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GENERALIZED ALGEBRAIC COMPLETELY
INTEGRABLE SYSTEMS

Ahmed Lesfari

Abstract. We tackle in this paper the study of generalized algebraic completely integrable

systems. Some interesting cases of integrable systems appear as coverings of algebraic completely

integrable systems. The manifolds invariant by the complex flows are coverings of Abelian varieties

and these systems are called algebraic completely integrable in the generalized sense. The later are

completely integrable in the sense of Arnold-Liouville. We shall see how some algebraic completely

integrable systems can be constructed from known algebraic completely integrable in the generalized

sense. A large class of algebraic completely integrable systems in the generalized sense, are part

of new algebraic completely integrable systems. We discuss some interesting and well known

examples : a 4-dimensional algebraically integrable system in the generalized sense as part of a 5-

dimensional algebraically integrable system, the Hénon-Heiles and a 5-dimensional system, the RDG

potential and a 5-dimensional system, the Goryachev-Chaplygin top and a 7-dimensional system,

the Lagrange top, the (generalized) Yang-Mills system and cyclic covering of Abelian varieties.

1 Introduction and generalities

Consider Hamiltonian vector field of the form

XH : ż = J
∂H

∂z
≡ f(z), z ∈ Rm,

(
. ≡ d

dt

)
(1.1)

whereH is the Hamiltonian and J = J(z) is a skew-symmetric matrix with polynomial
entries in z, for which the corresponding Poisson bracket

{Hi, Hj} =

⟨
∂Hi

∂z
, J
∂Hj

∂z

⟩
,

satisfies the Jacobi identities.
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170 A. Lesfari

Definition 1. The system (1.1) with polynomial right hand side will be called
algebraic complete integrable (in abbreviated form : a.c.i.) in the sense of Adler-van
Moerbeke [3, 4, 5, 31] when the following conditions hold.

i) The system admits n + k independent polynomial invariants H1, ...,Hn+k of
which k invariants (Casimir functions) lead to zero vector fields

J
∂Hi

∂z
(z) = 0, 1 ≤ i ≤ k,

the n = (m − k)/2 remaining ones Hk+1 = H,...,Hk+n are in involution (i.e.,
{Hi, Hj} = 0),which give rise to n commuting vector fields. For generic ci, the

invariant manifolds (level surfaces)
n+k⋂
i=1

{z ∈ Rm : Hi = ci} are assumed compact and

connected. According to the Arnold-Liouville theorem [5], there exists a diffeomorphism

n+k⋂
i=1

{z ∈ Rm : Hi = ci} −→ Rn/Lattice,

and the solutions of the system (1.1) are straight lines motions on these real tori.

ii) The (affine) invariant manifolds (level surfaces) thought of as lying in Cm,

A =

n+k⋂
i=1

{z ∈ Cm : Hi = ci},

are related, for generic ci, to Abelian varieties Tn = Cn/Lattice (complex algebraic
tori) as follows : A = Tn\D, where D is a (Painlevé) divisor (codimension one
subvarieties) in Tn. Algebraic means that the torus can be defined as an intersection⋂

i{Z ∈ PN : Pi(Z) = 0}, involving a large number of homogeneous polynomials
Pi. In the natural coordinates (t1, ..., tn) of Tn coming from Cn, the coordinates
zi = zi(t1, ..., tn) are meromorphic and D is the minimal divisor on Tn where the
variables zi blow up. Moreover, the Hamiltonian flows (1.1) (run with complex time)
are straight-line motions on Tn.

If the Hamiltonian flow (1.1) is a.c.i., it means that the variables zi are meromorphic
on the torus Tn and by compactness they must blow up along a codimension
one subvariety (a divisor) D ⊂ Tn. By the a.c.i. definition, the flow (1.1) is a
straight line motion in Tn and thus it must hit the divisor D in at least one place.
Moreover through every point of D, there is a straight line motion and therefore a
Laurent expansion around that point of intersection. Hence the differential equations
must admit Laurent expansions which depend on the n − 1 parameters defining
D and the n + k constants ci defining the torus Tn, the total count is therefore

Mumford gave one in his Tata lectures [35], which includes the noncompact case as well.
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Generalized algebraic completely integrable systems 171

m − 1 = dim (phase space) − 1 parameters. The fait that algebraic complete
integrable systems possess (m − 1)-dimensional families of Laurent solutions, was
implicitly used, as known, by Kowalewski [24] in her classification of integrable rigid
body motions. Such a necessary condition for algebraic complete integrability can
be formulated as follows [4] : If the Hamiltonian system (1.1) (with invariant tori
not containing elliptic curves) is algebraic complete integrable, then each zi blows
up after a finite (complex) time, and for every zi, there is a family of solutions

zi =
∞∑
j=0

z
(j)
i tj−ki , ki ∈ Z, some ki > 0, (1.2)

depending on dim (phase space)−1 = m−1 free parameters. Moreover, the system
(1.1) possesses families of Laurent solutions depending on m − 2, m − 3,...,m − n
free parameters. The coefficients of each one of these Laurent solutions are rational
functions on affine algebraic varieties of dimensions m− 1, m− 2, m− 3,...,m− n.

How to complete the affine variety A =
n+k⋂
i=1

{z ∈ Cm, Hi = ci}, into an Abelian

variety? A naive guess would be to take the natural compactification A of A by
projectivizing the equations. Indeed, this can never work for a general reason:
an Abelian variety Ã of dimension bigger or equal than two is never a complete
intersection, that is it can never be described in some projective space Pn by n-dim
Ã global polynomial homogeneous equations. In other words, if A is to be the affine
part of an Abelian variety, A must have a singularity somewhere along the locus
at infinity. The trajectories of the vector fields (1.1) hit every point of the singular
locus at infinity and ignore the smooth locus at infinity. In fact, the existence of
meromorphic solutions to the differential equations (1.1) depending on some free
parameters can be used to manufacture the tori, without ever going through the
delicate procedure of blowing up and down. Information about the tori can then be
gathered from the divisor. More precisely, around the points of hitting, the system of
differential equations (1.1) admit a Laurent expansion solution depending on m− 1
free parameters and in order to regularize the flow at infinity, we use these parameters
to blowing up the variety A along the singular locus at infinity. The new complex
variety obtained in this fashion is compact, smooth and has commuting vector fields
on it; it is therefore an Abelian variety.

The system (1.1) with k+n polynomial invariants has a coherent tree of Laurent
solutions, when it has families of Laurent solutions in t, depending on n − 1, n −
2,...,m − n free parameters. Adler and van Moerbeke [4] have shown that if the
system possesses several families of (n− 1)-dimensional Laurent solutions (principal
Painlevé solutions) they must fit together in a coherent way and as we mentioned
above, the system must possess (n− 2)-, (n− 3)-,... dimensional Laurent solutions
(lower Painlevé solutions), which are the gluing agents of the (n − 1)-dimensional
family. The gluing occurs via a rational change of coordinates in which the lower
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172 A. Lesfari

parameter solutions are seen to be genuine limits of the higher parameter solutions an
which in turn appears due to a remarkable propriety of algebraic complete integrable
systems; they can be put into quadratic form both in the original variables and in
their ratios. As a whole, the full set of Painlevé solutions glue together to form a
fiber bundle with singular base. A partial converse to the above condition can be
formulated as follows [4] : If the Hamiltonian system (1.1) satisfies the condition i)
in the definition 1 of algebraic complete integrability and if it possesses a coherent
tree of Laurent solutions, then the system is algebraic complete integrable and there
are no otherm−1-dimensional Laurent solutions but those provided by the coherent
set.

We assume that the divisor is very ample and in addition projectively normal
(see [4] for definitions when needed). Consider a point p ∈ D, a chart Uj around p on
the torus and a function yj in L(D) having a pole of maximal order at p. Then the
vector (1/yj , y1/yj , . . . , yN/yj) provides a good system of coordinates in Uj . Then
taking the derivative with regard to one of the flows(

yi
yj

)
˙=

ẏiyj − yiẏj
y2j

, 1 ≤ j ≤ N,

are finite on Uj as well. Therefore, since y
2
j has a double pole along D, the numerator

must also have a double pole (at worst), i.e., ẏiyj − yiẏj ∈ L(2D). Hence, when D
is projectively normal, we have that(

yi
yj

)
˙=

∑
k,l

ak,l

(
yk
yj

)(
yl
yj

)
,

i.e., the ratios yi/yj form a closed system of coordinates under differentiation. At
the bad points, the concept of projective normality play an important role : this
enables one to show that yi/yj is a bona fide Taylor series starting from every point
in a neighborhood of the point in question.

Moreover, the Laurent solutions provide an effective tool for find the constants
of the motion. For that, just search polynomials Hi of z, having the property that
evaluated along all the Laurent solutions z(t) they have no polar part. Indeed,
since an invariant function of the flow does not blow up along a Laurent solution,
the series obtained by substituting the formal solutions (1.2) into the invariants
should, in particular, have no polar part. The polynomial functions Hi(z(t)) being
holomorphic and bounded in every direction of a compact space, (i.e., bounded along
all principle solutions), are thus constant by a Liouville type of argument. It thus
an important ingredient in this argument to use all the generic solutions. To make
these informal arguments rigorous is an outstanding question of the subject.

Assume Hamiltonian flows to be weight-homogeneous with a weight si ∈ N, going
with each variable zi, i.e.,

fi (α
s1z1, ..., α

smzm) = αsi+1fi (z1, ..., zm) , ∀α ∈ C.
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Generalized algebraic completely integrable systems 173

Observe that then the constants of the motion H can be chosen to be weight-
homogeneous :

H (αs1z1, ..., α
smzm) = αkH (z1, ..., zm) , k ∈ Z.

The study of the algebraic complete integrability of Hamiltonian systems, includes
several passages to prove rigorously. Here we mention the main passages, leaving
the detail when studying the different problems in the following sections. We saw
that if the flow is algebraically completely integrable, the differential equations (1.1)
must admits Laurent series solutions (1.2) depending on m− 1 free parameters. We
must have ki = si and coefficients in the series must satisfy at the 0thstep non-linear
equations,

fi

(
z
(0)
1 , ..., z(0)m

)
+ giz

(0)
i = 0, 1 ≤ i ≤ m, (1.3)

and at the kthstep, linear systems of equations :

(L− kI) z(k) =

{
0 for k = 1

some polynomial in z(1), ..., z(k−1) for k > 1,
(1.4)

where

L = Jacobian map of (1.3) =
∂f

∂z
+ gI |z=z(0) .

If m− 1 free parameters are to appear in the Laurent series, they must either come
from the non-linear equations (1.3) or from the eigenvalue problem (1.4), i.e., L
must have at least m − 1 integer eigenvalues. These are much less conditions than
expected, because of the fact that the homogeneity k of the constant H must be an
eigenvalue of L. Moreover the formal series solutions are convergent as a consequence
of the majorant method. Thus, the first step is to show the existence of the Laurent
solutions, which requires an argument precisely every time k is an integer eigenvalue
of L and therefore L−kI is not invertible. One shows the existence of the remaining
constants of the motion in involution so as to reach the number n + k. Then you
have to prove that for given c1, ..., cm, the set

D ≡

{
xi (t) = t−νi

(
x
(0)
i + x

(1)
i t+ x

(2)
i t2 + · · ·

)
, 1 ≤ i ≤ m

Laurent solutions such that : Hj (xi (t)) = cj +Taylor part

}

defines one or several n− 1 dimensional algebraic varieties (Painlevé divisor) having

the property that
n+k⋂
i=1

{z ∈ Cm : Hi = ci}∪D, is a smooth compact, connected variety

with n commuting vector fields independent at every point, i.e., a complex algebraic
torus Cn/Lattice. The flows J

∂Hk+i

∂z , ..., J
∂Hk+n

∂z are straight line motions on this
torus. Let’s point out and we’ll see all this in more detail later, that having computed
the space of functions L(D) with simple poles at worst along the expansions, it is
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174 A. Lesfari

often important to compute the space of functions L(kD) of functions having k-fold
poles at worst along the expansions. These functions play a crucial role in the study
of the procedure for embedding the invariant tori into projective space.

There are many examples of differential equations which have the weak Painlevé
property that all movable singularities of the general solution have only a finite
number of branches and some integrable systems appear as coverings of algebraic
completely integrable systems. The manifolds invariant by the complex flows are
coverings of Abelian varieties and these systems are called algebraic completely
integrable in the generalized sense. These systems are Liouville integrable and by
the Arnold-Liouville theorem, the compact connected manifolds invariant by the real
flows are tori; the real parts of complex affine coverings of Abelian varieties. Most
of these systems of differential equations possess solutions which are Laurent series
of t1/n (t being complex time) and whose coefficients depend rationally on certain
algebraic parameters. In other words, for these systems just replace in the definition
1 the condition (ii) by the following :

(iii) the invariant manifolds A are related to an l-fold cover T̃n of Tn ramified
along a divisor D in Tn as follows : A = T̃n\D.

Also we shall see how some algebraic completely integrable systems can be
constructed from known algebraic completely integrable in the generalized sense.
We will see that a large class of algebraic completely integrable systems in the
generalized sense, are part of new algebraic completely integrable systems.

Example 2. Consider the following differential equations

ẋ = y3, ẏ = −x3. (1.5)

These equations can be written as a Hamiltonian vector field

ż = J
∂H

∂z
, z = (x, y)ᵀ, J =

(
0 −1
1 0

)
with the Hamiltonian

H =
1

4
(x4 + y4) = a.

This system is obviously completely integrable and can be solved in terms of Abelian
integrals. Indeed, we deduce from the equations ẋ = y3, 1

4(x
4 + y4) = a, the integral

form

t =

∫
dx

(a− x4)3/4
+ t0.

The system (1.5) admits four 1-dimensional families of Laurent solutions in
√
t,

depending on one free parameter and they are explicitly given as follows

x =
1√
t

(
x0 + x1t+ x2t

2 + · · ·
)
, y =

1√
t

(
y0 + y1t+ y2t

2 + · · ·
)
,
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Generalized algebraic completely integrable systems 175

where
x0 + 2y30 = 0, −y0 + 2x30 = 0, x1 = y1 = 0,

−x2 + 2y20y2 = 0, y2 + 2x20x2 = 0.

Hence,

(2x0y0)
2 = −1,

(
y0
x0

)4

= −1, x1 = y1 = 0,

and x2, y2 depend on one free parameter. We have just seen that it possible for
the variables x, y to contain square root terms of the type

√
t, which are strictly

not allowed by the Painlevé test. However, these terms are trivially removed by
introducing some new variables z1, z2, z3, which restores the Painlevé property to the
system. A simple inspection of Laurent series above, suggests choosing z1 = x2,
z2 = y2, z3 = xy. And using the first integrals H = a, and differential equations
(1.5), we obtain a new system of differential equations in three unknowns z1, z2, z3,
having two quadrics invariants F1, F2 :

ż1 = 2z2z3, ż2 = −2z1z3, ż3 = z22 − z21

and
F1 = z21 + z22 = 4a, F2 = z21 − z22 + z23 = b.

The intersection

A =
{
z ≡ (z1, z2, z3) ∈ C3 : F1(z) = 4a, F2(z) = b

}
,

is an elliptic curve :

E : z22 = −z21 + 4a, z23 = −2z21 + 4a+ b.

Note that the equation : x4 + y4 = 4a defines a Riemann surface of genus 3 but is
not a torus. An equivalent description of x4 + y4 = 4a is given by{

z22 = −z21 + 4a, z23 = −2z21 + 4a+ b
}
,

{
x2 = z1, y

2 = z2, xy = z3
}
,

as a double cover of E ramified at the four points where zi = ∞. Consequently,
the invariant surface completes into a double cover of an elliptic curve ramified at
the points where the variables blow up. This example corresponds to definition (i),
(iii) and we shall see later more complicated examples but very interesting problems.
Consider finally the change of variable :

z1 =
1

2
(m2 −m1), z2 =

1

2
(m1 +m2), z3 = m3.

Taking the derivative and using the differential equations above for z1, z2, z3, leads
to the following system of differential equations :

ṁ1 = −2m2m3, ṁ2 = 2m1m3, ṁ3 = m1m2.

We see the resemblance with the equations of the Euler rigid body motion.
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176 A. Lesfari

It was shown in series of publications [1, 42, 43], that θ-divisor can serve as a
carrier of integrability. Let H be a hyperelliptic curve of genus g and Jac(H) = Cg/Λ
its Jacobian variety where Λ is a lattice of maximal rank in Cg. Let

Ak : Symk(H) −→ Jac(H), (P1, ..., Pk) ↦−→
k∑

j=1

∫ Pj

∞
(ω1, ..., ωg)mod.Λ, 0 ≤ k ≤ g,

be the Abel map where (ω1, ..., ωg) is a canonical basis of the space of differentials
of the first kind on H. The theta divisor Θ is a subvariety of Jac(H) defined as
Θ ≡ A

[
Symg−1(H)

]
/Λ. By Θk we will denote the subvariety (strata) of Jac(H)

defined by Θk ≡ Ak

[
Symk(H)

]
/Λ and we have the stratification

{O} ⊂ Θ0 ⊂ Θ1 ⊂ Θ2 ⊂ ... ⊂ Θg−1 ⊂ Θg = Jac(H),

where O is the origin of Jac(H). It was shown in [42], that these stratifications
of the Jacobian are connected with stratifications of the Sato Grassmannian, via
an extension of Krichever’s map and some remarks on the relation between Laurent
solutions for the Master systems and stratifications of the Jacobian of a hyperelliptic
curve. One find in [43] a study about Lie-Poisson structure in the Jacobian which
indicates that invariant manifolds associated with Poisson brackets can be identified
with these strata. Some problems were considered in [43] and [1], where a connection
was established with the flows on these strata. Such varieties or their open subsets
often appear as coverings of complex invariants manifolds of finite dimensional
integrable systems (Hénon-Heiles and Neumann systems).

Let us consider the Ramani-Dorizzi-Grammaticos (RDG) series of integrable
potentials [37, 20] :

V (x, y) =

[m/2]∑
k=0

2m−2i

(
m− i
i

)
x2iym−2i, m = 1, 2, ...

It can be straightforwardly proven that a Hamiltonian H :

H =
1

2
(p2x + p2y) + αmVm, , m = 1, 2, ...

containing V is Liouville integrable, with an additional first integral :

F = px(xpy − ypx) + αmx
2Vm−1, m = 1, 2, ...

The study of cases m = 1 and m = 2 is easy. The study of other cases is not obvious.
For the case m = 3, one obtains the Hénon-Heiles system we will see in section 3.
The case m = 4, corresponds the system that will be studied in section 4. However,
the case m = 5, corresponds to a system with an Hamiltonian of the form

H =
1

2
(p2x + p2y) + y5 + x2y3 +

3

16
x4y.
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Generalized algebraic completely integrable systems 177

The corresponding Hamiltonian system admits a second first integral :

F = −p2xy + pxpyx− 1

2
x2y4 +

3

8
x4y2 +

1

32
x6,

and admits three 3-dimensional families solutions x, y, which are Laurent series of
t1/3 : x = at−

1
3 , x = bt−

2
3 , b3 = −2

9 , but for which there are no polynomial P such
that P (x(t), y(t), ẋ(t), ẏ(t)) is Laurent series in t.

We introduce a practical method for generating some new integrable systems
from known ones. For the algebraic integrable systems in the generalized sense, the
Laurent series solutions contain square root terms of the type t−1/n which are strictly
not allowed by the Painlevé test (i.e. the general solutions should have no movable
singularities other than poles in the complex plane). However, for some problems
these terms are trivially removed by introducing some new variables, which restores
the Painlevé property to the system. By inspection of the Laurent solutions of
the algebraic integrable systems in the generalized sense, we look for polynomials
in the variables defining these systems, without fractional exponents. In fact, for
many problems, obtaining these new variables is not a problem, just use (by simple
inspection) the first terms of the Laurent solutions. These new variables belong to
the space L(D) where D is a divisor on a Abelian variety Tn which completes the
affine defined by the intersection of the invariants of the new algebraically completely
integrable system. In all the problems we have studied, we find that the known
algebraically integrable systems in the generalized sense are part of new algebraically
integrable systems.

Let

ẋ = J
∂H

∂x
, x ∈ Cm,

be an algebraically integrable system in the generalized sense. The Laurent series
solutions of this system contain fractional exponents and the manifolds invariant
by the complex flows are coverings of Abelian varieties. We might conjecture (with
some additional conditions to be determined) from the problems discussed further
that this system is part of a new algebraically integrable system in m+ 1 variables.
In other words, there is a new algebraically integrable system

ż = J
∂H

∂z
, z ∈ Cm+1,

i.e., whose solutions expressible in terms of theta functions are associated with an
Abelian variety with divisor on it and the Hamiltonian flows are linear on this
Abelian variety.
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178 A. Lesfari

2 A 4-dimensional integrable system in the generalized
sense

We consider the following Hamiltonian [21],

H1 ≡ H =
1

2
(p21 + p22) +

a

2
(q21 + 4q22) +

1

4
q41 + 4q42 + 3q21q

2
2, (2.1)

(a = constant), the corresponding system, i.e.,

q̈1 = −(a+ q21 + 6q22)q1, q̈2 = −2(2a+ 3q21 + 8q22)q2, (2.2)

is integrable, the second integral is

H2 = aq21q2 + q41q2 + 2q21q
3
2 − q2p

2
1 + q1p1p2. (2.3)

Recall that a system ż = f(z) is weight-homogeneous with a weight νk going with
each variable zk if fk(λ

νiz1, . . . , λ
νmzm) = λνk+1f ′kz1, . . . , zm), for all λ ∈ C. The

system (2.2) is weight-homogeneous with q1, q2 having weight 1 and p1, p2 weight 2,
so that H1 and H2 have weight 4 and 5 respectively. When one examines all possible
singularities of this system, one finds that it possible for the variable q1 to contain
square root terms of the type

√
t.

Theorem 3. a) The system (2.2) possesses 3-dimensional family of Laurent solutions

(q1, q2, p1, p2) =
(
t−1/2, t−1, t−3/2, t−2

)
× a Taylor series,

depending on three free parameters u, v and w.
b) Let A be the invariant surface defined by the two constants of motion

A =
2⋂

k=1

{z = (q1, q2, p1, p2) ∈ C4 : Hk(z) = bk}, (2.4)

for generic (b1, b2) ∈ C2. These Laurent solutions restricted to the surface A (2.4)
are parameterized by two smooth curves Cε=±i (2.6) of genus 4.

c) The system of differential equations (2.2) can be written as follows

ds1√
P6(s1)

− ds2√
P6(s2)

= 0,
s1ds1√
P6(s1)

− s2ds2√
P6(s2)

= dt,

where P6(s) is a polynomial of degree 6 of the form

P6(s) = s
(
−8s5 − 4as3 + 2b1s+ b2

)
,

and the flow can be linearized in terms of genus 2 hyperelliptic functions.
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Generalized algebraic completely integrable systems 179

Proof. a) The first fact to observe is that if the system is to have Laurent solutions
depending on four free parameters, the Laurent decomposition of such asymptotic
solutions must have the following form

q1 =
1√
t

(
a0 + a1t+ a2t

2 + a3t
3 + a4t

4 + · · ·
)
,

q2 =
1

t

(
b0 + b1t+ b2t

2 + b3t
3 + b4t

4 + · · ·
)
,

and p1 =
.
q1, p2 =

.
q2. Putting these expansions into (2.2), solving inductively for the

q
(j)
k (k = 1, 2), one finds at the 0th step a free parameter u, at the 2th step a second
free parameter v and the remaining one w at the 4th step. There are precisely two
such families, labelled by ε = ±i, and they are explicitly given as follows

q1 =
1√
t
(u− 1

2
u3t+ vt2 + u2(−11

16
u5 +

1

3
au+ v)t3

+
u

4
(
41

32
u8 − au4 +

3

2
u3v +

1

6
a2 − 3ε

√
2

2
w)t4 + · · · ), (2.5)

q2 =
ε
√
2

4t
(1 + u2t+

1

3
(2a− 3u4)t2 +

1

8
u(24v − u5)t3 − 2ε

√
2wt4 + · · · ),

p1 =
1

t
√
t
(−1

2
u− 1

4
u3t+

3

2
vt2 +

5

2
u2(−11

16
u5 +

1

3
au+ v)t3

+
7u

8
(
41

32
u8 − au4 +

3

2
u3v +

1

6
a2 − 3ε

√
2

2
w)t4 + · · · ),

p2 =
ε
√
2

4t2
(−1 +

1

3
(2a− 3u4)t2 +

1

4
u(24v − u5)t3 − 6ε

√
2wt4 + · · · ).

The formal series solutions (2.5) are convergent as a consequence of the majorant
method.

b) By substituting these series in the constants of the motion H1 = b1 and
H2 = b2, one eliminates the parameter w linearly, leading to an equation connecting
the two remaining parameters u and v :

2v2 +
1

6

(
15u4 − 8a

)
uv − 39

32
u10 +

7

6
au6 +

2

9

(
a2 + 9b1

)
u2 − ε

√
2b2 = 0, (2.6)

this defines two smooth curves Cε (ε = ±i). The curve Cε has 10 branch points given
by the solution of the equation :

39

64
u10 − 7

12
au6 − 1

9
a2u2 − b1u

2 +
1

2
ε
√
2b2 = 0.

According to Hurwitz’ formula, the genus g of Cε is g = −2 + 1 + 10
2 = 4.

c) We set

q2 = s1 + s2, q21 = −4s1s2, p2 = ṡ1 + ṡ2, q1p1 = −2(ṡ1s2 + s1ṡ2).
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The latter equation together with the second implies that

p21 = −(ṡ1s2 + s1ṡ2)
2

s1s2
.

In term of these new variables, the above differential equations take the following
form

(s1 − s2)
(
s2(ṡ1)

2 − s1(ṡ2)
2
)
− 2b1s1s2

+4s1s2
(
2s41 + 2s31s2 + 2s21s

2
2 + 2s1s

3
2 + 2s42 + as21 + as1s2 + as22

)
= 0,

(s1 − s2)
(
s22(ṡ1)

2 − s21(ṡ2)
2
)
+ 4s21s

2
2 (s1 + s2)

(
a+ 2s21 + 2s22

)
+ b2s1s2 = 0.

These equations are solved linearly for (ṡ1)
2 and (ṡ2)

2 as

(ṡ1)
2 =

s1
(
−8s51 − 4as31 + 2b1s1 + b2

)
(s1 − s2)2

, (ṡ2)
2 =

s2
(
−8s52 − 4as32 + 2b1s2 + b2

)
(s1 − s2)2

,

which leads immediately to the following equations for s1 and s2 :

ṡ1 =
ds1
dt

=

√
P6(s1)

s1 − s2
, ṡ2 =

ds2
dt

=

√
P6(s2)

s2 − s1
,

where P6(s) ≡ s(−8s5−4as3+2b1s+ b2). These equations can be integrated by the
Abelian mapping

H −→ Jac(H) = C2/Λ, (p1, p2) ↦−→ (ξ1, ξ2),

where the hyperelliptic curve H of genus 2 is given by ζ2 = P6(s), Λ is the lattice
generated by the vectors n1 + Ωn2, (n1, n2) ∈ Z2,Ω is the matrix of period of the
curve H, p1 = (s1,

√
P6(s1)), p2 = (s2,

√
P6(s2)),

ξ1 =

∫ p1

p0

ω1 +

∫ p2

p0

ω1, ξ2 =

∫ p1

p0

ω2 +

∫ p2

p0

ω2,

where p0 is a fixed point and (ω1, ω2) is a canonical basis of holomorphic differentials
on H, i.e.,

ω1 =
ds√
P6(s)

, ω2 =
sds√
P6(s)

.

We have

ds1√
P6(s1)

− ds2√
P6(s2)

= 0,
s1ds1√
P6(s1)

− s2ds2√
P6(s2)

= dt,

and hence the problem can be integrated in terms of genus 2 hyperelliptic functions
of time. This ends the proof of the theorem. �
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Generalized algebraic completely integrable systems 181

We will now embed the system (2.2) in a system of five equations in five unknowns
having three quartic invariants. We will show how to explicitly construct this
integrable system in five unknowns (z1, z2, z3, z4, z5) ∈ C5 from the above integrable
system in (q1, q2, p1, p2) ∈ C4. This system admits three quartic invariants and it
is described how the invariant variety corresponding to fixed generic values of these
invariants is compactified in an Abelian surface. On the zero level of some of these
invariants the system reduces to the natural mechanical system (2.2). We have seen
that the asymptotic solutions of the system (2.2) contain square root terms of the
type t1/n, which are strictly not allowed by the Painlevé test. However, these terms
are trivially removed by introducing some new variables z1, . . . , z5, which restores
the Painlevé property to the system. Indeed, let

ϕ : A −→ C5, (q1, q2, p1, p2) ↦−→ (z1, z2, z3, z4, z5), (2.7)

be a morphism on the affine variety A (2.4) where z1, . . . , z5 are defined as

z1 = q21, z2 = q2, z3 = p2, z4 = q1p1, z5 = 2q21q
2
2 + p21.

Obtaining these new variables is not a problem, just use the first terms of the Laurent
solutions (2.5). The morphism (2.7) maps the vector field (2.2) into the system

ż1 = 2z4, ż3 = −4az2 − 6z1z2 − 16z32 ,

ż2 = z3, ż4 = −az1 − z21 − 8z1z
2
2 + z5, (2.8)

ż5 = −8z22z4 − 2az4 − 2z1z4 + 4z1z2z3,

in five unknowns having three quartic invariants

F1 =
1

2
z5 + 2z1z

2
2 +

1

2
z23 +

1

2
az1 + 2az22 +

1

4
z21 + 4z42 ,

F2 = az1z2 + z21z2 + 4z1z
3
2 − z2z5 + z3z4, (2.9)

F3 = z1z5 − 2z21z
2
2 − z24 .

To obtain rapidly these three first integrals, just use the two first integrals H1 (2.1),
H2 (2.3) and differential equations (2.2). This system is completely integrable and
the Hamiltonian structure is defined by the Poisson bracket :

{F,H} =

⟨
∂F

∂z
, J
∂H

∂z

⟩
=

5∑
k,l=1

Jkl
∂F

∂zk

∂H

∂zl
,

where ∂H
∂z =

(
∂H
∂z1

, ∂H∂z2 ,
∂H
∂z3

, ∂H∂z4 ,
∂H
∂z5

)⊤
, and

J =

⎛⎜⎜⎜⎜⎝
0 0 0 2z1 4z4
0 0 1 0 0
0 −1 0 0 −4z1z2

−2z1 0 0 0 2z5 − 8z1z
2
2

−4z4 0 4z1z2 −2z5 + 8z1z
2
2 0

⎞⎟⎟⎟⎟⎠ ,
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is a skew-symmetric matrix for which the corresponding Poisson bracket satisfies the
Jacobi identities. The system (2.8) can be written as

ż = J
∂H

∂z
, z = (z1, z2, z3, z4, z5)

⊤,

where H = F1. The second flow commuting with the first is regulated by the
equations ż = J ∂F2

∂z , z = (z1, z2, z3, z4, z5)
⊤. These vector fields are in involution,

i.e., {F1, F2} = 0, and the remaining one is Casimir, i.e., J ∂F3
∂z = 0. Therefore, we

have the following result :

Theorem 4. The system (2.8) possesses three quartic invariants (2.9) and is completely
integrable in the sense of Liouville.

Let B be the complex affine variety defined by

B =
2⋂

k=1

{z : Fk(z) = ck} ⊂ C5, (2.10)

for generic (c1, c2, c3) ∈ C3.

Theorem 5. The affine variety B (2.10) defined by putting these invariants equal to
generic constants, is a double cover of a Kummer surface (2.11). The system (2.8)
can be integrated in genus 2 hyperelliptic functions.

Proof. Note that σ : (z1, z2, z3, z4, z5) ↦−→ (z1, z2,−z3,−z4, z5), is an involution
on B. The quotient B/σ is a Kummer surface defined by

p (z1, z2) z
2
5 + q (z1, z2) z5 + r (z1, z2) = 0, (2.11)

where

p (z1, z2) = z22 + z1,

q (z1, z2) =
1

2
z31 + 2az1z

2
2 + az21 − 2c1z1 + 2c2z2 − c3,

r (z1, z2) = −8c3z
4
2 +

(
a2 + 4c1

)
z21z

2
2 − 8c2z1z

3
2 − 2c2z

2
1z2 − 4c3z1z

2
2

−1

2
c3z

2
1 − 4ac3z

2
2 − 2ac2z1z2 − ac3z1 + c22 + 2c1c3.

Using F1 = c1, we have

z5 = 2c1 − 4z1z
2
2 − z23 − az1 − 4az22 −

1

2
z21 − 8z42 ,

and substituting this into F2 = c2, F3 = c3, (2.9) yields the system

2az1z2 +
3

2
z21z2 + 8z1z

3
2 − 2c1z2 + z2z

2
3 + 4az32 + 8z52 + z3z4 = c2,

2c1z1 − 6z21z
2
2 − z1z

2
3 − az21 − 4az1z

2
2 −

1

2
z31 − 8z1z

4
2 − z24 = c3.

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 169 – 216

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


Generalized algebraic completely integrable systems 183

We introduce two coordinates s1, s2 as follows

z1 = −4s1s2, z2 = s1 + s2, z3 = ṡ1 + ṡ2, z4 = −2 (ṡ1s2 + s1ṡ2) .

Upon substituting this parametrization, the above system turns into

(s1 − s2)
(
(ṡ1)

2 − (ṡ2)
2
)
+ 8 (s1 + s2)

(
s41 + s42 + s21s

2
2

)
+4a (s1 + s2)

(
s21 + s22

)
− 2c1 (s1 + s2)− c2 = 0,

(s1 − s2)
(
s2(ṡ1)

2 − s1(ṡ2)
2
)
+ 32s1s2

(
s41 + s42 + s21s

2
2

)
+32s21s

2
2

(
s21 + s22

)
+ 16as1s2

(
s21 + s22

)
+ 16as21s

2
2 − 8c1s1s2 − c3 = 0.

These equations are solved linearly for ṡ21 and ṡ22 as

(ṡ1)
2 =

−32s61 − 16as41 + 8c1s
2
1 + 4c2s1 − c3

4 (s2 − s1)
2 ,

(ṡ2)
2 =

−32s62 − 16as42 + 8c1s
2
2 + 4c2s2 − c3

4 (s2 − s1)
2 ,

and can be integrated by means of the Abel mapH −→ Jac(H), where the hyperelliptic
curve H of genus 2 is given by an equation

w2 = −32s6 − 16as4 + 8c1s
2 + 4c2s− c3.

This completes the proof. �

Theorem 6. The system (2.8) possesses Laurent series solutions which depend on
4 free parameters : α, β, γ and θ,

z1 =
1

t
(α− α2t+ βt2 +

1

6
α(3β − 9α3 + 4aα)t3 + γt4 + · · · ),

z2 =
ε
√
2

4t
(1 + αt+

1

3
(−3α2 + 2a)t2 +

1

2
(3β − α3)t3 − 2ε

√
2θt4 + · · · ),

z3 =
ε
√
2

4t2
(−1 +

1

3
(−3α2 + 2a)t2 + (3β − α3)t3 − 6ε

√
2θt4 + · · · ), (2.12)

z4 =
1

2t2
(−α+ βt2 +

1

3
α(3β − 9α3 + 4aα)t3 + 3γt4 + · · · ),

z5 =
1

t
(−1

3
aα+ α3 − β + (3α4 − aα2 − 3αβ)t

+(4ε
√
2αθ + 2γ +

8

3
aα3 − 1

3
aβ − α2β − 3α5 − 4

9
a2α)t2 + · · · ),

with ε = ±i. These meromorphic solutions restricted to the invariant surface B
(2.10) are parameterized by two isomorphic hyperelliptic curves Hε=±i of genus 2 :

β2 +
2

3

(
3α2 − 2a

)
αβ − 3α6 +

8

3
aα4 +

4

9

(
a2 + 9c1

)
α2 − 2ε

√
2c2α+ c3 = 0, (2.13)
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Proof. The first fact to observe is that if the system is to have Laurent solutions
depending on four free parameters, the Laurent decomposition of such asymptotic
solutions must have the following form

z1 =

∞∑
j=0

z
(j)
1 tj−1, z2 =

∞∑
j=0

z
(j)
2 tj−2, z5 =

∞∑
j=0

z
(j)
5 tj−3,

and z3 = ż2, z4 =
ż1
2
. Putting these expansions into

z̈1 = −2az1 − 2z21 − 16z1z
2
2 + 2z5,

z̈2 = −4az2 − 6z1z2 − 16z32 ,

ż5 = −8z22z4 − 2az4 − 2z1z4 + 4z1z2z3,

deduced from (2.2), solving inductively for the z
(j)
k (k = 1, 2, 5), one finds at the 0th

step (resp. 2th step) a free parameter α (resp. β) and the two remaining ones γ, θ
at the 4th step. More precisely, we have the solutions (2.12) with ε = ±i. Using
the majorant method, we can show that the formal Laurent series solutions are
convergent. Substituting the solutions (2.12) into F1 = c1, F2 = c2 and F3 = c3,
and equating the t0-terms yields

F1 =
15

8
α4 − 5

6
aα2 − 5

4
αβ − 7

36
a2 − 5

4
ε
√
2θ = c1,

F2 = ε
√
2(
1

4
α5 − γ +

ε
√
2

2
αθ − 2

3
aα3 +

1

3
aβ +

1

6
a2 +

1

2
α2β) = c2,

F3 = −11

2
α6 − β2 + 4αγ + 3α2ε

√
2θ + α3β − 1

3
a2α2 +

10

3
aα4 = c3.

Eliminating γ and θ from these equations, leads to the equation (2.13) connecting
the two remaining parameters α and β. According to Hurwitz’s formula, this defines
two isomorphic smooth hyperelliptic curves Hε (ε = ±i) of genus 2, which finishes
the proof of the theorem. �

In order to embed Hε into some projective space, one of the key underlying
principles used is the Kodaira embedding theorem [15, 34], which states that a
smooth complex manifold can be smoothly embedded into projective space PN (C)
with the set of functions having a pole of order k along positive divisor on the
manifold, provided k is large enough; fortunately, for Abelian varieties, k need
not be larger than three according to Lefshetz [15, 34]. These functions are easily
constructed from the Laurent solutions (2.12) by looking for polynomials in the
phase variables which in the expansions have at most a k-fold pole. The nature of
the expansions and some algebraic proprieties of Abelian varieties provide a recipe
for when to terminate our search for such functions, thus making the procedure
implementable. Precisely, we wish to find a set of polynomial functions {f0, . . . , fN},
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Generalized algebraic completely integrable systems 185

of increasing degree in the original variables z1, . . . , z5, having the property that the
embedding D ofHi+H−i into PN via those functions satisfies the relation: geometric
genus (2D) ≡ g(2D) = N + 2. A this point, it may be not so clear why the curve D
must really live on an Abelian surface. Let us say, for the moment, that the equations
of the divisor D (i.e., the place where the solutions blow up), as a curve traced on
the Abelian surface B̃ (to be constructed below), must be understood as relations
connecting the free parameters as they appear firstly in the expansions (2.12). In the
present situation, this means that (2.13) must be understood as relations connecting
α and β. Let

L(r) =

⎧⎪⎪⎨⎪⎪⎩
polynomials f = f(z, . . . , z5)
of degre ≤ r, with at worst a
double pole along Hi +H−i

and with z1, . . . , z5 as in (2.13)

⎫⎪⎪⎬⎪⎪⎭ /[Fk = ck, k = 1, 2, 3],

and let (f0, f1, . . . , fNr) be a basis of L
(r). We look for r such that : g(2D(r)) = Nr+2,

2D(r) ⊂ PNr(C). We shall show (theorem 7, b)) that it is unnecessary to go beyond
r = 4.

Theorem 7. a) The spaces L(r), nested according to weighted degree, are generated
as

L(1) = {f0, f1, f2, f3, f4, f5}, L(2) = L(1) ⊕ {f6, f8, f9, f10, f11, f12},

L(3) = L(2), L(4) = L(3) ⊕ {f13, f14, f15},

where

f0 = 1, f1 = z1 =
α

t
+ · · · , f2 = z2 =

ε
√
2

t
+ · · · , f3 = z3 = −ε

√
2

4t2
+ · · · ,

f4 = z4 = − α

2t2
+ · · · , f5 = z5 = − η

3t
+ · · · , f6 = z21 =

α2

t2
+ · · · ,

f7 = z22 = − 1

8t2
+ · · · , f8 = z25 =

η2

9t2
+ · · · , f9 = z1z2 =

ε
√
2α

4t2
+ · · · ,

f10 = z1z5 = −αη

3t2
+ · · · , f11 = z2z5 = −ε

√
2η

12t2
+ · · · ,

f12 =W (z1, z2) = −ε
√
2α2

2t2
+ · · · , f13 =W (z1, z5) =

4α2η

3t2
+ · · · ,

f14 =W (z2, z5) =
ε
√
2αη

6t2
+ · · · , f15 = (z3 − 2ε

√
2z22)

2 = − α2

2t2
+ · · · ,

with W (zj , zk) = żjzk − zj żk (Wronskian of zk and zj) and η ≡ 3β − 3α3 + aα.
b) The space L(4) provides an embedding of D(4) into projective space P15 and

D(4) (resp. 2D(4)) has genus 5 (resp. 17).
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Proof. The proof of a) is straightforward and can be done by inspection of
the expansions (2.12). Note also that the functions z1, z2, z5 behave as 1/t and

if we consider the derivatives of the ratios
z1
z2

,
z1
z5

,
z2
z5

, the Wronskians W (z1, z2),

W (z1, z5), W (z2, z5), must behave as
1

t2
since z22 , z

2
5 behave as

1

t2
.

b) Note that dimL(1) = 6, dimL(2) = dimL(3) = 13, dimL(4) = 16. It turns
out that neither L(1), nor L(2), nor L(3), yields a curve of the right genus; in fact
g(2D(r)) ̸= dimL(r)+1, r = 1, 2, 3. For instance, the embedding into P5(C) via L(1)

does not separate the sheets, so we proceed to L(2) and we consider the corresponding
embedding into P12(C). For finite values of α and β, the curves Hi and H−i are
disjoint; dividing the vector (f0, . . . , f12) by f7 and taking the limit t→ 0, to yield[

0 : 0 : 0 : 2ε
√
2 : 4α : 0 : −8α2 : 1 : −8

9
η2 : −2ε

√
2α :

8

3
αη :

2ε
√
2

3
η : 4ε

√
2α2

]
.

The curve (2.13) has two points covering α = ∞, at which η ≡ 3β−3α3+aα behaves
as follows :

η = −6α3 + 3aα± 3

√
4α6 − 4aα4 − 4c1α2 + 2ε

√
2c2α− c3,

=

{
−3(a2+4c1)

4α + lower order terms, picking the + sign,
−12α3 + o(α), picking the - sign.

By picking the - sign and by dividing the vector (f0, . . . , f12) by f8, the corresponding
point is mapped into the point

[0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0],

in P12(C) which is independent of ε, whereas picking the + sign leads to two different
points, according to the sign of ε. Thus, adding at least 2 to the genus of each curve,
so that g(2D(2)) − 2 > 12, 2D(2) ⊂ P12(C) ̸= Pg−2(C), which contradicts the fact
that Nr = g(2D(2)) − 2. The embedding via L(2) (or L(3)) is unacceptable as well.
Consider now the embedding 2D(4) into P15(C) using the 16 functions f0, . . . , f15 of
L(4). It is easily seen that these functions separate all points of the curve (except
perhaps for the points at ∞) : The curves Hi and H−i are disjoint for finite values
of α and β; dividing the vector (f0, . . . , f15) by f7 and taking the limit t → 0, to
yield [

0 : 0 : 0 : 2ε
√
2 : 4α : 0 : −8α2 : 1 : −8

9
η2 : −2ε

√
2α :

8

3
αη :

2ε
√
2

3
η :

4ε
√
2α2 : −32

3
α2η : −4ε

√
2

3
αη : 4α2

]
.
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About the point α = ∞, it is appropriate to divide by g8; then by picking the sign
- in η above, the corresponding point is mapped into the point

[0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0],

in P15(C) which is independent of ε, whereas picking the + sign leads to two different
points, according to the sign of ε. Hence, the divisor D(4) obtained in this way has
genus 5 and thus g(2D(4)) has genus 17 and 2D(4) ⊂ P15(C) = Pg−2(C), as desired.
This ends the proof of the theorem. �

Let L = L(4), D = D(4) and S = 2D(4) ⊂ P15(C). Next we wish to construct
a surface strip around S which will support the commuting vector fields. In fact,
S has a good chance to be very ample divisor on an Abelian surface, still to be
constructed.

Theorem 8. The variety B (2.10) generically is the affine part of an Abelian surface
B̃, more precisely the Jacobian of a genus 2 curve. The reduced divisor at infinity
B̃\B = Hi + H−i, consists of two smooth isomorphic genus 2 curves Hε (2.13).
The system of differential equations (2.8) is algebraic complete integrable and the
corresponding flows evolve on B̃.

Proof. We need to attaches the affine part of the intersection of the three
invariants (2.9) so as to obtain a smooth compact connected surface in P15(C).
We will repeat the same reasoning used previously. To be precise, the orbits of
the vector field (2.8) running through S form a smooth surface Σ near S such that
Σ\B ⊆ B̃ and the variety B̃ = B ∪Σ is smooth, compact and connected. Indeed, let

ψ(t, p) = {z(t) = (z1(t), . . . , z5(t)) : t ∈ C, 0 < |t| < ε},

be the orbit of the vector field (2.8) going through the point p ∈ S. Let Σp ⊂ P15(C)
be the surface element formed by the divisor S and the orbits going through p,
and set Σ ≡ ∪p∈SΣp. Consider the curve S ′ = H ∩ Σ where H ⊂ P15(C) is a
hyperplane transversal to the direction of the flow. If S ′ is smooth, then using
the implicit function theorem the surface Σ is smooth. But if S ′ is singular at 0,
then Σ would be singular along the trajectory (t−axis) which go immediately into
the affine part B. Hence, B would be singular which is a contradiction because B
is the fibre of a morphism from C5 to C2 and so smooth for almost all the three
constants of the motion ck. Next, let B be the projective closure of B into P5(C),
let Z = [Z0 : Z1 : . . . : Z5] ∈ P5(C) and let I = B ∩ {Z0 = 0} be the locus at infinity.
Consider the following map

B ⊆ P5(C) −→ P15(C), Z ↦−→ f(Z),

where f = (f0, f1, ..., f15) ∈ L(S) and let B̃ = f(B). In a neighborhood V (p) ⊆
P15(C) of p, we have Σp = B̃ and Σp\S ⊆ B. Otherwise there would exist an element
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of surface Σ′
p ⊆ B̃ such that Σp ∩ Σ′

p = (t− axis), orbit ψ(t, p) = (t− axis)\ p ⊆ B,
and hence B would be singular along the t−axis which is impossible. Since the
variety B ∩ {Z0 ̸= 0} is irreducible and since the generic hyperplane section Hgen.

of B is also irreducible, all hyperplane sections are connected and hence I is also
connected. Now, consider the graph Γf ⊆ P5(C) × P15(C), of the map f, which
is irreducible together with B. It follows from the irreducibility of I that a generic
hyperplane section Γf ∩{Hgen.×P15(C)} is irreducible, hence the special hyperplane
section Γf ∩ {{Z0 = 0} × P15(C)} is connected and the projection map

projP15(C){Γf ∩ {{Z0 = 0} × P15(C)}} = f(I) ≡ S,

is connected. Hence, the variety B ∪ Σ = B̃ is compact, connected and embeds
smoothly into P15(C) via f . We wish to show that B̃ is an Abelian surface equipped
with two everywhere independent commuting vector fields. Let φτ1 and φτ2 be
the flows corresponding to vector fields XF1 and XF2 . The latter are generated
respectively by F1, F2. For p ∈ S and for small ε > 0, φτ1(p), ∀τ1, 0 < |τ1| < ε, is
well defined and φτ1(p) ∈ B. Then we may define φτ2 on B by

φτ2(q) = φ−τ1φτ2φτ1(q), q ∈ U(p) = φ−τ1(U(φτ1(p))),

where U(p) is a neighborhood of p. By commutativity one can see that φτ2 is
independent of τ1;

φ−τ1−ε1φτ2φτ1+ε1(q) = φ−τ1φ−ε1φτ2φτ1φε1(q) = φ−τ1φτ2φτ1(q).

φτ2(q) is holomorphic away from S. This because φτ2φτ1(q) is holomorphic away
from S and that φτ1 is holomorphic in U(p) and maps bi-holomorphically U(p) onto
U(φτ1(p)). Now, since the flows φτ1 and φτ2 are holomorphic and independent on S,
we can show along the same lines as in the Arnold-Liouville theorem [5] that B̃ is a
complex torus C2/lattice and so in particular B̃ is a Kähler variety. And that will
done, by considering the local diffeomorphism C2 −→ B̃, (τ1, τ2) ↦−→ φτ1φτ2(p), for a
fixed origin p ∈ B. The additive subgroup {(τ1, τ2) ∈ C2 : φτ1φτ2(p) = p} is a lattice
of C2, hence C2/lattice −→ B̃ is a biholomorphic diffeomorphism and B̃ is a Kähler
variety with Kähler metric given by dτ1⊗dτ1+dτ2⊗dτ2. A compact complex Kähler
variety having the required number as (its dimension) of independent meromorphic
functions is a projective variety [34]. In fact, here we have B̃ ⊆ P15(C). Thus B̃
is both a projective variety and a complex torus C2/lattice and hence an Abelian
surface as a consequence of Chow theorem. By the classification theory of ample line
bundles on Abelian varieties, B̃ ≃ C2/LΩ with period lattice given by the columns
of the matrix (

δ1 0 a c
0 δ2 c b

)
, Im

(
a c
c b

)
> 0,

and δ1δ2 = g(Hε) − 1 = 1, implying δ1 = δ2 = 1. Thus B̃ is principally polarized
and it is the Jacobian of the hyperelliptic curve Hε. This completes the proof of the
theorem. �
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Observe that the reflection σ on the affine variety B amounts to the flip

σ : (z1, z2, z3, z4, z5) ↦−→ (z1, z2,−z3,−z4, z5),

changing the direction of the commuting vector fields. It can be extended to the
(-Id)-involution about the origin of C2 to the time flip (t1, t2) ↦−→ (−t1,−t2) on
B̃, where t1 and t2 are the time coordinates of each of the flows XF1 and XF2 . In
addition, the involution σ acts on the parameters of the Laurent solution (2.12) as
follows

σ : (t, α, β, γ, θ, ε) ↦−→ (−t,−α,−β,−γ,−θ,−ε),

interchanges the curves Hε=±i (2.13). Geometrically, this involution interchanges
Hi and H−i, i.e., H−i = σHi. We have shown that this system is part of a system
of differential equation in five unknowns having three constants of motion. The
asymptotic solution (2.5) can be read off from (2.12) and the change of variable

q1 =
√
z1, q2 = z2, p1 =

z4
q1
, p2 = z3.

The function z1 has a simple pole along the divisor Hi + H−i and a double zero
along a hyperelliptic curve of genus 2 defining a double cover of B̃ ramified along
Hi +H−i. Applying the method explained in [36], we have the

Theorem 9. The invariant surface A (2.4) can be completed as a cyclic double cover
A of the Abelian surface B̃ (Jacobian of a genus 2 curve), ramified along the divisor
Hi+H−i. The system (2.2) is algebraic complete integrable in the generalized sense.
Moreover, A is smooth except at the point lying over the singularity (of type A3) of
Hi + H−i and the resolution Ã of A is a surface of general type with invariants :
X (Ã) = 1 and pg(Ã) = 2.

Proof. We have shown that the morphism ϕ (2.7) maps the vector field (2.2)
into an algebraic completely integrable system (2.8) in five unknowns and the affine
variety A (2.4) onto the affine part B (2.10) of an Abelian variety B̃. More precisely
the Jacobian of a genus 2 curve with B̃\B = Hi +H−i. Observe that ϕ : A −→ B is
an unramified cover. The curves Cε (2.6) play an important role in the construction
of a compactification A of A. Let us denote by G a cyclic group of two elements
{−1, 1} on V j

ε = U j
ε ×{τ ∈ C : 0 < |τ | < δ}, where τ =

√
t and U j

ε is an affine chart
of Cε for which the Laurent solutions (2.5) are defined. The action of G is defined by
(−1)◦ (u, v, τ) = (−u,−v,−τ), and is without fixed points in V j

ε . So we can identify
the quotient V j

ε /G with the image of the smooth map hjε : V
j
ε −→ A defined by the

expansions (2.12). We have

(−1, 1).(u, v, τ) = (−u,−v, τ), (1,−1).(u, v, τ) = (u, v,−τ),

i.e., G × G acts separately on each coordinate. Thus, identifying V j
ε /G2 with the

image of ϕ ◦hjε in B. Note that Aj
ε = V j

ε /G is smooth (except for a finite number of
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points) and the coherence of the Aj
ε follows from the coherence of V j

ε and the action
of G. Now by taking A and by gluing on various varieties Aj

ε\{some points}, we
obtain a smooth complex manifold Â which is a double cover of the Abelian variety
B̃ ramified along Hi + H−i, and therefore can be completed to an algebraic cyclic
cover of B̃. To see what happens to the missing points, we must investigate the
image of Cε ×{0} in ∪Aj

ε. The quotient Cε ×{0}/G is birationally equivalent to the
smooth hyperelliptic curve Γε of genus 2 :

2w2 +
1

6

(
15z2 − 8a

)
zw + z

(
−39

32
z5 +

7

6
az3 +

2

9
(a2 + 9b1)z − ε

√
2b2

)
= 0,

where w = uv, z = u2. The curve Γε is birationally equivalent to Hε. The only
points of Cε fixed under (u, v) ↦−→ (−u,−v) are the two points to infinity which
correspond to the ramification points of the following map

Cε × {0} 2−1−→ Γε : (u, v) ↦−→ (z, w),

and coincides with the points at ∞ of the curve Hε. Then the variety Â constructed
above is birationally equivalent to the compactification A of the generic invariant
surface A. So A is a cyclic double cover of the Abelian surface B̃ (the Jacobian of
a genus 2 curve) ramified along the divisor Hi +H−i, where Hi and H−i intersect
each other in a tacnode. It follows that the system (2.2) is algebraic complete
integrable in the generalized sense. Moreover, A is smooth except at the point
lying over the singularity (of type A3) of Hi + H−i. In term of an appropriate
local holomorphic coordinate system (x, y, z), the local analytic equation about this
singularity is x4 + y2 + z2 = 0. Now, let Ã be the resolution of singularities of A,
X (Ã) be the Euler characteristic of Ã and pg(Ã) the geometric genus of Ã. Then

Ã is a surface of general type with invariants : X (Ã) = 1 and pg(Ã) = 2. This
concludes the proof of the theorem. �

3 The Hénon-Heiles and a 5-dimensional system

Consider the system [17, 26, 27, 32] :

.
y1 = x1,

.
x1 = −Ay1 − 2y1y2, (3.1)

.
y2 = x2,

.
x2 = −By2 − y21 − εy22,

corresponding to a generalized Hénon-Heiles Hamiltonian

H =
1

2
(x21 + x22) +

1

2
(Ay21 +By22) + y21y2 +

ε

3
y32, (3.2)

where A, B, ε are constant parameters and y1, y2, x1, x2 are canonical coordinates
and momenta, respectively. First studied as a mathematical model to describe the
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chaotic motion of a test star in an axisymmetric galactic mean gravitational field
[17], this system is widely explored in other branches of physics. It well-known from
applications in stellar dynamics, statistical mechanics and quantum mechanics. It
provides a model for the oscillations of atoms in a three-atomic molecule [9].

Usually, the Hénon-Heiles system is not integrable and represents a classical
example of chaotic behavior. Nevertheless at some special values of the parameters
it is integrable; to be precise, there are known three integrable cases :

(i) ε = 6, A and B arbitrary. The second integral of motion is

H2 = y41 + 4y21y
2
2 − 4x21y2 + 4x1x2y1 + 4Ay21y2 + (4A−B)x21 +A(4A−B)y21. (3.3)

(ii) ε = 1, A = B. The second integral of motion is

H2 = x1x2 +
1

3
y31 + y1y

2
2 +Ay1y2.

(iii) ε = 16, B = 16A. The second integral of motion is

H2 = 3x41 + 6Ax21y
2
1 + 12x21y

2
1y2 − 4x1x2y

3
1 − 4Ay41y2 − 4y41y

2
2 + 3A2y41 −

2

3
y61.

In the two cases (i) and (ii), the system (3.1) has been integrated by making use
of genus one and genus two theta functions. For the case (i), the system separates
in translated parabolic coordinates. Solving the problem in case (ii) is not difficult
(this case trivially separates in cartesian coordinates). In the case (iii), the system
can also be integrated [38] by making use of elliptic functions. The general solutions
of the equations of motion for Hamiltonian (3.2) , for the case (i) and (ii), have the
Painlevé propriety, i.e., that they admit only poles in the complex time variable.
This section deals with the case (iii). When one examines all possible singularities,
one finds that it possible for the variable y1 to contain square root terms of the
type

√
t, which are strictly not allowed by the Painlevé test. However, these terms

are trivially removed by introducing some new variables z1, . . . , z5, which restores
the Painlevé property to the system. And reasoning as above, we obtain a new
algebraically completely integrable system. The system (3.1) for case (iii), i.e.,

.
y1 = x1,

.
x1 = −Ay1 − 2y1y2,

.
y2 = x2,

.
x2 = −16Ay2 − y21 − 16y22, (3.4)

can be written in the form

u̇ = J
∂H

∂u
, u = (y1, y2, x1, x2)

⊤,

where

H ≡ H1 =
1

2
(x21 + x22) +

A

2
(y21 + 16y22) + y21y2 +

16

3
y32,
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and
∂H

∂z
=

(
∂H

∂y1
,
∂H

∂y2
,
∂H

∂x1
,
∂H

∂x2

)ᵀ

, J =

(
O I
−I O

)
.

The functions H1 and

H2 = 3x41 + 6Ax21y
2
1 + 12x21y

2
1y2 − 4x1x2y

3
1 − 4Ay41y2 − 4y41y

2
2 + 3A2y41 −

2

3
y61,

commute :

{H1, H2} =

2∑
k=1

(
∂H1

∂xk

∂H2

∂yk
− ∂H1

∂yk

∂H2

∂xk

)
= 0.

The second flow commuting with the first is regulated by the equations :

u̇ = J
∂H2

∂u
, u = (y1, y2, x1, x2)

ᵀ,

and is written explicitly as

ẏ1 = −24Ax1 − 8x1y2 + 4x2y1,

ẏ2 = 4x1y1,

ẋ1 = 24A2y1 − 4x1x2 − 8Ay1y2 − 8y1y
2
2 − 4y31,

ẋ2 = 4x21 − 4Ay21 − 8y21y2,

The system (3.4) admits Laurent solutions in
√
t, depending on three free parameters:

α, β, γ and they are explicitly given as follows

y1 =
α√
t
+ βt

√
t− α

18
t2
√
t+

αA2
1

10
t3
√
t− α2β

18
t4
√
t+ · · · ,

y2 = − 3

8t2
− A1

2
+
α2

12
t− 2A2

1

5
t2 +

αβ

3
t3 − γt4 + · · · , (3.5)

x1 = −1

2

α

t
√
t
+

3

2
β
√
t− 5

36
αt

√
t+

7

20
αA2

1t
2
√
t− 1

4
α2βt3

√
t+ · · · ,

x2 =
3

4t3
+

1

12
α2 − 4

5
A2

1t+ αβt2 − 4γt3 + · · ·

These formal series solutions are convergent as a consequence of the majorant
method. By substituting these series in the constants of the motion H1 = b1 and
H2 = b2, i.e.,

H1 =
1

9
α2 − 21

4
γ +

13

288
α4 +

4

3
A3 = b1,

H2 = −144αβ3 +
294

5
α3βA2 +

8

9
α6 − 33γα4 = b2,
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one eliminates the parameter γ linearly, leading to an equation connecting the two
remaining parameters α and β :

144αβ3 − 294A2

5
α3β +

143

504
α8 − 4

21
α6 +

44

21

(
4A3 − 3b1

)
α4 + b2 = 0.

This is the equation of an algebraic curve D along which u(t) blow up. To be
more precise D is the closure of the continuous components of the set Laurent series
solutions u(t) such that Hk(u(t)) = bk, 1 ≤ k ≤ 2. The invariant variety

A =

2⋂
k=1

{z ∈ C4 : Hk(z) = bk}, (3.6)

is a smooth affine surface for generic (b1, b2) ∈ C2. The Laurent solutions restricted
to the surface A are parameterized by the curve D. We show that the system (3.4)
is part of a new system of differential equations in five unknowns having two cubic
and one quartic invariants (constants of motion). By inspection of the expansions
(3.5) , we look for polynomials in (y1, y2, x1, x2) without fractional exponents. Let

ϕ : A −→ C5, (y1, y2, x1, x2) ↦−→ (z1, z2, z3, z4, z5), (3.7)

be a morphism on the affine variety A (3.6) where z1, . . . , z5 are defined as

z1 = y21, z2 = y2, z3 = x2, z4 = y1x1, z5 = 3x21 + 2y21y2.

Using the two first integrals H1, H2 and differential equations (3.4) , we obtain a
system of differential equations in five unknowns,

ż1 = 2z4, ż3 = −z1 − 16A1z2 − 16z22 ,

ż2 = z3, ż4 = −A1z1 +
1

3
z5 −

8

3
z1z2, (3.8)

ż5 = −6A1z4 + 2z1z3 − 8z2z4,

having two cubic and one quartic invariants (constants of motion),

F1 =
1

2
A1z1 +

1

6
z5 + 8A1z

2
2 +

1

2
z23 +

2

3
z1z2 +

16

3
z32 ,

F2 = 9A2
1z

2
1 + z25 + 6A1z1z5 − 2z31 − 24A1z

2
1z2 − 12z1z3z4 + 24z2z

2
4 − 16z21z

2
2 ,

F3 = z1z5 − 3z24 − 2z21z2.

This new system is completely integrable and the Hamiltonian structure is defined
by the Poisson bracket

{F,H} =

⟨
∂F

∂z
, J
∂H

∂z

⟩
=

5∑
k,l=1

Jkl
∂F

∂zk

∂H

∂zl
,

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 169 – 216

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


194 A. Lesfari

where ∂H
∂z =

(
∂H
∂z1

, ∂H∂z2 ,
∂H
∂z3

, ∂H∂z4 ,
∂H
∂z5

)⊤
, and

J =

⎛⎜⎜⎜⎜⎝
0 0 0 2z1 12z4
0 0 1 0 0
0 −1 0 0 −2z1

−2z1 0 0 0 −8z1z2 + 2z5
−12z4 0 2z1 8z1z2 − 2z5 0

⎞⎟⎟⎟⎟⎠ ,

is a skew-symmetric matrix for which the corresponding Poisson bracket satisfies the
Jacobi identities. The system (3.8) can be written as

ż = J
∂H

∂z
, z = (z1, z2, z3, z4, z5)

⊤,

where H = F1. The second flow commuting with the first is regulated by the
equations ż = J ∂F2

∂z , z = (z1, z2, z3, z4, z5)
⊤, and is written explicitly as

ż1 = 24z4z5 − 24z21z3 + 96z1z2z4 + 72Az1z4,

ż2 = −12z1z4,

ż3 = 12Az21 − 12z1z5 + 48z21z2,

ż4 = 4z25 − 36A2z21 + 12z31 − 16z1z2z5 + 48Az21z2 + 24z1z3z4 + 64z21z
2
2 ,

ż5 = −96z2z4z5 + 768z1z
2
2z4 − 72Az4z5 + 576Az1z2z4 + 144z3z

2
4

−216A2z1z4 + 48z21z4 − 96z21z2z3 + 24z1z3z5.

These vector fields are in involution, i.e., {F1, F2} =
⟨
∂F1
∂z , J

∂F2
∂z

⟩
= 0, and the

remaining one is Casimir, i.e., J ∂F3
∂z = 0. Consequently, the system (3.8) is integrable

in the sense of Liouville.
The invariant variety

B =

3⋂
k=1

{z ∈ C5 : Fk(z) = ck}, (3.9)

is a smooth affine surface for generic values of c1, c2 and c3. The system (3.8)
possesses Laurent series solutions which depend on four free parameters. These
meromorphic solutions restricted to the surface B (3.9) can be read off from (3.5)
and the change of variable (3.7) . Following the methods previously used, one find the
compactification of B into an Abelian surface B̃, the system of differential equations
(3.8) is algebraic complete integrable and the corresponding flows evolve on B̃. Also,
we show that the invariant surface A (3.6) can be completed as a cyclic double cover
A of an Abelian surface B̃. The system (3.4) is algebraic complete integrable in
the generalized sense. Moreover, A is smooth except at the point lying over the
singularity of type A3 and the resolution Ã of A is a surface of general type. We
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have shown that the morphism ϕ (3.7) maps the vector field (3.4) into an algebraic
completely integrable system (3.8) in five unknowns and the affine variety A (3.6)
onto the affine part B (3.9) of an Abelian variety B̃. This explains (among other)
why the asymptotic solutions to the differential equations (3.4) contain fractional
powers. All this is summarized as follows :

Theorem 10. The system (3.4) admits Laurent solutions with fractional powers
(i.e., contain square root terms of the type

√
t which are strictly not allowed by the

Painlevé test) depending on three free parameters and is algebraic complete integrable
in the generalized sense. The morphism ϕ (3.7) (which restores the Painlevé property)
maps this system into a new algebraic completely integrable system (3.8) in five
unknowns.

4 The RDG potential and a 5-dimensional system

Consider the Ramani Dorizzi Grammaticos (RDG) system [37],

q̈1 − q1
(
q21 + 3q22

)
= 0, (4.1)

q̈2 − q2
(
3q21 + 8q22

)
= 0,

corresponding to the Hamiltonian

H1 =
1

2
(p21 + p22)−

3

2
q21q

2
2 −

1

4
q41 − 2q42. (4.2)

This system is integrable in the sense of Liouville, the second first integral (of degree
8) being

H2 = p41 − 6q21q
2
2p

2
1 + q41q

4
2 − q41p

2
1 + q61q

2
2 + 4q31q2p1p2 − q41p

2
2 +

1

4
q81. (4.3)

The first integrals H1 and H2 are in involution, i.e., {H1, H2} = 0. The system (4.1)
is weight-homogeneous with q1, q2 having weight 1 and p1, p2 weight 2, so that H1

(4.2) and H2 (4.3) have weight 4 and 8 respectively.
When one examines all possible singularities, one finds that it possible for the

variable q1 to contain square root terms of the type
√
t, which are strictly not allowed

by the Painlevé test. However, we will see later that these terms are trivially removed
by introducing the variables z1, . . . , z5 (4.8) which restores the Painlevé property to
the system.

Let B be the affine variety defined by

B =

2⋂
k=1

{
z ∈ C4 : Hk(z) = bk

}
, (4.4)

for generic (b1, b2) ∈ C2.

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 169 – 216

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


196 A. Lesfari

Theorem 11. a) The system (4.1) admits Laurent solutions ,

(q1, q2, p1, p2) = (t−1/2, t−1, t−3/2, t−2)× a Taylor series in t,

depending on three free parameters : u, v and w. These solutions restricted to the
surface B (4.4) are parameterized by two copies Γ1 and Γ−1 of the Riemann surface
Γ (4.6) of genus 16.

b) The system (4.1) is algebraic complete integrable in the generalized sense and
extends to a new system (4.9) of five differential equations algebraically completely
integrable with three quartics invariants (4.10). Generically, the invariant manifold
A (4.11) defined by the intersection of these quartics form the affine part of an
Abelian surface Ã. The reduced divisor at infinity Ã \ A = C1 + C−1, is very ample
and consists of two components C1 and C−1 of a genus 7 curve C (4.13). In addition,
the invariant surface B can be completed as a cyclic double cover B of the Abelian
surface Ã, ramified along the divisor C1 + C−1. Moreover, B is smooth except at the
point lying over the singularity (of type A3) of C1 + C−1 and the resolution B̃ of B
is a surface of general type with invariants : X (B̃) = 1 and pg(B̃) = 2.

Proof. a) The system (4.1) possesses 3-dimensional family of Laurent solutions
(principal balances) depending on three free parameters u, v and w. There are
precisely two such families, labelled by ε = ±1, and they are explicitly given as
follows

q1 =
1√
t
(u− 1

4
u3t+ vt2 − 5

128
u7t3 +

1

8
u(

3

4
u3v − 7

256
u8 + 3εw)t4 + · · · ),

q2 =
1

t
(
1

2
ε− 1

4
εu2t+

1

8
εu4t2 +

1

4
εu(

1

32
u5 − 3v)t3 + wt4 + · · · ), (4.5)

p1 =
1

2t
√
t
(−u− 1

4
u3t+ 3vt2 − 25

128
t3u7 +

7

8
u(

3

4
u3v − 7

256
u8 + 3εw)t4 + · · · ),

p2 =
1

t2
(−1

2
ε+

1

8
εu4t2 +

1

2
εu(

1

32
u5 − 3v)t3 + 3wt4 + · · · ).

These formal series solutions are convergent as a consequence of the majorant
method. By substituting these series in the constants of the motion H1 = b1 and
H2 = b2, one eliminates the parameter w linearly, leading to an equation connecting
the two remaining parameters u and v :

Γ :
65

4
uv3 +

93

64
u6v2 +

3

8192

(
−9829u8 + 26112H1

)
u3v (4.6)

−10299

65536
u16 − 123

256
H1u

8 +H2 +
15362 98731

52
= 0.

According to Hurwitz’s formula, this defines a Riemann surface Γ of genus 16. The
Laurent solutions restricted to the affine surface B (4.4) are thus parameterized by
two copies Γ−1 and Γ1 of the same Riemann surface Γ.
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b) Let
ϕ : B −→ C5, (q1, q2, p1, p2) ↦−→ (z1, z2, z3, z4, z5), (4.7)

be the morphism defined on the affine variety B (4.4) by

z1 = q21, z2 = q2, z3 = p2, z4 = q1p1, z5 = p21 − q21q
2
2. (4.8)

These variables are easily obtained by simple inspection of the series (4.5). By using
the variables (4.8) and differential equations (4.1), one obtains

ż1 = 2z4, ż3 = z2(3z1 + 8z22),

ż2 = z3, ż4 = z21 + 4z1z
2
2 + z5, (4.9)

ż5 = 2z1z4 + 4z22z4 − 2z1z2z3.

This new system on C5 admits the following three first integrals

F1 =
1

2
z5 − z1z

2
2 +

1

2
z23 −

1

4
z21 − 2z42 ,

F2 = z25 − z21z5 + 4z1z2z3z4 − z21z
2
3 +

1

4
z41 − 4z22z

2
4 , (4.10)

F3 = z1z5 + z21z
2
2 − z24 .

The first integrals F1 and F2 are in involution , while F3 is trivial (Casimir function).
The invariant variety A defined by

A =

2⋂
k=1

{z : Fk(z) = ck} ⊂ C5, (4.11)

is a smooth affine surface for generic values of (c1, c2, c3) ∈ C3. The system (4.9) is
completely integrable and possesses Laurent series solutions which depend on four
free parameters α, β, γ et θ :

z1 =
1

t
α− 1

2
α2 + βt− 1

16
α
(
α3 + 4β

)
t2 + γt3 + · · · ,

z2 =
1

2t
ε− 1

4
εα+

1

8
εα2t− 1

32
ε
(
−α3 + 12β

)
t2 + θt3 + · · · ,

z3 = − 1

2t2
ε+

1

8
εα2 − 1

16
ε
(
−α3 + 12β

)
t+ 3θt2 + · · · , (4.12)

z4 = − 1

2t2
α+

1

2
β − 1

16
α
(
α3 + 4β

)
t+

3

2
γt2 + · · · ,

z5 =
1

2t2
α2 − 1

4t

(
α3 + 4β

)
+

1

4
α
(
α3 + 2β

)
−
(
α2β − 2γ + 4εθα

)
t+ · · · ,

where ε = ±1. The convergence of these series is guaranteed by the majorant
method. Substituting these developments in equations (4.10), one obtains three
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198 A. Lesfari

polynomial relations between α, β, γ and θ. Eliminating γ and θ from these equations,
leads to an equation connecting the two remaining parameters α and β :

C : 64β3 − 16α3β2 − 4
(
α6 − 32α2c1 − 16c3

)
β (4.13)

+α
(
32c2 − 32α4c1 + α8 − 16α2c3

)
= 0.

The Laurent solutions restricted to the surface A (4.11) are thus parameterized
by two copies C−1 and C1 of the same Riemann surface C (4.13). According to
the Riemann-Hurwitz formula, the genus of C is 7. Applying the method used in
the previous problems, we embed these curves in a hyperplane of P15(C) using the
sixteen functions :

1, z1, z2, 2z5 − z21 , z3 + 2εz22 , z4 + εz1z2, W (f1, f2),

f1(f1 + 2εf4), f2(f1 + 2εf4), z4(f3 + 2εf6), z5(f3 + 2εf6),

f5(f1 + 2εf4), f1f2(f3 + 2εf6), f4f5 +W (f1, f4),

W (f1, f3) + 2εW (f1, f6), f3 − 2z5 + 4f24 ,

where W (sj , sk) ≡ ṡjsk − sj ṡk (Wronskian) and we show that these curves have
two points in common in which C1 is tangent to C−1. The system (4.1) is algebraic
complete integrable in the generalized sense. The invariant surface B (4.4) can be
completed as a cyclic double cover B of the Abelian surface Ã, ramified along the
divisor C1+C−1. Moreover, B is smooth except at the point lying over the singularity
(of type A3) of C1 + C−1 (double points of intersection of the curves C1 and C−1)
and the resolution B̃ of B is a surface of general type. We shall resume with more
detail (already used previously in other similar problems) the proof of these results.
Observe that the morphism ϕ (4.7) is an unramified cover. The Riemann surface Γ
(4.6) play an important role in the construction of a compactification B of B. Let
G be a cyclic group of two elements {−1, 1} on V j

ε = U j
ε × {τ ∈ C : 0 < |τ | < δ},

where τ = t1/2 and U j
ε is an affine chart of Γε for which the Laurent solutions

are defined. The action of G is defined by (−1) ◦ (u, v, τ) = (−u,−v,−τ) and is
without fixed points in V j

ε . So we can identify the quotient V j
ε /G with the image

of the smooth map hjε : V j
ε −→ B defined by the expansions (4.5). As before, we

have (−1, 1).(u, v, τ) = (−u,−v, τ) and (1,−1).(u, v, τ) = (u, v,−τ), i.e., G×G acts
separately on each coordinate. Thus, identifying V j

ε /G2 with the image of ϕ ◦ hjε in
A. Note that Bj

ε = V j
ε /G is smooth (except for a finite number of points) and the

coherence of the Bj
ε follows from the coherence of V j

ε and the action of G. By taking
B and by gluing on various varieties Bj

ε\{some points}, we obtain a smooth complex
manifold B̂ which is a double cover of the Abelian variety Ã ramified along C1+C−1,
and can be completed to an algebraic cyclic cover of Ã. To see what happens to
the missing points, we must investigate the image of Γ× {0} in ∪Bj

ε. The quotient
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Generalized algebraic completely integrable systems 199

Γ × {0}/G is birationally equivalent to the Riemann surface Υ of genus 7 of affine
equation :

Υ :
65

4
y3 +

93

64
x3y2 +

3

8192

(
−9829x4 + 26112b1

)
x2y

+x

(
−10299

65536
x8 − 123

256
b1x

4 + b2 +
15362 98731

52

)
= 0,

where y = uv, x = u2. The Riemann surface Υ is birationally equivalent to C.
The only points of Υ fixed under (u, v) ↦−→ (−u,−v) are the points at ∞, which
correspond to the ramification points of the map

Γ× {0} 2−1−→ Υ : (u, v) ↦−→ (x, y),

and coincides with the points at ∞ of the Riemann surface C. Then the variety B̂
constructed above is birationally equivalent to the compactification B of the generic
invariant surface B. So B is a cyclic double cover of the Abelian surface Ã ramified
along the divisor C1 + C−1, where C1 and C−1 have two points in commune at which
they are tangent to each other. It follows that The system (4.1) is algebraic complete
integrable in the generalized sense. Moreover, B is smooth except at the point lying
over the singularity (of type A3) of C1 + C−1. In term of an appropriate local
holomorphic coordinate system (X,Y, Z), the local analytic equation about this
singularity is X4 + Y 2 + Z2 = 0. Now, let B̃ be the resolution of singularities of B,
X (B̃) be the Euler characteristic of B̃ and pg(B̃) the geometric genus of B̃. Then B̃
is a surface of general type with invariants: X (B̃) = 1 and pg(B̃) = 2. This ends the
proof of the theorem. �

Consider on the Abelian variety Ã the holomorphic 1-forms dt1 and dt2 defined
by dti(XFj ) = δij , where XF1 and XF2 are the vector fields generated respectively

by F1 and F2. Taking the differentials of ζ = 1/z2 and ξ =
z1
z2

viewed as functions

of t1 and t2, using the vector fields and the Laurent series (4.12) and solving linearly
for dt1 and dt2, we obtain the holomorphic differentials

ω1 = dt1|Cε =
1

∆
(
∂ξ

∂t2
dζ − ∂ζ

∂t2
dξ)|Cε =

8

α (−4β + α3)
dα,

ω2 = dt2|Cε =
1

∆
(
−∂ξ
∂t1

dζ − ∂ζ

∂t1
dξ)|Cε =

2

(−4β + α3)2
dα,

with

∆ ≡ ∂ζ

∂t1

∂ξ

∂t2
− ∂ζ

∂t2

∂ξ

∂t1
.

The zeroes of ω2 provide the points of tangency of the vector field XF1 to Cε. We
have

ω1

ω2
=

4

α

(
−4β + α3

)
,
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200 A. Lesfari

and XF1 is tangent to Hε at the point covering α = ∞. The reflection σ on A
amounts to the flip

σ : (z1, z2, z3, z4, z5) ↦−→ (z1,−z2, z3,−z4, z5),

changing the direction of the commuting vector fields. It can be extended to the
(-Id)-involution about the origin of C2 to the time flip (t1, t2) ↦→ (−t1,−t2) on Ã,
where t1 and t2 are the time coordinates of each of the flows XF1 and XF2 . The
involution σ acts on the parameters of the Laurent solution (4.12) as follows

σ : (t, α, β, γ, θ) ↦−→ (−t,−α,−β,−γ, θ),

interchanges the curves Cε and the linear space L can be split into a direct sum of
even and odd functions. Geometrically, this involution interchanges C1 and C−1, i.e.,
C−1 = σC1.

5 The Goryachev-Chaplygin top and a 7-dimensional
system

The Goryachev-Chaplygin top is a rigid body rotating about a fixed point for which
the principal moments of inertia I1, I2, I3 satisfying the relation: I1 = I2 = 4I3
and the center of mass lying in the equatorial plane through the fixed point and
the principal angular momentum is perpendicular to the direction of gravity. The
equations of the motion can be written in the form

.
m1 = 3m2m3,

.
γ1 = 4m3γ2 −m2γ3,

.
m2 = −3m1m3 − 4γ3,

.
γ2 = m1γ3 − 4m3γ1, (5.1)

.
m3 = 4γ2,

.
γ3 = m2γ1 −m1γ2,

where m1,m2,m3, γ1, γ2, γ3 are the coordinates of the phase space. The following
four quadrics are constants of motion for this system

H1 = m2
1 +m2

2 + 4m2
3 − 8γ1 = 6b1,

H2 = (m2
1 +m2

2)m3 + 4m1γ3 = 2b2,

H3 = γ21 + γ22 + γ23 = b3,

H4 = m1γ1 +m2γ2 +m3γ3 = 0,

for generic b1, b2, b3 ∈ C.
This system is completely integrable, H1 (energy) and H4 are in involution while

H2, H3 are Casimir invariants. The Goryachev-Chaplygin system has asymptotic
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solutions which are meromorphic in
√
t depending on four free parameters b1, b2, b3

and u, v, namely (where ε ≡ ±i) :

m1 =
u

t3/2
− 3uv

t1/2
+

3εv + 3b1u
2 − 15u2v2

2u
t1/2 + o(t3/2),

m2 = − εu

t3/2
− 3uv

t1/2
− ε(3b1u

2 − 15u2v2) + u

2u
t1/2 + o(t3/2),

m3 = − ε

2t
+ v + ε(b1 − 2v2)t− 16b3u

4 + 5v2

4εu2
t2 + · · · ,

γ1 = − 1

8t2
− b1 − 2v2

4
− 16b3u

4 − 3v2

8u2
t+ · · · ,

γ2 =
ε

8t2
+
ε(b1 − 2v2)

4
− 16b3u

4 + 5v2

8εu2
t+ · · · ,

γ3 = − v

2ut1/2
+

3v2

2εu
t1/2 − ε(b1v − 11v3) + 16b3u

2

4εu
t3/2 + · · ·

Let A the affine variety defined by

A = {x : H1(x) = 6b1, H2(x) = 2b2, H3(x) = b3, H4(x) = 0} , (5.2)

where x = (m1,m2,m3, γ1, γ2, γ3). These solutions restricted to A are parameterized
by two copies Cε=+i and Cε=−i of the curve C of genus 4 :

C : 16b3u
4 + εu2(b2 + 6b1v − 16v3)− v2 = 0.

We have seen that the asymptotic solutions of the system (5.1) contain fractional
powers, i.e., contain square root terms of the type

√
t, which are strictly not allowed

by the Painlevé test but the new variables (z1, z2, z3, z4, z5, z6, z7) defined as

z1 = m2
1 +m2

2, z2 = m3, z3 = γ23 , z4 = γ1,

z5 = γ2, z6 = m1γ3, z7 = m2γ3,

restores the Painlevé property to the system. Let

ϕ : A −→ C7, (m1,m2,m3, γ1, γ2, γ3) ↦−→ (z1, z2, z3, z4, z5, z6, z7), (5.3)

be a morphism on the affine variety A. These affine variables were originally used in
[6] without any discussion of their origin and algebraic properties. By using the first
terms of the Laurent series, these variables are easily obtained and the morphism
(5.3) maps the vector field (5.1) into the system [6] :

.
z1 = −8z7,

.
z4 = 4z2z5 − z7,

.
z2 = 4z5,

.
z5 = z6 − 4z2z4, (5.4)

.
z3 = 2(z4z7 − z5z6),

.
z6 = −z1z5 + 2z2z7,

.
z7 = z1z4 − 2z2z6 − 4z3,
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202 A. Lesfari

in seven unknowns having five quadrics invariants

F1 = z1 − 8z4 + 4z22 = 6c1, F3 = z3 + z24 + z25 = c3,

F2 = z1z2 + 4z6 = 2c2, F4 = z2z3 + z4z6 + z5z7 = c4,

F5 = z26 + z27 − z1z3 = c5,

where c1, c2, c3, c4, c5 are generic constants. To obtain these invariants, just use
the first integrals H1, H2, H3, H4 and differential equations (5.1). This system is
completely integrable and the symplectic structure is defined by the Poisson bracket
{F,H} =

⟨
∂F
∂z , J

∂H
∂z

⟩
, where

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −A z7 −z6 B −C
0 0 0 −1

2z5
1
4z4 −1

2z7
1
2z6

A 0 0 0 0 −z3z5 z3z4
−z7 1

2z5 0 0 0 0 −1
2z3

z6 −1
2z4 0 0 0 1

2z3 0
−B 1

2z7 z3z5 0 −1
2z3 0 −z2z3

C −1
2z6 −z3z4 1

2z3 0 z2z3 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A ≡ 2z4z7 − 2z5z6, B ≡ z1z5 + 2z2z7, C ≡ z1z4 + 2z2z6,

is a skew-symmetric matrix whose elements polynomial satisfy the Jacobi identity.
The system (5.4) can be written as

.
z = J

∂H

∂z
, H = F1, x = (x1, x2, x3, x4, x5, x6, x7)

⊤.

The two first integrals F1 and F2 are in involution : {F1, F2} = 0, while F3, F4 et
F5 are Casimir invariants : J ∂Fk

∂x = 0, k = 3, 4, 5. The system (5.4) admits Laurent
solutions depending on six free parameters :

z1 = −2εα

t
+ 2α2 − 2ε(α(α2 − 2c1) + ζ)t− (2ξ + ζ)αt2 + o(t3),

z2 = − ε

2t
− α

2
− ε

2
(α2 − 2c1)t−

1

4
(2ξ + ζ)αt2 + o(t3),

z3 =
ε

8t
(ξ + ζ) +

3α

8
(ξ + ζ)− ε

8
((5α2 − c1)(ξ + ζ)− 8(2c3α+ c4))t+ o(t2),

z4 = − 1

8t2
+

1

8
(α2 − 2c1) +

ε

8
(2ξ + ζ)t+ o(t2), (5.5)

z5 =
ε

8t2
− ε

8
(α2 − 2c1)−

1

8
(2ξ + 3ζ)t+ o(t2),

z6 =
α

4t2
+

1

4
(2ξ − (α2 − 2c1)α+ ζ)− εα

4
(2ξ + 3ζ)t+ o(t2),

z7 = − εα

4t2
+
ε

4
(α(α2 − 2c1) + ζ) +

α

4
(2ξ + ζ)t+ o(t2),
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where ε = ±i, ξ(α) = 2α3 − 3c1α+ c2 and the parameters α, ζ belong to a genus 2
hyperelliptic curve,

H : ζ2 = (2α3 − 3c1α+ c2)
2 − 4(4c3α

2 + 4c4α+ c5). (5.6)

Using the majorant method, we can show that the formal Laurent series solutions
are convergent. Consequently, the Laurent solutions are parameterized by two copies
H+i andH−i of the genus 2 hyperelliptic curveH for ε = ±1. Using similar reasoning
to that done previously, we show that the embedding D of Hi +H−i into P15(C) is
done via the functions of the space

L(2(Hi +H−i)) = {1, z1, z2, z3, z4, z6, z8, z9, z10, z14} ⊕ {z5, z7, z11, z12, z13, z15},

where z1, z2, z3, z4, z5, z6, z7, are given above and

z8 ≡ z2z3 =
1

16t2
(ξ + ζ)− ε

4t
α(ξ + ζ) + o(1),

z9 ≡ z1z3 =
1

4t2
α(ξ + ζ)− ε

2t
α2(ξ + ζ) + o(1),

z10 ≡ z1z4 + 2z2z6 = − 1

2t2
α2 − ε

2t
(ξ + ζ) + o(1),

z11 ≡
1

4
W (x1, x2) = z1z5 + 2z2z7 =

ε

2t2
α2 +

ζ

2t
+ o(1),

z12 ≡
1

2
ẋ3 = −z5z6 + z4z7 = − ε

16t2
(ξ + ζ) + o(1),

z13 ≡
1

2
W (x2, x3) = z2z12 − 2z3z5 = − ε

16t2
α(ξ + ζ) + o(

1

t
),

z14 ≡ z23 = − 1

64t2
(ξ + ζ)2 +

3ε

32t
α(ξ + ζ)2 + o(1),

z15 ≡
1

2
W (z1, z3) = z1z12 + 4z3z7 = − ε

2t2
α2(ξ + ζ) + o(

1

t
),

where W (sj , sk) = ṡjsk − sj ṡk is the Wronskian of sj and sk. Using the functions
1, z1, ..., z15, one embeds the curves Hi and H−i into a hyperplane of P15(C). Thus
embedded, these curves have one point in common at which they are tangent to
each other. In the neighborhood of α = ∞ the curve H has two points at which
ξ + ζ behaves as follows :

ξ + ζ = 4α3 + o(α),

picking the + sign for ζ and

ξ + ζ =
4c3α

2 + 4c4α+ c5
α3

+ lower order terms,
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picking the - sign for ζ. Therefore, choosing the + sign for ζ and dividing the vector
(1, z1, ..., z15) by z14 = z23 , the corresponding point is sent to the point [0 : · · · :
1 : 0] ∈ P15(C), which is independent of ε. The choice of the sign - for ζ conducts
to two different points, taking into account the sign of ε. Therefore, the divisor D
obtained in this way has genus 5 and thus 2D has genus 17, satisfying the relation :
geometric genus of 2D = N+2, i.e., 2D ⊂ P15(C) = Pg−2(C). Following the method
explained and used repeatedly in previous problems, we show that the affine surface

B =
5⋂

k=1

{z = (z1, z2, z3, z4, z5) : Fk(z) = ck} ⊂ C7, (5.7)

can be completed into an Abelian surface B̃ by adjoining at infinity the divisor
D = Hi+H−i. The variety B̃ is equipped with two commuting, linearly independent
vector fields. Let dt1 and dt2 be two holomorphic 1-forms on B̃ corresponding
respectively to the vectors fields XF1 and XF2 . Letting y1 = x1

x2
, y2 = 1

x2
, one

obtains the differential forms

ω1 = dt1|Hε
=

1

∆

(
∂y1
∂t2

dy2 −
∂y2
∂t2

dy1

)
=
aα

ζ
dα,

ω2 = dt2|Hε
= − 1

∆

(
∂y1
∂t1

dy2 −
∂y2
∂t1

dy1

)
=
b

ζ
dα,

where a and b are constants and ∆ = ∂y2
∂t1

∂y1
∂t2

− ∂y2
∂t2

∂y1
∂t1

. The points where the vector

field XF1 is tangent to the curves Hi and H−i on B̃ are provided by the zeros of the
form ω2. Note that XF1 is tangent to Hi and H−i at the point where both curves
touch; this point correspond to α = ∞. The involution

σ : (z1, z2, z3, z4, z5, z6, z7) ↦−→ (z1, z2, z3, z4,−z5, z6,−z7),

on B acts on the free parameters as follows

σ : (t, α, ζ, ε, c1, c2, c3, c4, c5) ↦−→ (−t, α, ζ,−ε, c1, c2, c3, c4, c5).

Hence Hi = σH−i and geometrically this means that Hi and H−i are deduced from
one another by a translation in the Abelian variety B̃. Therefore, we have the
following result [6, 36]:

Theorem 12. a) The differential system (5.4) is algebraically completely integrable.
The Laurent solution (5.5) depend on six free parameters. The affine surface B (5.7)
completes into an Abelian variety B̃ by adjoining a divisor Hi+H−i where H+i and
H−i are two copies of the same genus 2 hyperelliptic curve H (5.6) for ε = ±1, that
intersect each other in a tacnode belonging to Hi +H−i.
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b) The invariant variety A (5.2) can be compactified as a cyclic double cover A
of the Jacobian of a genus two curve, ramified along the divisor Hi+H−i. Moreover,
A is smooth except at the point (tacnode) lying over the singularity ((of type A3)
of Hi +H−i and the resolution Ã of A is a surface of general type with invariants
: Euler characteristic of Ã = X (Ã) = 1 and geometric genus of Ã = pg(Ã) = 2.
Consequently, the system (5.1) is algebraic completely integrable in the generalized
sense.

Note also that the extended system (5.4) include some others known integrable
systems. In particular, it is shown [6] that the system (5.1) is rationally related to
the three-body Toda system.

6 The Lagrange top

The Lagrange top is a symmetric top with a constant vertical gravitational force
acting on its center of mass and leaving the base point of its body symmetry axis
fixed. We will show that the differential equations governing the motion of the
Lagrange top form an algebraic completely integrable system in the generalized
sense. The equations of this problem are explicitly written in the form

λ1
.
m1 = λ1(λ3 − λ1)m2m3 − γ2,

.
γ1 = λ3m3γ2 − λ1m2γ3,

λ1
.
m2 = λ1(λ1 − λ3)m1m3 + γ1,

.
γ2 = λ1m1γ3 − λ3m3γ1,

.
m3 = 0,

.
γ3 = λ1(m2γ1 −m1γ2).

This system admits the following four first integrals :

H1 =
λ21
2
(m2

1 +m2
2) +

λ1λ3
2

m2
3 − γ3, H3 = λ1(m1γ1 +m2γ2 +m3γ3),

H2 = γ21 + γ22 + γ23 , H4 = λ3m3.

and forms an integrable Hamiltonian vector field in the sense of Liouville. The
Poisson structure is given by {mi,mj} = −ϵijkmk, {mi, γj} = −ϵijkγk, {γi, γj} = 0,
where 1 ≤ i, j, k ≤ 3 and ϵijk is the total antisymmetric tensor for which ϵijk = 1.
Let

Mc = {(m1,m2,m3, γ1, γ2, γ3) ∈ C6 : H1 = c1, H2 = 1, H3 = c3, H4 = c4},

be the affine variety defined by the intersection of the constants of the motion and
let C∗ ∼ C/2πiZ be the group of rotations defined by the flow of the vector field
generated by H4, i.e.,

.
m1 = m2,

.
m2 = −m1,

.
m3 = 0,

.
γ1 = γ2,

.
γ2 = −γ1,

.
γ3 = 0.
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We know that the quotient Mc/C∗ is an elliptic curve. We show that the algebraic
variety Mc is not isomorphic to the direct product of the curve Mc/C∗ and C∗.
For generic constants cj , the complex invariant manifold Mc is biholomorphic to an
affine subset of C2/Λ where Λ ⊂ C2 is a lattice of rank 3,

Λ = Z
(

2πi
0

)
⊕ Z

(
0
2πi

)
⊕ Z

(
τ1
τ2

)
, Re(τ1) < 0.

Hence, C2/Λ is an non-compact algebraic group and can be considered as a non-
trivial extension of the elliptic curve C/{2πiZ⊕ τ1Z} by C∗ ∼ C/2πiZ,

0 −→ C/2πiZ −→ C2/Λ
ϕ−→ C/{2πiZ⊕ τ1Z} −→ 0, ϕ(z1, z2) = z1.

The algebraic group C/2πiZ is the generalized Jacobian of an elliptic curve with
two points identified at infinity. We have the following result [12] :

Theorem 13. The differential system governing the Lagrange top form an algebraic
completely integrable system in the generalized sense.

7 The Yang-Mills system and cyclic covering of Abelian
varieties

We consider the Hamiltonian,

H =
1

2
(x21 + x22 + a1y

2
1 + a2y

2
2) +

1

4
y41 +

1

4
a3y

4
2 +

1

2
a4y

2
1y

2
2.

It has been shown in [21] that if a2 = 4a1 ≡ 4a, a3 = 16, a4 = 6, i.e.,

H1 ≡ H =
1

2
(x21 + x22) +

a

2
(y21 + 4y22) +

1

4
y41 + 4y42 + 3y21y

2
2, (7.1)

the corresponding system, i.e.,

ẏ1 = x1, ẋ1 = −(a+ y21 + 6y22)y1,

ẏ2 = x2, ẋ2 = −2(2a+ 3y21 + 8y22)y2, (7.2)

is integrable, the second integral is

H2 = a1y
2
1y2 + y1y2

(
y31 + 2y1y

2
2

)
+ x1 (x2y1 − x1y2) (7.3)

but no description of solutions is given. We solve the system (7.2) in terms of
genus two hyperelliptic functions. When one examines all possible singularities of
the system (7.2), one finds that it possible for the variable y1 to contain square
root terms of the type

√
t, which are strictly not allowed by the Painlevé test
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(the general solutions should have no movable singularities other than poles in the
complex plane). Let A be the affine variety defined by

A =

2⋂
k=1

{
z ∈ C4 : Hk(z) = bk

}
, (7.4)

where (b1, b2) ∈ C2. Since A is the fibre of a morphism from C4 to C2 over
(b1, b2) ∈ C2, for almost all b1, b2, therefore A is a smooth affine surface. We
show that the system (7.2) admits Laurent solutions in

√
t, depending on three free

parameters: u, v and w. These pole solutions restricted to the surface A (7.4) are
parameterized by two smooth curves Cε=±i (7.6) of genus 4. Applying the method
explained in Piovan [36], we show that the invariant variety A (7.4) can be completed
as a cyclic double cover A of the Jacobian of a genus curve, ramified along a divisor
Hi+H−i where Hi and H−i are two isomorphic hyperelliptic curves (7.12) of genus 2
that intersect in only one point at which they are tangent to each other. Moreover, A
is smooth except at the point lying over the singularity (of type A3) of Hi+H−i and
the resolution Ã of A is a surface of general type with invariants : Euler characteristic
of Ã = X (Ã) = 1 and geometric genus of Ã = pg(Ã) = 2. Consequently, the system
(7.2) is algebraic completely integrable in the generalized sense.

The system (7.2) is weight-homogeneous with q1, q2 having weight 1 and p1, p2
weight 2, so that H1 and H2 have weight 4 and 5 respectively.

Theorem 14. The system (7.2) admits Laurent solutions in
√
t, depending on three

free parameters: u, v and w. These solutions restricted to the surface A (7.4) are
parameterized by two smooth curves Cε=±i (7.6) of genus 4.

Proof. The system (7.2) possesses 3-dimensional family of Laurent solutions
(principal balances) depending on three free parameters u, v and w. There are
precisely two such families, labelled by ε = ±i, and they are explicitly given as
follows

y1 =
1√
t
(u− 1

2
u3t+ vt2 + u2(−11

16
u5 +

1

3
au+ v)t3

+
u

4
(
41

32
u8 − au4 +

3

2
u3v +

1

6
a2 − 3ε

√
2

2
w)t4 + · · · ), (7.5)

y2 =
ε
√
2

4t
(1 + u2t+

1

3
(2a− 3u4)t2 +

1

8
u(24v − u5)t3 − 2ε

√
2wt4 + · · · ),

x1 =
1

t
√
t
(−1

2
u− 1

4
u3t+

3

2
vt2 +

5

2
u2(−11

16
u5 +

1

3
au+ v)t3

+
7u

8
(
41

32
u8 − au4 +

3

2
u3v +

1

6
a2 − 3ε

√
2

2
w)t4 + · · · ),

x2 =
ε
√
2

4t2
(−1 +

1

3
(2a− 3u4)t2 +

1

4
u(24v − u5)t3 − 6ε

√
2wt4 + · · · ).
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These formal series solutions are convergent as a consequence of the majorant
method. By substituting these series in the constants of the motion H1 = b1 and
H2 = b2, one eliminates the parameter w linearly, leading to an equation connecting
the two remaining parameters u and v :

2v2 +
1

6
(15u4 − 8a)uv − 39

32
u10 +

7

6
au6 +

2

9
(a2 + 9b1)u

2 − ε
√
2b2 = 0. (7.6)

According to Hurwitz’ formula, this defines two smooth curves Cε (ε = ±i) of genus
4, which establishes the theorem. �

Theorem 15. The system of differential equations (7.2) can be integrated in terms
of genus 2 hyperelliptic functions.

Proof. We set

y2 = s1 + s2,

y21 = −4s1s2,

x2 = ṡ1 + ṡ2,

y1x1 = −2(ṡ1s2 + s1ṡ2).

The latter equation together with the second implies that

x21 = −(ṡ1s2 + s1ṡ2)
2

s1s2
.

In term of these new variables, equations (7.1) and (7.3) take the following form

(s1 − s2)
(
s2(. . .1)

2 − s1(. . .2)
2
)

+4s1s2
(
2s41 + 2s31s2 + 2s21s

2
2 + 2s1s

3
2 + 2s42 + as21 + as1s2 + as22

)
−2b1s1s2 = 0,

(s1 − s2)
(
s22(ṡ1)

2 − s21(ṡ2)
2
)

+4s21s
2
2 (s1 + s2)

(
a+ 2s21 + 2s22

)
+ b2s1s2 = 0.

These equations are solved linearly for (ṡ1)
2 and (ṡ2)

2 as

(ṡ1)
2 =

s1(−8s51 − 4as31 + 2b1s1 + b2)

(s1 − s2)2
,

(ṡ2)
2 =

s2(−8s52 − 4as32 + 2b1s2 + b2)

(s1 − s2)2
,

which leads immediately to

ds1√
P6(s1)

− ds2√
P6(s2)

= 0,

s1ds1√
P6(s1)

− s2ds2√
P6(s2)

= dt,
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where
P6(s) = s(−8s5 − 4as3 + 2b1s+ b2).

The solution of these equations is done using the Abel transformationH −→ Jac(H),
where the hyperelliptic curve H of genus 2 is given by an equation : ζ2 = P6(s).
Consequently, the differential equations (7.2) are integrated in terms of genus 2
hyperelliptic functions. This ends the proof of the theorem. �

We have seen that it possible for the variables y1 and x1 to contain square root
terms of the type

√
t, which are strictly not allowed by the Painlevé test. However,

these terms are trivially removed by introducing some new variables z1, . . . , z5, which
restores the Painlevé property to the system. Indeed, let

ϕ : A −→ C5, (y1, y2, x1, x2) ↦−→ (z1, z2, z3, z4, z5), (7.7)

be a morphism on the affine variety A (7.4) where z1, . . . , z5 are defined as

z1 = y21, z2 = y2, z3 = x2, z4 = y1x1, z5 = 2y21y
2
2 + x21.

The morphism (7.7) maps the vector field (7.2) into the system

ż1 = 2z4, ż3 = −4az2 − 6z1z2 − 16z32 ,

ż2 = z3, ż4 = −az1 − z21 − 8z1z
2
2 + z5, (7.8)

ż5 = −8z22z4 − 2az4 − 2z1z4 + 4z1z2z3,

in five unknowns having three quartic invariants

F1 =
1

2
z5 + 2z1z

2
2 +

1

2
z23 +

1

2
az1 + 2az22 +

1

4
z21 + 4z42 ,

F2 = az1z2 + z21z2 + 4z1z
3
2 − z2z5 + z3z4, (7.9)

F3 = z1z5 − 2z21z
2
2 − z24 .

This system is completely integrable and the Hamiltonian structure is defined by
the Poisson bracket

{F,H} =

⟨
∂F

∂z
, J
∂H

∂z

⟩
=

5∑
k,l=1

Jkl
∂F

∂zk

∂H

∂zl
,

where ∂H
∂z =

(
∂H
∂z1

, ∂H∂z2 ,
∂H
∂z3

, ∂H∂z4 ,
∂H
∂z5

)⊤
, and

J =

⎛⎜⎜⎜⎜⎝
0 0 0 2z1 4z4
0 0 1 0 0
0 −1 0 0 −4z1z2

−2z1 0 0 0 2z5 − 8z1z
2
2

−4z4 0 4z1z2 −2z5 + 8z1z
2
2 0

⎞⎟⎟⎟⎟⎠ ,
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is a skew-symmetric matrix for which the corresponding Poisson bracket satisfies the
Jacobi identities. The system (7.9) can be written as

ż = J
∂H

∂z
, z = (z1, z2, z3, z4, z5)

⊤,

where H = F1. The second flow commuting with the first is regulated by the
equations ż = J ∂F2

∂z , z = (z1, z2, z3, z4, z5)
⊤, i.e.,

ż1 = 2z1z3 − 4z2z4, ż3 = z5 − 8z1z
2
2 − az1 − z21 ,

ż2 = z4, ż4 = −2az1z2 − 4z21z2 − 2z2z5,

ż5 = −4az2z4 − 4z1z2z4 − 16z32z4 − 2z3z5 + 8z1z
2
2z3.

These vector fields are in involution, i.e.,

{F1, F2} =

⟨
∂F1

∂z
, J
∂F2

∂z

⟩
= 0,

and the remaining one is Casimir, i.e., J ∂F3
∂z = 0. Let B be the complex affine variety

defined (for generic (c1, c2, c3) ∈ C3) by

B =

2⋂
k=1

{z : Fk(z) = ck} ⊂ C5, (7.10)

The system (7.9) possesses Laurent series solutions which depend on four free
parameters : α, β, γ and θ :

z1 =
1

t
(α− α2t+ βt2 +

1

6
α(3β − 9α3 + 4aα)t3 + γt4 + · · · ),

z2 =
ε
√
2

4t
(1 + αt+

1

3
(−3α2 + 2a)t2 +

1

2
(3β − α3)t3 − 2ε

√
2θt4 + · · · ),

z3 =
ε
√
2

4t2
(−1 +

1

3
(−3α2 + 2a)t2 + (3β − α3)t3 − 6ε

√
2θt4 + · · · ), (7.11)

z4 =
1

2t2
(−α+ βt2 +

1

3
α(3β − 9α3 + 4aα)t3 + 3γt4 + · · · ),

z5 =
1

t
(−1

3
aα+ α3 − β + (3α4 − aα2 − 3αβ)t

+(4ε
√
2αθ + 2γ +

8

3
aα3 − 1

3
aβ − α2β − 3α5 − 4

9
a2α)t2 + · · · ),

with ε = ±i. These meromorphic solutions restricted to the surface B (7.10) are
parameterized by two isomorphic smooth hyperelliptic curves Hε=±i of genus 2 :

β2 +
2

3
(3α2 − 2a)αβ − 3α6 +

8

3
aα4 +

4

9
(a2 + 9c1)α

2 − 2ε
√
2c2α+ c3 = 0, (7.12)
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The variety B (7.10) is embedded in P15(C) and generically is the affine part of
an Abelian surface B̃, more precisely the Jacobian of a genus 2 curve. The reduced
divisor at infinity B̃\B = Hi+H−i, consists of two smooth isomorphic genus 2 curves
Hε (7.12), that intersect in only one point at which they are tangent to each other.
The system of differential equations (7.9) is algebraic complete integrable and the
corresponding flows evolve on B̃.

Observe that the reflection σ on the affine variety B amounts to the flip

σ : (z1, z2, z3, z4, z5) ↦−→ (z1, z2,−z3,−z4, z5),

changing the direction of the commuting vector fields. It can be extended to the
(-Id)-involution about the origin of C2 to the time flip (t1, t2) ↦−→ (−t1,−t2) on B̃,
where t1 and t2 are the time coordinates of each of the flows XF1 and XF2 . By
inspection, we can see that the involution σ acts on the parameters of the Laurent
solution (7.11) as follows

σ : (t, α, β, γ, θ, ε) ↦−→ (−t,−α,−β,−γ,−θ,−ε),

interchanges the curves Hε=±i (7.12). Geometrically, this involution interchanges
Hi and H−i, i.e., H−i = σHi.

The asymptotic solution (7.5) can be read off from (7.11) and the change of
variable : q1 =

√
z1, q2 = z2, p1 = z4/q1, p2 = z3. The function z1 has a simple pole

along the divisor Hi + H−i and a double zero along a hyperelliptic curve of genus
2 defining a double cover of B̃ ramified along Hi + H−i. Like before, we have the
following result :

Theorem 16. The invariant surface A (7.4) can be completed as a cyclic double
cover A of the Abelian surface B̃ (the Jacobian of a genus 2 curve), ramified along the
divisor Hi+H−i. The system (7.2) is algebraic complete integrable in the generalized
sense. Moreover, A is smooth except at the point lying over the singularity (of type
A3) of Hi+H−i and the resolution Ã of A is a surface of general type with invariants:
X (Ã) = 1 and pg(Ã) = 2.

Proof. We have shown that the morphism ϕ (7.7) maps the vector field (49)
into an algebraic completely integrable system (7.9) in five unknowns and the affine
variety A (7.4) onto the affine part B (7.10) of an Abelian variety B̃ (the Jacobian
of a genus 2 curve with B̃\B = Hi + H−i). Observe that ϕ : A −→ B is an
unramified cover. The curves Cε (7.6) play an important role in the construction
of a compactification A of A. Let G be a cyclic group of two elements {−1, 1} on
V j
ε = U j

ε × {τ ∈ C : 0 < |τ | < δ}, where τ =
√
t and U j

ε is an affine chart of Cε
for which the Laurent solutions (7.5) are defined. The action of G is defined by
(−1) ◦ (u, v, τ) = (−u,−v,−τ) and is without fixed points in V j

ε . So we can identify
the quotient V j

ε /G with the image of the smooth map hjε : V j
ε → A defined by the

expansions (7.5). We have

(−1, 1).(u, v, τ) = (−u,−v, τ), (1,−1).(u, v, τ) = (u, v,−τ),
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i.e., G × G acts separately on each coordinate. Thus, identifying V j
ε /G2 with the

image of ϕ ◦hjε in B. Note that Aj
ε = V j

ε /G is smooth (except for a finite number of
points) and the coherence of the Aj

ε follows from the coherence of V j
ε and the action

of G. Now by taking A and by gluing on various varieties Aj
ε\{some points}, we

obtain a smooth complex manifold Â which is a double cover of the Abelian variety
B̃ ramified along Hi + H−i, and therefore can be completed to an algebraic cyclic
cover of B̃. To see what happens to the missing points, we must investigate the
image of Cε ×{0} in ∪Aj

ε. The quotient Cε ×{0}/G is birationally equivalent to the
smooth hyperelliptic curve Γε of genus 2 :

2w2 +
1

6
(15z2 − 8a)zw + z(−39

32
z5 +

7

6
az3 +

2

9
(a2 + 9b1)z − ε

√
2b2) = 0,

where w = uv, z = u2. The curve Γε is birationally equivalent to Hε. The only points
of Cε fixed under (u, v) ↦−→ (−u,−v) are the two points at ∞, which correspond to
the ramification points of the map

Cε × {0} 2−1−→ Γε : (u, v) ↦−→ (z, w),

and coincides with the points at ∞ of the curve Hε. Then the variety Â constructed
above is birationally equivalent to the compactification A of the generic invariant
surface A. So A is a cyclic double cover of the Abelian surface B̃ (the Jacobian of
a genus 2 curve) ramified along the divisor Hi +H−i, where Hi and H−i intersect
each other in a tacnode. It follows that the system (7.2) is algebraic complete
integrable in the generalized sense. Moreover, A is smooth except at the point
lying over the singularity (of type A3) of Hi + H−i. In term of an appropriate
local holomorphic coordinate system (x, y, z), the local analytic equation about this
singularity is x4 + y2 + z2 = 0. Now, let Ã be the resolution of singularities of A,
X (Ã) be the Euler characteristic of Ã and pg(Ã) the geometric genus of Ã. Then

Ã is a surface of general type with invariants: X (Ã) = 1 and pg(Ã) = 2. This
concludes the proof of the theorem. �
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[17] M. Hénon, C. Heiles, The applicability of the third integral of motion; some
numerical experiments, Astron. J., 69 (1964), 73-79. MR0158746.

[18] W. Hess, Uber die Euler hen Bewegungsgleichungen und tlber eine neue par
dare L(isung des Problems der Bewegung eines starren Korpers un einen festen
punkt, Math. Ann., 37(2) (1890).

[19] J. Hietarinta, Classical versus quantum integrability, J. Math. Phys., 25 (1984),
1833-1840. MR0746267.

[20] J. Hietarinta, Direct methods for the search of the second invariant, Phys. Rep.,
147 (1987), 87-154. MR0879243.

[21] S. Kasperczuk, Integrability of the Yang-Mills Hamiltonian system, Celes Mech.
and Dyn. Astr., 58 (1994), 387-391. Erratum Celes. Mech. and Dyn. Astr., 60
(1994), 289. MR1274535. MR1310190.

[22] G. Kolossoff, Zur Rotation eines Körpers im Kowalewski’schen Falle,
Mathematische Annalen, 56 (1903), 265-272.

[23] N.A. Kostov, Quasi-periodical solutions of the integrable dynamical systems
related to Hill’s equation, Lett. Math. Phys., 17 (1989), 95-104. MR0993015.
Zbl 0691.58022.

[24] S. Kowalevski, Sur le problème de la rotation d’un corps solide autour d’un
point fixe, Acta Math., 12 (1889), 177-232. JFM 21.0935.01.

[25] A. Lesfari, Abelian surfaces and Kowalewski’s top, Ann. Scient. Éc. Norm. Sup.,
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Acad. Sci. Paris, Ser. I 341 (2005), 85-88. MR2153961. Zbl 1080.34500.

[29] A. Lesfari, Abelian varieties, surfaces of general type and integrable systems.
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