [29], p. 146, Theorem 9.2;

p. 145, Theorem 9.1), implies that there is limj→∞ ϕj ∗ ψj = f ∗ g in L1.
According to Theorem 167 and Remark 201,

F [f ∗ g] = lim
j→∞

F [ϕj ∗ ψj ] = lim
j→∞

(F [ϕj ]F [ψj ]) = F [f ]F [g]

in C0.
The proof of the other identity is similar, replacing F with F .
This completes the proof of the theorem.
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Remark 203. Theorem 202 shows that the Fourier transform is a homomorphism
from the algebra

(
L1, ∗

)
into the algebra (C0, ·).

We have said numerous times that properties of the Fourier transform hold,
perhaps with very obvious changes, for the conjugate Fourier transform. We will
say it no more.

Theorem 204. If T ∈ E ′ and S ∈ S ′, the convolution T ∗ S belongs to S ′.

Proof. We know already that T ∗ S is well defined as a distribution in D′. To prove
that it can be extended to a distribution in S ′, we will use Theorem 104 and Theorem
107.

Therefore, in the sense of D′,

T ∗ S =

(∑
α

∂αTfα

)
∗ ∂βTf ,

where the functions fα are continuous with compact support, and the function f is
continuous and slowly increasing.

So,

T ∗ S =
∑
α

∂α+β (Tfα ∗ Tf ) .

Given ϕ ∈ D,

(Tfα ∗ Tf , ϕ) =
(
Tfα(x) ⊗ Tf(y), ϕ (x+ y)

)
=
(
Tfα(x),

(
Tf(y), ϕ (x+ y)

))
=

∫
K
fα (x)

(∫
Rn

f (y)ϕ (x+ y) dy

)
dx =

∫
K
fα (x)

(∫
supp(ϕ)

f (z − x)ϕ (z) dz

)
dx,

where K is a compact subset of Rn containing the support of fα for all α. Since the
double integral exists, we can write

(Tfα ∗ Tf , ϕ) =

∫
Rn

(∫
Rn

fα (x) f (z − x) dx

)
ϕ (z) dz

=

∫
Rn

(fα ∗ f) (z)ϕ (z) dz.

Theorem 6 implies that the function fα ∗ f is continuous. Moreover, we claim
that it is slowly increasing.

Indeed, since the function f is slowly increasing, according to 3) in Example 59,
there is m ∈ N and Cm > 0 so that

|f (z − x)| ≤ Cm
(

1 + |z − x|2
)m

for all z ∈ Rn.
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Therefore, Lemma 198 implies(
1 + |z|2

)m
|(fα ∗ f) (z)| ≤ 2m

∫
K

(
1 + |x|2

)m
fα (x)

(
1 + |z − x|2

)m
f (z − x) dx

≤ 2mCm

(1 + |·|2
)m

fα


L1

.

So, fα ∗ f defines a tempered distribution.
Finally,

T ∗ S =
∑
α

∂α+β (Tfα∗f ) (10.10)

in S ′.

Definition 205.

OM = {g ∈ E : ∂αg is slowly increasing for each α ∈ Nn} .

Example 206. Every polynomial function P (x) belongs to OM .
Moreover, for each x ∈ Rn, the function e2πixξ also belongs to OM .

Remark 207. Let f ∈ OM .

1. The map
S → S
ϕ → fϕ

is well defined, linear, and continuous.

2. The map
S ′ → S ′
T → fT

is well defined, linear, and continuous.

The verification of these statements uses estimates we have performed quite a
few times, so we will omit it.

Let us recall that, according to (5.8),

(τ−h (T ) , ϕ) = (T, τh (ϕ)) ,

where
τh (ϕ) (x) = ϕ (x− h) .

Moreover, according to 4) in Example 23,

(dk (T ) , ϕ) =

(
T,
d1/k (ϕ)

|k|n
)

.

In particular, if k = −1,

(d−1 (T ) , ϕ) = (T, ϕ (−·)) .
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Theorem 208. 1. Given T ∈ S ′ and h ∈ Rn,

F [τ−h (T )] = e2πihξF [T ] ,

where e2πihξF [T ] signifies the multiplicative product of the tempered distribu-
tion F [T ] by the function e2πihξ in OM .

2. Given T ∈ S ′ and k ∈ R, k ̸= 0,

F [dk (T )] =
1

|k|n
d1/k (F [T ]) ,

In particular,

(F [d−1 (T )] , ϕ) = (T,F [ϕ] (−·)) =
(
F [T ] , ϕ

)
(10.11)

3. If T ∈ S ′ is odd, F [T ] is also odd. If T is even, F [T ] is also even.

4. Given T ∈ S ′,

F [∂αT ] = (−2πiξ)αF [T ] ,

∂αF [T ] = F [(2πix)α T ] . (10.12)

Proof. The proof of these statements is straightforward and it will be omitted. How-
ever, the interpretation of (10.11) merits a few words.

If the distribution T were defined by an odd function f , say in L1, then, according
to Lemma 192, Remark 193, and Remark 163,

F [Tf ] = TF [f ] = TF [f ](−ξ) = −TF [f ](ξ).

Therefore, if T is an odd distribution, the identity

−F [(T )] = F [d−1 (T )] = F [T ]

should be interpreted as saying that F [(T )] is odd.
Likewise when T is even.
This concludes the proof of the theorem.

Lemma 209. Given T ∈ E ′, the pairing
(
Tx, e

2πixξ
)
E ′,E defines a function g (ξ) in

OM .

Proof. It should be clear that the pairing defines a function g (ξ), for ξ ∈ Rn.
To prove that it belongs to OM , we use Theorem 107, obtaining(∑

α

∂αTfα(x), e
2πixξ

)
=

∑
α

(−1)|α| (2πiξ)α
∫
Rn

e2πixξfα (x)

=
∑
α

(−1)|α| (2πiξ)α f̂α (ξ) . (10.13)
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According to 2) in Theorem 169 and 1) in Theorem 167, the function f̂α belongs
to E

⋂
C0.

Moreover, given γ ∈ Nn, ∂γ
(
f̂α

)
= F [(2πix)γ fα] belongs to C0.

Finally, there is m ∈ N so that, given β ∈ Nn,⏐⏐⏐∂β ((2πiξ)α f̂α (ξ)
)⏐⏐⏐ ≤ Cm,n,β sup

γ≤β
∥(2πix)γ fα∥L1

(
1 + |ξ|2

)m
.

Therefore, the function (10.13) belongs to OM .

This completes the proof of the lemma.

Theorem 210. Given T ∈ E ′, F [T ] is the tempered distribution defined by the
function

(
Tξ, e

2πixξ
)
E ′,E .

Proof. It should be clear that F [T ] ∈ S ′.
Then, given ϕ ∈ S,

(F [T ] , ϕ) =

(
T,

∫
Rn

e2πixξϕ (x) dx

)
=

(∑
α

∂αTfα(ξ),

∫
Rn

e2πixξϕ (x) dx

)

=
∑
α

(−1)|α|
∫
K
fα (ξ)

(∫
Rn

∂αξ e
2πixξϕ (x) dx

)
dξ

=
∑
α

(−1)|α|
∫
Rn

ϕ (x)

(∫
Rn

fα (ξ) ∂αξ e
2πixξdξ

)
dx

=
∑
α

∫
Rn

(
∂αTfα(ξ), e

2πixξ
)
ϕ (x) dx

=

((∑
α

∂αTfα(ξ), e
2πixξ

)
, ϕ

)
=
(
T(Tξ,e2πixξ), ϕ

)
.

This completes the proof of the theorem.

Remark 211. Lemma 209 and Theorem 210 give a small part of the so-called
Paley-Wiener theorem, named after the mathematicians Raymond E. A. C. Payley
(1907-1933) and Norbert Wiener (1894-1964).

The theorem is as follows (see [13], p. 21, Theorem 1.7.7.):

1. Given T ∈ S ′, the following statements are equivalent:

(a) T ∈ E ′
and supp (T ) ⊆ {x ∈ Rn : |x| ≤ R}.
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(b) F [T ] is defined by a function g ∈ OM .

Moreover g extends to Cn as an entire function G that satisfies

|G (z)| ≤ C (1 + |z|)N e2πR|Im(z)|,

for some C,N > 0, where Im (z) denotes the imaginary part of z.

2. Given T ∈ S ′, the following statements are equivalent:

(a) T is defined by a function ϕ ∈ D with supp (ϕ) ⊆ {x ∈ Rn : |x| ≤ R}.
(b) F [T ] is defined by a function g ∈ S.

Moreover, g extends to Cn as an entire function G.

Furthermore, for each N > 0 there is CN > 0 such that

|G (z)| ≤ CN (1 + |z|)−N e2πR|Im(z)|.

Example 212. 1.
F [1] = δ0,

since F [δ0] =
(
δ0,x, e

2πixξ
)

= 1.

2. According to 5) in Example 59, pv 1/x is a tempered distribution.

Therefore, we can compute its Fourier transform.

Let us recall that we showed in 5) of Example 155 that pv 1/x is the only odd
distribution satisfying the equation xT = 1.

So, according to 1) and (10.12),

δ0 = F [1] = F
[
x

(
pv

1

x

)]
= (2πi)−1 dF

[
pv 1

x

]
dx

.

Using 5) in Example 96,

(2πi)−1 dF
[
pv 1

x

]
dx

=
1

2

d

dx
Tsgn(ξ).

Therefore, Theorem 113,implies

F
[
pv

1

x

]
= πiTsgn(ξ) + C,

for some C ∈ C.

Since F [pv 1/x] is odd according to 3) in Theorem 201, and πiTsgn(x) is also
odd, the constant C must be equal to zero.

So,

F
[
pv

1

x

]
= πiTsgn(ξ).

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 1 – 137

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


132 Josefina Alvarez

3. It is not always possible to calculate the Fourier transform of a distribution,
even of a simple one, by naive methods. Here is an example:

According to Corollary 112, Tln|x| is a tempered distribution, so, we can con-
sider its Fourier transform.

Using 2) in Example 96,

−2πiξF
[
Tln|x|

]
= F

[
d

dx
Tln|x|

]
= F

[
pv

1

x

]
= πiTsgn(ξ).

Therefore,
−2ξF

[
Tln|x|

]
= Tsgn(ξ)

and

F
[
Tln|x|

]
= −1

2
T sgn(ξ)

ξ

= −1

2
T 1

|ξ|
,

on R\ {0}.
According to 3) in Example 43,

F
[
Tln|x|

]
= −1

2
fp

1

|ξ|
+ T0,

where T0 denotes a distribution concentrated on {0}.
Theorem 110 implies that

F
[
Tln|x|

]
+

1

2
fp

1

|ξ|
=

m∑
k=0

ckδ
(k)
0 .

Since F
[
Tln|x|

]
and fp 1

|ξ| are even distributions, 7) in Example 96 implies that

F
[
Tln|x|

]
= −1

2
fp

1

|x|
+
∑
k even

ckδ
(k)
0 .

Schwartz arrives at the result

F
[
Tln|x|

]
= −1

2
fp

1

|x|
− (C+ ln 2π) δ0,

where C is the Euler’s constant, as a particular case of fairly technical calcu-
lations ([25], p. 258).

Theorem 213. Given T ∈ E ′ and S ∈ S ′,

F [T ∗ S] = F [T ]F [S] , (10.14)

in the sense of S ′.
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Proof. Remark 207, Lemma 209 and Theorem 210 imply that the right-hand side of
(10.14) is well defined as a tempered distribution.

Furthermore, 1) in Theorem 189 and Theorem 204, imply that the left-hand side
of (10.14) is a distribution in S ′.

According to (10.10), we can write

F [T ∗ S] =
∑
α

F
[
∂α+β (Tfα∗f )

]
=
∑
α

(−2πiξ)αF [Tfα ∗ Tg] .

Given ϕ ∈ S,

(F [Tfα ∗ Tg] , ϕ) =

∫
Rn

(∫
Rn

fα (y) g (ξ − y) dy

)
ϕ̂ (ξ) dξ.

Since the double integral exists, we can write∫
Rn

(∫
Rn

fα (y) g (ξ − y) dy

)
ϕ̂ (ξ) dξ =

∫
Rn

∫
Rn

fα (y) g (ξ − y) dyϕ̂ (ξ) dydξ

=
(1)

∫
Rn

∫
Rn

fα (y) g (z) ϕ̂ (y + z) dydz

=

∫
Rn

∫
Rn

fα (y) g (z)F
[
e2πixyϕ

]
(z) dydz

=

∫
Rn

fα (y)
(
F [Tg]x , e

2πixyϕ (x)
)
dy

=

(
F [Tg]x ,

(∫
Rn

fα (y) e2πixydy

)
ϕ (x)

)
= (F [fα]F [Tg] , ϕ) ,

where we used in (1) the change of variables y → y and ξ → z = ξ − y.
This completes the proof of the theorem.

Remark 214. Theorem 213 is a particular case of a beautiful result, due to Schwartz
([25], Chapter VII, Section 5; Chapter VII, Section 8):

There is a space O′
C , of distributions called rapidly decreasing distributions, of

which E ′ is a linear subspace.
The space O′

C consists of those distributions that can be convolved with all the
tempered distributions, while OM is the space of functions that can be multiplied
by all the tempered distributions.

With suitable topologies placed on O′
C and OM , the Fourier transform F and

the conjugate Fourier transform F , become isomorphisms between O′
C and OM that

are inverses of each other.
Moreover, given T ∈ O′

C and S ∈ S ′,

F [T ∗ S] = F [T ]F [S]
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in the sense of S ′, while given f ∈ OM and S ∈ S ′,

F [fS] = F [Tf ∗ S] ,

in the sense of S ′.

Remark 215. According to 1) in Example 139,

T ∗ δ0 = T

for T ∈ D′.
That is to say, δ0 is a unit for the convolution product.
Let us observe that the convolution product on S does not have a unit.
Indeed, if there is Φ ∈ S so that

ϕ ∗ Φ = ϕ

for all ϕ ∈ S, taking the Fourier transform on both sides, we will have

ϕ̂ Φ̂ = ϕ̂.

If ϕ = e−π|x|
2

, we conclude that the function Φ̂ must be identically one. This is
a contradiction to Theorem 185.

Remark 216. With the notation introduced in 4) of Example 139, let us fix a linear
differential operator P (∂) with constant coefficients.

Given T ∈ S ′, we can write

F [P (∂)T ] = P (−2πiξ)F [T ]

in the sense of S ′.
Then, the formal expression

F

[
Ŝ

P (−2πiξ)

]
becomes a formal solution of the equation P (∂)T = S.

Schwartz conjectured [22] that every tempered distribution can be divided by
a non identically zero polynomial, and that the division should have at least one
solution that is a tempered distribution.

This conjecture was confirmed by Lars Hörmander (1931-2012) in [12], and by
Stanislaw Lojasiewicz (1926-2002) in [17].

As a consequence, every linear differential operator P (∂) with constant coeffi-
cients has a tempered fundamental solution. That is, a solution of the equation

P (∂)T = δ0.

Therefore, if T is a tempered fundamental solution for P (∂), a solution of the
equation P (∂)T = S, for suitable distributions S, is given as T ∗ S.
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Remark 217. There are functions, such as e|x|, which do not define tempered
distributions because they grow too fast at infinity.

However, using a different space of test functions, it is possible to define, in the
sense of appropriate distributions, the Fourier transform of such functions [10].

We end with the words of George B. Dantzig (1914-2002): “The final test of a
theory is its capacity to solve the problems which originated it.” (from the preface
of his book Linear Programming and Extensions, Princeton University Press 1963).

Undoubtedly, Schwartz’s theory of distributions, with its generalizations and
extensions, passes Dantzig’s test.

References
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