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MAGNETIC AND SLANT CURVES IN KENMOTSU
MANIFOLDS

P. K. Pandey and S. Mohammad

Abstract. Motivated by the recent studies of the magnetic curves in quasi-Sasakian, Sasakian,

and Cosymplectic manifolds, in this article we investigate the magnetic trajectories with respect to

contact magnetic fields in Kenmotsu manifolds. Moreover, we study the slant curves, torsion and

curvature in Kenmotsu manifolds.

1 Introduction

The notion of magnetic curves in arbitrary Riemannian manifolds were introduced
and studied by several authors [1, 3, 4, 6, 21]. Suppose (M, g) be a Riemannian
manifold, a closed 2-form F on M is called the magnetic field. The endomorphism
field φ corresponding to F metrically stated as the Lorentz force of F . The Newton’s
equation also known the Lorentz equation and is defined as ∇β′β

′
= qϕβ

′
, where q

is a real constant and ∇ is the Levi-Civita connection. A curve which satisfies the
Lorentz equation is said to be a magnetic trajectory [10].

In [1], Adachi investigated the trajectories of charged particles and magnetic
field corresponding to the Kahler form on a complex projective space. Adachi also
studied the similarities between trajectories and geodesics on Kahler manifolds of
negative curvature in [2]. Barros et al. studied the magnetic flow associated with
a Killing magnetic field in 3-dimensional space [3, 4]. In [6], Cabrerizo studied the
Landau–Hall problem in the two dimensional and three dimensional unit spheres and
shown that the magnetic flowlines are helices with the Killing vector fields in S3. In
[7], contact magnetic field on 3-dimensional Riemannian manifolds has been studied
and it was established that metric g is adapted to the almost contact structure, with
an application to magnetic fields.

Calin et al. [8] studied slant curves with proper mean curvature vector field
in three-dimensional f -Kenmotsu manifolds and hyperbolic space H3 related with
natural homogeneous normal almost contact metric structure. Furthermore, in [17],
Inoguchi and Lee studied the slant curves in a 3-dimensional almost f -Kenmotsu
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manifold and proved that an almost f -Kenmotsu manifold is f -Kenmotsu manifold if
and only if it is normal. Inoguchi also obtained the necessary and sufficient condition
for a non-geodesic slant curve in 3-dimensional almost f -Kenmotsu manifold to have
proper mean curvature vector field.

In [9], Cho et al. studied Lancret type problems for slant curves in Sasakian
3-manifolds and shown that a non geodesic curve is a slant curve iff its ratio of
curvature (κ) and torsion (τ) is constant. In [10], Druta-Romaniuc et al. studied
magnetic curves corresponding to the Killing magnetic fields in E3.

In [11, 12], Druta-Romaniuc et al. studied the magnetic curves corresponding
to the contact magnetic field on Sasakian and Cosymplectic manifolds. In [18],
Inoguchi et al. studied the magnetic trajectories of the contact magnetic fields in 3-
dimensional quasi-Sasakian manifolds and defined a family of linear connections with
respect to the Okumura type connections. Moreover, in [13], Guvenc investigated
the slant magnetic curves in S-manifolds and constructed the slant normal magnetic
curves in R2n+s(−3s).

Ikawa [14], studied the motion of charged particles in Sasakian manifolds and
defined a Sasaki-Kahler submersion. Moreover, in [15, 16], Ikawa investigated the
motion of charged particles from the geometric view point as well as in two-step
nilpotent Lie groups. By using dynamical systems, Kalinin [20] investigated the
trajectories of the charge particles of magnetic fields on Kahler manifolds of constant
holomorphic sectional curvature.

In [21], Munteanu and Nistor studied the magnetic trajectories of charge particles
under the action of Killing magnetic fields in S2×R. In [22], Ozdemir et al. introduced
a new kind of magnetic curve namely T -magnetic curves, N -magnetic curves and
B-magnetic curves in a three dimensional semi-Riemannian manifolds. Moreover,
Ozdemir et al. also obtained some examples of these curves.

2 Preliminaries

In order to fix our notations as well as to make this paper self contained, in this
section, we recall some fundamentals of Kenmotsu manifolds and properties of the
Frenet curves and magnetic curves.

2.1 Kenmotsu manifolds

A (2m+ 1)-dimensional manifold M is said to admit an almost contact structure if
there exist a (1, 1)-tensor field ϕ, a vector field ξ, a 1-form η satisfying{

ϕξ = 0, ϕ2X = −X + η (X) ξ

η (ξ) = 1, η (ϕX) = 0
(2.1)
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Magnetic and slant curves in Kenmotsu manifolds 141

An almost contact structure together with (2m + 1)-dimensional manifold is
called an almost contact manifold. If Riemannian metric g satisfies

g (ϕX,ϕY ) = g (X,Y )− η (X) η (Y ) (2.2)

for all X and Y in X (M2m+1), then (M,ϕ, ξ, η, g) is called an almost contact
metric manifold. With respect to g, η is the dual form of ξ,

i.e. g (X, ξ) = η(X) for any X ∈ X (M2m+1).
Moreover, if

(∇Xϕ)Y = −g (X,ϕY ) ξ − η (Y )ϕX (2.3)

and
∇Xξ = X − η (X) ξ (2.4)

where ∇ is a Levi-Civita Connection on M , then the structure (M,ϕ, ξ, η, g) is
said to be a Kenmotsu manifold [5, 19].

The fundamental 2-form, Ω of the almost contact metric manifold is given by

Ω(X,Y ) = g(ϕX, Y ) (2.5)

for all X and Y in X (M2m+1).
An almost contact metric manifold M is called a contact metric manifold if

Ω = dη. The exterior derivative dη is defined by

dη(X,Y ) =
1

2
(Xη(Y )− Y η(X)− η([X,Y ])) (2.6)

for all X and Y in X (M2m+1) [11].
On a contact metric manifold, η is contact form that is η ∧ (dη)n ̸= 0 on M .

2.2 Frenet curves

Let (M3, g) be a Riemannian 3-manifold and ∇ be a Levi-Civita connection defined
on it. Suppose β : I → M3 be a Frenet curve parametrized by the arc length
with Frenet frame field (T,N,B), where T , N , B respectively denote the tangent,
principal normal, and binormal vector fields . These three vector fields T , N , B are
mutually orthogonal at each point on β. We have Frenet-Serret equations:⎧⎪⎨⎪⎩

∇TT = κN

∇TN = −κT + τB

∇TB = −τN

(2.7)

where κ and τ respectively denote the curvature and torsion of β.
A unit speed curve β is said to be a Frenet curve of osculating order r (where

r ≥ 1), if there exist an orthonormal set of vector fields {β′
= T,E1, E2, ..., Er−1}

along β such that
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∇TT = κ1E1

∇TE1 = −κ1T + κ2E2

∇TEj = −κjEj−1 + κj+1Ej+1 for j = 2, 3, . . . , r − 2

∇TEr−1 = −κr−1Er−2

(2.8)

where κ1, κ2, . . . , κr−1 are positive C
∞ functions of the arc length parameter (s).

Furthermore, κj is called the j-th curvature of β [5].

A Frenet curve is said to be geodesic in (M, g) if its osculating order is 1. A
circle is a Frenet curve if its osculating order is two and the curvature κ1 is constant.
A helix of order r if all the curvatures κ1, κ2, . . . , κr−1 are constants.

Suppose β be a Frenet curve of osculating order r on M2m+1, where
(M2m+1, ϕ, ξ, η, g) denotes the almost contact metric manifold. A Frenet curve of
osculating order two is said to be ϕ-curve if {T,E1, ξ} spans a ϕ-invariant space.
A curve of osculating order r ≥ 3 is said to be ϕ-curve if {T,E1, E2, . . . , Er−1} is
ϕ-invariant. Moreover, a ϕ-helix of order r is said to be a ϕ-curve of osculating order
r if κ1, κ2, . . . , κr−1 are constants [11, 12].

The angle between the tangent to β and the reeb vector field ξ is known as the
contact angle θ of β.

i.e. cos θ(s) = g(β
′
(s), ξ)

where s denotes the arc-length (parameter) of β. We call β(s) a slant curve if the
contact angle θ is constant. Legendre curves are the curves of contact angle π

2 and
a curve of contact angle 0 is called a Reeb flow.

2.3 Magnetic Curves

The trajectories of charged particles moving on a Riemannian manifold (M, g) under
the action of a magnetic field F is known as Magnetic curves. In 3-dimensional
oriented Riemannian manifold (M3, g), a divergence free vector field defined as a
magnetic field. A closed 2-form F on M is called the magnetic field. The Lorentz
force of a magnetic field F on (M, g) is an (1, 1)-tensor field φ is defined by

g (φX, Y ) = F (X,Y ) (2.9)

for each X and Y in X (M).

A regular curve β will be a magnetic curve with F , if it satisfies the Lorentz
equation (also known as Newton’s equation)

∇β′β
′
= φ(β

′
) (2.10)
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where ∇ is the Levi-Civita connection of g. When Lorentz force vanishes, we have

∇β
′β

′
= 0

If ∇F = 0, then a magnetic field is known as uniform. The magnetic trajectories
are of constant speed. The magnetic curve is known as normal magnetic curve, if it
is parametrized by the arc length (s) [11].

3 Magnetic curves in Kenmotsu manifolds

Let M2m+1 be a contact metric manifold and Ω be the fundamental 2-form defined
by (2.5). Since Ω = dη, then magnetic field on M2m+1 can be define by

qΩ (X,Y ) = Fq(X,Y ), (3.1)

where q is a real constant and X, Y ∈ X (M2m+1). Fq is known as the contact
magnetic field with the strength q. The contact magnetic field vanishes and magnetic
curves are the geodesics on M2m+1 if q = 0. Now, we assume q ̸= 0.

By combining equations (2.5) and (2.9), the equation of Lorentz force φq related
to the contact magnetic field Fq is given by

φq = qϕ (3.2)

Now, the Lorentz equation (2.10) is given by

∇β′β
′
= qϕβ

′
(3.3)

where β is a Frenet curve parametrized by arc length (s) and the solution of the
above equation is known as the normal magnetic curve.

A classification of the normal magnetic curves related with contact magnetic
field Fq on Kenmotsu manifold is specified in the following result.

Theorem 1. Let (M2m+1, ϕ, ξ, η, g) be a Kenmotsu manifold and Fq be the contact
magnetic field for q ̸= 0. Then β is a normal magnetic curve corresponding to Fq,
if β belongs to the following cases:

1. geodesics obtained as integral curve of ξ.

2. For non-geodesic ϕ-circle of curvature κ1 =
√
q2 − sin2 θ for |q| > 1 and

having the constant angle θ = arc cot 1
|q| .

3. Legendre ϕ-curves in M2m+1 with curvatures κ1 = |q| and κ2 = 1, for θ = π
2 .

4. ϕ-helices of order 3 with axis ξ having curvatures κ1 = |q| and
κ2 = |sgn (q) sin θ + q cos θ|, for θ ̸= π

2
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Proof. When the magnetic curve β is a geodesic, by the Lorentz equation we have
ϕβ

′
= 0, then β

′
is parallel to ξ. As β

′
and ξ are both unit vector fields, then

β
′
= ±ξ, which implies that β is an integral curve of ξ.

As a consequence, let β is a non-geodesic magnetic curve of osculating order
r > 1. We have

g(qϕT, ξ) = g(∇TT, ξ) = 0

=
d

ds
g (T, ξ)− g(T,∇T ξ)

By using (2.4), we get that d
dsg (T, ξ) vanishes.

As a result, 0 ≤ θ ≤ π is a constant angle between T and ξ, we have

η (T ) = cos θ (3.4)

By clubbing the Lorentz equation and first Frenet formula, we have

κ1E1 = qϕT (3.5)

and the first curvature is given by

κ1 = |q|
√
1− cos2 θ (3.6)

from (3.5) and (3.6), we have

ϕT = sgn (q)
√
1− cos2 θ E1 (3.7)

where sgn (q) denotes the real number.

If second curvature vanishes i.e. κ2 = 0, then β is a Frenet curve of osculating
order two and since κ1 is a constant, β becomes a circle.

From equation (3.7), we get

η (ϕT ) = 0 = sgn (q)
√
1− cos2 θ η (E1)

that is,

η (E1) = 0

Taking covariant derivative of the above equation with respect to T , we obtain

sin θ(− |q| cos θ +
√
1− cos2 θ) = 0

Since β is non-geodesic, we get

cot θ =
1

|q|
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For |q| > 1, equation (3.6) gives

κ1 =

√
q2 − sin2 θ

For κ2 ̸= 0, from (2.1) and (3.4), we get

ϕ2T = −T + cos θ ξ (3.8)

Now,
∇TϕT = (∇Tϕ)T + ϕ(∇TT )

∇TϕT = sgn (q) sin θ ξ − sgn (q) sin θ cos θ T − qT + qcos θ ξ (3.9)

Now, taking covariant derivative of the (3.7) with respect to T and making use
of second Frenet formula, yields

∇TϕT = sgn (q) sin θ (− |q| sin θ T + κ2E2) (3.10)

From (3.9) and (3.10), we obtain

sgn (q) sin θ ξ−sgn (q) sin θ cos θ T−qT+qcos θ ξ = sin θ(−qsin θ T+sgn (q)κ2E2)

A straightforward computation yields,

(sgn (q) sin θ + q cos θ) (ξ − cos θ T ) = sgn (q) sin θ κ2E2 (3.11)

Then, we have
κ2 = |sgn (q) sin θ + qcos θ|

Now, the ξ in terms of Frenet frame of β can be expressed by the following
expression

ξ = (εsgn (q) sin θ E2 + cos θT ) (3.12)

Where ε = sgn(sgn (q) sin θ + qcos θ)
Now, applying ϕ on (3.12), we get

ϕE2 = −εE1cos θ

From the equations (3.4), (3.7), (3.12), we have

ϕE1 = ε E2cos θ − sgn (q) sin θ T (3.13)

By applying η to above equation, we get

ηE2 = εsgn (q) sin θ
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When θ = π
2 , the equation (3.12) yields

E2 = −sgn (q) ξ

and the curvatures are κ1 = |q|, κ2 = 1 and κ3 = 0.

When θ ̸= π
2 , taking covariant derivative of (3.13) with respect to T , we get

∇TE2 = (qcos θ − ε sgn (q) sin θ cos θ ξ − sgn (q) sin θ )E1

and hence κ3 = 0.

Hence, on the Kenmotsu manifold, the non-geodesic magnetic curves with the
Lorentz force are Frenet curves of osculating order three with constant curvatures
κ1 and κ2.

Remark 2. Since ξ ∈ span{T,E2}, thus ξ can expressed as

ξ = ρE2 + cos θT (3.14)

By taking norm on both sides, we obtain ρ2 = sin2 θ.

For θ = π
2 , we have

ξ = ρE2 and ρ2 = 1.

Proposition 3. If β is a non-geodesic Legendre ϕ-curve of order three in a Kenmotsu
manifold, then κ2 = 1 and E2 = ±ξ.

4 Slant curves in Kenmotsu manifolds

In this section, we discuss the slant curves in a Kenmotsu manifold. Let β be a
smooth curve in an almost contact metric 3-manifold parametrized by arc length.
The contact angle of β is given by

cos θ(s) = g
(
β

′
(s), ξ

)
where θ (s) = [0, π].

Differentiating the above formula along β by operating Levi-Civita connection
∇, we get

−θ
′
sin θ = g (κN, ξ) + g (T,∇T ξ)

= κ η (N) + 1− cos2 θ

By the above equation, we have following result as given below:
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Proposition 4. If Frenet curve β is a slant curve in a Kenmotsu manifold, then β
satisfies the following expression

η (N) =

(
−sin2 θ

κ

)
(4.1)

By using the Frenet Frame field {T,N,B}, ξ can be written as

ξ = (cos θ) T +

(
−sin2 θ

κ

)
N + η (B)B

Since ξ is unitary vector field, the above equation gives

η (B) =
sin θ

κ

√
κ2 − sin2 θ (4.2)

Remark 5. The expression of ξ for a slant curve β in the Frenet Frame field is
given by

ξ = (cos θ) T +

(
−sin2 θ

κ

)
N +

(
sin θ

κ

√
κ2 − sin2 θ

)
B (4.3)

5 The curvature and torsion

Let β be a non geodesic curve, then β cannot be an integral curve of ξ. In an almost
contact metric 3-manifold M , we consider the orthonormal frame field along β as

e1 =
(
β

′
)
= T, e2 =

(
ϕβ

′

sin θ

)
, e3 =

(
ξ − cos θβ

′

sin θ

)
(5.1)

Also, the characteristic vector field ξ can be written as

ξ = (cos θ) e1 + (sin θ) e3 (5.2)

Then, for a slant curve β in a Kenmotsu manifold, we have⎧⎪⎨⎪⎩
∇β′e1 = δ sin θ e2

∇β′e2 = δ sin θ e1 − cos θ e2 − δ cos θ e3
∇β′e3 = sin θ e1 − δ cos θ e2 − cos θ e3

(5.3)

where δ =
g(∇

β
′ β

′
, ϕβ

′
)

sin2 θ
From the equation (2.4), we have

∇β
′ ξ = sin2 θe1 − sin θ cos θ e3
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On an arbitrary oriented Riemannian 3-manifold, the cross product of two vector
fields X and Y in X

(
M3
)
is given by

dvg(X,Y, Z) = g (X × Y,Z)

for any Z in X
(
M3
)
, where dvg is the volume given by the metric g. On the almost

contact metric 3-manifold, the cross product of two vector fields is defined by the
following formula

X × Y = g (ϕX, Y ) ξ − η (Y )ϕX + η(X)ϕ(Y )

Since vector field X is orthogonal to ξ, the basis vectors X, ϕX and ξ are supposed
to be counterclockwise oriented, thus

ϕβ
′
= ξ × β

′

Since, β
′
= T , then magnetic equation can be written as

∇β′β
′
= q

(
ξ × β

′
)
= κN (5.4)

As a result, we get

κ2 = q2g
(
ξ × β

′
, ξ × β

′
)
= q2sin2 θ

Therefore, κ = |q| sin θ i.e. β has constant curvature. From (5.1) and (5.4), we
have

N =
q

κ
ϕβ

′

Now, the Binormal vector field B is given by

B = β
′ ×N = β

′ ×
[ q
κ

(
ξ × β

′
)]

=
q

κ

[
ξ − cos θβ

′
]

Taking covariant derivative and using the equation (2.4) and (5.2), yields

∇β′B =
q

κ

[
∇β′ ξ − cos θ ∇β′β

′
]

∇β′B =
q

κ

[
β

′ − cos2 θ e1 − q cos θ sin θ e2 − cos θ sin θ e3

]
and using the relation ∇β′B = −τN with (5.1), we obtain

τ = q cos θ
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6 Conclusion

In this paper, magnetic curves and slant curves in Kenmotsu manifolds have been
investigated. We have obtained a classification theorem of the normal magnetic
curves on Kenmotsu manifolds, and a characterization result for the Frenet curve
to be a slant curve in a Kenmotsu manifold. Moreover, we gave a few results on
the curvature and torsion in Kenmotsu manifolds. We hope that this work will be
useful in the study of magnetic and slant curves in some other manifolds e.g. in the
almost Kenmotsu manifolds.
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