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ON HERMITE INTERPOLATION AND DIVIDED
DIFFERENCES

François Dubeau

Abstract. This paper is a survey of topics related to Hermite interpolation. In the first

part we present the standard analysis of the Hermite interpolation problem. Existence, uniqueness

and error formula are included. Then some computational aspects are studied including Leibnitz’

formula and devided differences for monomials. Moreover continuity and differentiation properties of

divided differences are analyzed. Finally we represent Hermite polynomial with respect to different

basis and give links between them.

1 Introduction

This paper is a survey of topics related to Hermite interpolation. We present an
accessible treatment of the Hermite interpolation problem and some related topics.
We have selected simple proofs for the results presented in the text.

In Section 2 we present the standard analysis of the Hermite interpolation
problem. Existence and uniqueness of Hermite polynomial, its representation with
respect to Newton basis, the definition of the divided differences, and error terms are
presented. In Section 3 some computational aspects are studied. Among them are
the recursive calculation of divided differences, Leibnitz’ formula, and computation
of divided differences for monomials. In Section 4, continuity and differentiation
properties of divided differences are analyzed. In Section 5 we represent Hermite
polynomial with respect to different basis and give links between them.
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258 François Dubeau

2 Hermite interpolation

2.1 Hermite interpolation problem

let us consider a sequence of points x0, x1, . . . , xn, distinct or not, such that any
point z in the sequence appears α(z) + 1 times. So we have∑

distinct z∈{x0,x1,...,xn}

(α(z) + 1) = n+ 1.

We say that two functions f(x) and g(x) agree at the points x0, x1, . . . , xn, or g(x)
agrees with f(x), in case

f (l)(z) = g(l)(z) (l = 0, 1, . . . , α(z))

for any point z which occurs α(z) + 1 times in the sequence x0, x1, . . . , xn.
In fact f(x) and g(x) agree at the points x0, x1, . . . , xn if and only if the difference

f(x)− g(x) has the zeros x0, x1, . . . , xn counting multiplicities. The values f (l)(z)
could be only data not related to any function. In this case we say that the function
g(x) agree with the data.

Problem 1. [4, 11] The Hermite interpolation problem is to find the least
degree polynomial p(x) which agree with f(x) at the points x0, x1, . . . , xn. If
this polynomial exists it will be called the Hermite interpolating polynomial, or
shortly Hermite polynomial.

2.2 Hermite polynomial and divided differences

For the Hermite interpolation problem there are n + 1 conditions, so it is normal
to look for a polynomial pn(x) ∈ Pn, where Pn is the set of polynomials of degree
at most n. The following result about existence and uniqueness of pn(x) has some
different proofs, see for example [2–4,11].

Theorem 2. There exists a unique polynomial pn(x) ∈ Pn which agrees with f(x)
at the points x0, x1, . . . , xn.

Proof. Let us consider the representation of pn(x) with respect to the monomial
basis 1, x, . . . , xn as

pn(x) =
n∑

k=0

akx
k.

The n+1 conditions lead to a linear system of n+1 equations with n+1 unknows, the
ak’s. It is enough to show that the unique solution of the homogeneous linear system
is the trivial solution ak = 0 for k = 0 . . . , n. The conditions on the homogeneous
system imply that pn(x) has at least n + 1 zeros counting the multiplicity. This is
possible for pn(x) ∈ Pn only for pn(x) = 0 for all x, so ak = 0 for k = 0, . . . , n.
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Hermite interpolation 259

Since the coefficient an of xn depends only on f(x) and the sequence of points
x0, x1, . . . , xn, we use the notation

an = f [x0, x1, . . . , xn] ,

and consider the following definition.

Definition 3. [6, 8] The n-th order divided difference, f [x0, . . . , xn], is the
coefficient of xn of the Hermite polynomial pn(x) which agree with f(x) at the points
x0, x1, . . . , xn.

If σ : {0, 1, . . . , n} → {0, 1, . . . , n} is a permutation, from the uniqueness of pn(x),
and since the conditions on x0, x1, . . . , xn and on xσ(0), xσ(1), . . . , xσ(n), are the
same, we have

f [x0, x1, . . . , xn] = f
[
xσ(0), xσ(1), . . . , xσ(n)

]
,

which means that the coefficient of xn does not depends on the order of the xi’s.
Because an comes from the solution of a linear system, we have directly the

following linearity property.

Theorem 4. Linearity: let f(x) and g(x) be two functions and λ a constant, then

(f + λg) [x0, x1, . . . , xn] = f [x0, x1, . . . , xn] + λg [x0, x1, . . . , xn] .

2.3 Newton form of the Hermite polynomial

There are several possible representations of pn(x), each representation depends on
the choice of the basis for Pn. One basis if well suited for a recursive computation
of pn(x), it is the Newton basis.

The Newton representation of pn(x) is based on the set of polynomials {πk(x)}nk=0,
given by

π0(x) = 1,

and

πk(x) =

k−1∏
j=0

(x− xj) for k = 1, . . . , n,

such that the degree of πk(x) is k. These n + 1 polynomials of increasing degree
from 0 up to n form a basis of Pn. So we can write

pn(x) =

n∑
k=0

γkπk(x).

Expanding πn(x), we get

pn(x) = γnx
n + un−1(x)
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260 François Dubeau

where un−1(x) is a polynomial of degree at most n− 1. It follows that

γn = an.

The Hermite polynomial pn(x) can be determined recursively. Indeed if pn−1(x)
is already determined with the conditions on x0, x1, . . . , xn−1, then we set

pn(x) = pn−1(x) + f [x0, x1, . . . , xn]πn(x).

This pn(x) satisfies all the conditions on x0, x1, . . . , xn−1 because the last term will
be zero for these conditions. The new condition at xn is used to find f [x0, x1, . . . , xn].
If z = xn occurs α+1 times in the sequence x0, x1, . . . , xn, we have to consider the
supplementary condition

p(α)n (z) = f (α)(z)

for z = xn. Since

p(α)n (xn) = p
(α)
n−1(xn) + f [x0, x1, . . . , xn]π

(α)
n (xn)

with π
(α)
n (xn) ̸= 0, then

f [x0, x1, . . . , xn] =
f (α)(xn)− p

(α)
n−1(xn)

π
(α)
n (xn)

.

So, using a recursive argument, we can write

pn(x) =

n∑
k=0

f [x0, x1, . . . , xk]πk(x).

Let us remark that for the Taylor expansion, which is the case x0 = x1 = . . . =
xn = ξ with α(ξ) = n, we have

pn(x) =

n∑
k=0

f (k)(ξ)

k!
(x− ξ)k,

so

f [ ξ, . . . , ξ  
(k+1)−times

] =
f (k)(ξ)

k!

for k = 0, . . . , n.
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Hermite interpolation 261

2.4 The error of the Hermite polynomial

In this section we recall the standard result about the error of interpolation which
appears for example in [2–4].

Theorem 5. Let us suppose f(x) ∈ Cn+1(R) and x0, x1, . . . , xn be given, distinct
or not. For any x ∈ R there exists

ξx ∈ [min {x, x0, x1, . . . , xn} ,max {x, x0, x1, . . . , xn}]

such that

f(x)− pn(x) =
1

(n+ 1)!
f (n+1)(ξx)πn+1(x).

Proof. The result clearly holds for x = xi. Let us fix x ̸= xi for i = 0, . . . , n. For
the Hermite polynomial pn+1(t), which agrees with f(x) on x, x0, . . . , xn, we have

pn+1(t) = pn(t) +
f(x)− pn(x)

πn+1(x)
πn+1(t).

Hence F (t) = f(t)−pn+1(t) has n+2 zeros at x, x0, . . . , xn counting the multiplicity.
It follows that there exists ξx such that F (n+1)(ξx) = 0. But

F (n+1)(t) = f (n+1)(t)− p
(n+1)
n+1 (t)

= f (n+1)(t)− (n+ 1)!
f(x)− pn(x)

πn+1(x)
.

The result follows when we set t = ξx in this last expression and t = x in pn+1(t).

Let x be different from any xi’s. The Hermite polynomial of f(x) on x, x0, . . . ,
xn is

pn+1(t) = pn(t) + f [x, x0, . . . , xn]πn+1(t).

Hence for t = x we get

f(x) = pn(x) + f [x, x0, . . . , xn]πn+1(x).

From the preceding result we also have

f(x) = pn(x) +
f (n+1)(ξx)

(n+ 1)!
πn+1(x)

for ξx ∈ [min {x, x0, . . . , xn} ,max {x, x0, . . . , xn}]. So we have

f [x, x0, . . . , xn] =
f (n+1)(ξ)

(n+ 1)!

As a consequence, if the xi’s are not all equal we get

f [x0, . . . , xn] =
f (n)(ξ)

n!

for ξ ∈ [min {x0, . . . , xn} ,max {x0, . . . , xn}]. So we have proved the following result.
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262 François Dubeau

Theorem 6. Assume that f(x) ∈ Cn(R), and let x0, . . . , xn be points distinct or
not. Then there exists

ξ ∈ [min {x0, . . . , xn} ,max {x0, . . . , xn}]

such that

f [x0, . . . , xn] =
f (n)(ξ)

n!
.

3 On the computation of Divided differences

3.1 Recursive computation of divided differences

A recursive way to compute the divided differences is a simple consequence of the
following result.

Theorem 7. [1, 8] We always have

((• − xn+1)f) [x0, x1, . . . , xn+1] = f [x0, x1, . . . , xn] ,

or equivalently

((•)f) [x0, x1, . . . , xn+1] = f [x0, x1, . . . , xn] + xn+1f [x0, x1, . . . , xn+1] .

In this theorem and below, an expression like (• − xk)f) applied to x means (x −
xk)f(x).

Proof. Suppose that f(x) and g(x) agree on x0, x1, . . . , xn, then

f [x0, x1, . . . , xn] = g [x0, x1, . . . , xn] .

Let xn+1 be arbitrary. Then (x−xn+1)f(x) and (x−xn+1)g(x) agree also on x0, x1,
. . . , xn, xn+1 because, using Leibnitz’ rule to compute the l-th derivative, we get

dl

dzl
(z − xn+1)f(z) = (z − xn+1)f

(l)(z) + lf (l−1)(z)

= (z − xn+1)g
(l)(z) + lg(l−1)(z)

=
dl

dzl
(z − xn+1)g(z)

for any z in x0, x1, . . . , xn, xn+1 and l = 0, . . . , α(z). It follows that

((• − xn+1)f) [x0, x1, . . . , xn+1] = ((• − xn+1)g) [x0, x1, . . . , xn+1] .
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Now, replace g(x) by the Hermite polynomial pn(x) of f(x) on x0, x1, . . . , xn. Then
(x−xn+1)f(x) and (x−xn+1)pn(x) agree on x0, x1, . . . , xn, xn+1, so (x−xn+1)pn(x)
is the Hermite polynomial of (x−xn+1)f(x) on x0, x1, . . . , xn, xn+1. Then, we have

((• − xn+1)pn) [x0, x1, . . . , xn+1] = f [x0, x1, . . . , xn] ,

because the coefficient of xn+1 of (x − xn+1)pn(x) is the coefficient of xn of pn(x).
The result follows.

Now considering the following two relations

((• − xn)f) [x0, x1, . . . , xn] = f [x0, x1, . . . , xn−1] ,

((• − x0)f) [x0, x1, . . . , xn] = f [x1, . . . , xn] ,

by substraction and linearity we get

(xn − x0)f [x0, x1, . . . , xn] = f [x1, . . . , xn]− f [x0, x1, . . . , xn−1] .

In summary, we have

f [x0, . . . , xn] =

⎧⎪⎨⎪⎩
f (n)(x)

n! if x0 = x1 = · · · = xn = x,

f [x1,...,xn]−f [x0,x1,...,xn−1]
xn−x0

if x0 ̸= xn,

which is a way to recursively generates f [x0, . . . , xn] for n = 0, 1, 2, . . .

3.2 An identity

An interesting identity, related to multivariate B-spline, was obtained in [9] as a
consequence of Theorem 7. A simple proof, which we present here, was given in [8].

Theorem 8. let
∑n

k=0 λk = 1, and
∑n

k=0 λkxk = x, then

n∑
k=0

λkf [x0, . . . , xk−1, x, xk+1, . . . , xn] = f [x0, . . . , xn] .

Proof. We have

f [x0, . . . , xk−1, x, xk+1, . . . , xn] = f [x, x0, . . . , xk−1, xk+1, . . . , xn]

= ((• − xk)f) [x, x0, . . . , xn] .

So, with the assumption on the λk’s we obtain

n∑
k=0

λkf [x0, . . . , xk−1, x, xk+1, . . . , xn] =

(
n∑

k=0

λk(• − xk)f

)
[x, x0, . . . , xn]

= ((• − x)f) [x, x0, . . . , xn]

= f [x0, . . . , xn]
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3.3 Leibnitz’ formula

Leibnitz’ formula for divided differences was obtained in [5]. A simpler way to obtain
this rule, suggested in [8], is presented below.

Theorem 9. Leibnitz’ formula. For any two functions f(x) and g(x), and a
sequence of points x0, x1, . . . , xn distinct or not, we have

(fg) [x0, x1, . . . , xn] =
n∑

k=0

f [x0, . . . , xk] g [xk, . . . , xn] .

Proof. Using πk(x) =
∏k−1

j=0(x− xj), and applying Theorem 7, we get

(πkf) [x0, x1, . . . , xn] =

⎛⎝k−1∏
j=0

(• − xj)f

⎞⎠ [x0, x1, . . . , xn] = f [xk, . . . , xn] .

Now, let us consider the Hermite polynomial pn(x) =
∑n

k=0 f [x0, . . . , xk]πk(x),
which agrees with f(x) on x0, x1, . . . , xn. For any function g(x), f(x)g(x) and
pn(x)g(x) also agree on x0, x1, . . . , xn. We have

(fg) [x0, x1, . . . , xn] = (png) [x0, x1, . . . , xn]

=

(
n∑

k=0

f [x0, . . . , xk]πkg

)
[x0, x1, . . . , xn]

=

n∑
k=0

f [x0, . . . , xk] (πkg) [x0, x1, . . . , xn]

=

n∑
k=0

f [x0, . . . , xk] g [xk, . . . , xn] ,

hence we have the result.

Not only we get the Leibnitz’ formula but we also have the Hermite polynomial
of (fg)(x) on x0, x1, . . . , xn.

Theorem 10. For any two functions f(x) and g(x) and a sequence of points x0,
x1, . . . , xn distinct or not, let qn−k(x) be the Hermite polynomial of g(x) on xk,
. . . , xn. Then

Pn(x) =
n∑

k=0

f [x0, . . . , xk]πk(x)qn−k(x)

is the Hermite polynomial of (fg)(x) on x0, . . . , xn.
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Hermite interpolation 265

Proof. Indeed, suppose z appears α(z)+1 times in x0, . . . , xn. Take any l such that
0 ≤ l ≤ α(z). Applying the Leibnitz’ rule for the derivatives, we get

P (l)
n (z) =

n∑
k=0

f [x0, . . . , xk] (πkqn−k)
(l) (z)

=

n∑
k=0

f [x0, . . . , xk]

l∑
j=0

(
l
j

)
π
(j)
k (z)q

(l−j)
n−k (z)

=

l∑
j=0

(
l
j

) n∑
k=0

f [x0, . . . , xk]π
(j)
k (z)q

(l−j)
n−k (z).

For each j, let xi be the (j + 1)’th occurence of z in x0, . . . , xn. Obviously i ≥ j.
For k ≥ i+ 1

πk(x) = (x− z)j+1uk−(j+1)(x)

where uk−(l+1)(x) is a polynomial of degree k − (j + 1) ≥ 0, hence π
(j)
k (z) = 0.

Moreover, for each k ≤ i, z occurs at least α(z) − j + 1 on xk, . . . , xn, and since

l − j ≤ α(z)− j, we have q
(l−j)
n−k (z) = g(l−j)(z). So we have successively

n∑
k=0

f [x0, . . . , xk]π
(j)
k (z)q

(l−j)
n−k (z) =

i∑
k=0

f [x0, . . . , xk]π
(j)
k (z)q

(l−j)
n−k (z)

=
i∑

k=0

f [x0, . . . , xk]π
(j)
k (z)g(l−j)(z)

= g(l−j)(z)

i∑
k=0

f [x0, . . . , xk]π
(j)
k (z)

= g(l−j)(z)

n∑
k=0

f [x0, . . . , xk]π
(j)
k (z)

= g(l−j)(z)p(j)n (z)

= g(l−j)(z)f (j)(z).

It follows that

P (l)
n (z) =

l∑
j=0

(
l
j

)
f (j)(z)g(l−j)(z)

= (fg)(l) (z)

for l = 0, . . . , α(z).
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3.4 Divided differences for monomials

In this section we present expressions for the divided differences of xl not only for
l ≥ 0 as it is done in [10] for distinct points, but also for l < 0. These expressions
are also based on Theorem 7.

Theorem 11. For n ≥ 0 and l ≥ 0 we have(
(•)n+l+1f

)
[x0, . . . , xn] =

n∑
i=0

xi

(
(•)i+lf

)
[x0, . . . , xi] .

Proof. From the following expression

xn+l+1f(x) = (x− xn)x
n+lf(x) + xnx

n+lf(x),

and using Theorem 7, we obtain the following formula(
(•)n+l+1f

)
[x0, . . . , xn] =

(
(• − xn)(•)n+lf

)
[x0, . . . , xn] + xn

(
(•)n+lf

)
[x0, . . . , xn]

=
(
(•)n+lf

)
[x0, . . . , xn−1] + xn

(
(•)n+lf

)
[x0, . . . , xn]

...

=

n∑
i=0

xi

(
(•)i+lf

)
[x0, . . . , xi] .

As an application of both the definition of divided differences and the preceding
result, we get the following expressions for the powers xl for l ≥ 0. Since we have
f [x0] = f(x0), we consider n > 0.

Theorem 12. For n ≥ 1 and l ≥ 0 we have

(i) (•)l [x0, . . . , xn] = 0 for l = 0, . . . , n− 1;

(ii) (•)n [x0, . . . , xn] = 1;

(iii) (•)n+l+1 [x0, . . . , xn] =
∑

(l0 ≥ 0, . . . , ln ≥ 0)
l0 + · · ·+ ln = l + 1

n∏
i=0

xlii for l = 0, 1, . . ..

Proof. (i) and (ii) follow directly from the definition of the divided differences, while
(iii) is a direct consequence of the preceding result with f(x) = 1.
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For the negative power of x, the xi’s must not vanish, so we assume xi ̸= 0 for
i = 0, . . . , n.

Theorem 13. For f(x) = 1/x we have(
1

•

)
[x0, . . . , xn] =

(−1)n∏n
i=0 xi

.

Proof. Using Leibnitz’ formula and the preceding result, we have

1 [x0, . . . , xn] =

((
1

•

)
•
)
[x0, . . . , xn]

=
n∑

i=0

(
1

•

)
[x0, . . . , xi] (•) [xi, . . . , xn]

=

(
1

•

)
[x0, . . . , xn−1] (•) [xn−1, xn] +

(
1

•

)
[x0, . . . , xn] (•) [xn]

=

(
1

•

)
[x0, . . . , xn−1] + xn

(
1

•

)
[x0, . . . , xn]

so for n ≥ 1 we have(
1

•

)
[x0, . . . , xn] = − 1

xn

(
1

•

)
[x0, . . . , xn−1]

...

=
(−1)n∏n
i=0 xi

.

This formula also holds for n = 0.

Let us observe that from Theorem 11 we have(
(•)n+l+1f

)[ 1

x0
, . . . ,

1

xn

]
=

n∑
i=0

1

xi

(
(•)i+lf

)[ 1

x0
, . . . ,

1

xi

]
.

Divided differences for the negative powers of x are consequences of next two results.

Theorem 14. For l ≥ 0 and any n ≥ 0 we have(
1

•l+1

)
[x0, . . . , xn] =

(
1

•

)
[x0, . . . , xn] (•)n+l

[
1

x0
, . . . ,

1

xn

]
.

Proof. The proof is by induction on l.
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Step 1. For l = 0 and any n ≥ 0 we have(
1

•

)
[x0, . . . , xn] =

(
1

•

)
[x0, . . . , xn] (•)n

[
1

x0
, . . . ,

1

xn

]
,

because

(•)n
[
1

x0
, . . . ,

1

xn

]
= 1.

Step 2. Assume we have the result for an l − 1 ≥ 0 and any n ≥ 0, so(
1

•l

)
[x0, . . . , xn] =

(
1

•

)
[x0, . . . , xn] (•)n+l−1

[
1

x0
, . . . ,

1

xn

]
.

For l, using Leibnitz’ formula and the induction assumption, we have(
1

•l+1

)
[x0, . . . , xn] =

n∑
i=0

(
1

•l

)
[x0, . . . , xi]

(
1

•

)
[xi, . . . , xn]

=
n∑

i=0

(
1

•

)
[x0, . . . , xi] (•)i+l−1

[
1

x0
, . . . ,

1

xi

](
1

•

)
[xi, . . . , xn]

=
n∑

i=0

(−1)i∏i
j=0 xj

(−1)n−i∏n
j=i xj

(•)i+l−1

[
1

x0
, . . . ,

1

xi

]

=
(−1)n∏n
j=0 xj

n∑
i=0

1

xi
(•)i+l−1

[
1

x0
, . . . ,

1

xi

]
=

(−1)n∏n
j=0 xj

(•)n+l

[
1

x0
, . . . ,

1

xn

]
=

(
1

•

)
[x0, . . . , xn] (•)n+l

[
1

x0
, . . . ,

1

xn

]
.

Finally, from Theorems 12, 13, and 14, we obtain the following expression for
the divided differences of f(x) = 1/xl+1.

Theorem 15. For l ≥ 0 and any n ≥ 0 we have(
1

•l+1

)
[x0, . . . , xn] =

(−1)n∏n
i=0 xi

∑
(l0 ≥ 0, . . . , ln ≥ 0)
l0 + · · ·+ ln = l

1∏n
i=0 x

li
i

.
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4 On the regularity of divided differences

4.1 Continuity

The next result concerns the continuity of the divided differences with respect to the
points x0, . . . , xn. The proof we present is an adaptation of the proof given in [2].

Theorem 16. Assume that f(x) ∈ Cn(R) and let x0, . . . , xn be points, distinct or
not. If for each k, x0k, . . . , xnk are n+1 points and limk→∞ xik = xi, i = 0, . . . , n,
then

lim
k→∞

f [x0k, . . . , xnk] = f [x0, . . . , xn] .

Proof. We proceed by induction on n.

Step 1. For n = 0 the result holds because f [x] = f(x).

Step 2. Suppose the result holds for n− 1. Now for n we proceed as follows.

Step 2a. We first show the result for xi’s not all equal. We suppose x0 ̸= xn and we
assume that x0k ̸= xnk for large k. Then

lim
k→∞

f [x0k, . . . , xnk] = lim
k→∞

f [x1k, . . . , xnk]− f
[
x0k, . . . , x(n−1)k

]
xnk − x0k

=
limk→∞ f [x1k, . . . , xnk]− limk→∞ f

[
x0k, . . . , x(n−1)k

]
limk→∞(xnk − x0k)

=
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
= f [x0, . . . , xn]

where the limits exist by induction hypothesis.

Step 2b. We show now the result for x = x0 = . . . = xn. We have

lim
k→∞

f [x0k, . . . , xnk] = lim
k→∞

f (n)(ξk)

n!

=
f (n)(x)

n!
= f [x0, . . . , xn]

because ξk ∈ [min {x0k, . . . , xnk} ,max {x0k, . . . , xnk}], and

lim
k→∞

[min {x0k, . . . , xnk} ,max {x0k, . . . , xnk}] = {x} .

So the result holds for n.
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4.2 Differentiation

Divided differences are also differentiable with repect to the points xi’s.

Theorem 17. Let gn(x) = f [x0, . . . , xn, x] continuous for f(x) ∈ Cn+1(R). For
l ≥ 0 and f(x) ∈ Cn+l+1(R), we have

f [x0, . . . , xn, x, . . . , x  
(l+1)−times

] =
g
(l)
n (x)

l!
.

Proof. Since

gn(x+ h)− gn(x)

h
=

f [x0, . . . , xn, x+ h]− f [x0, . . . , xn, x]

h
= f [x0, . . . , xn, x, x+ h] ,

we have

g′n(x) = lim
h→0

gn(x+ h)− gn(x)

h
= lim

h→0
f [x0, . . . , xn, x, x+ h]

= f [x0, . . . , xn, x, x] .

Now let us suppose the result holds for l − 1,

g(l−1)
n (x) = (l − 1)!f [x0, . . . , xn, x, . . . , x  

l−times

],

then

g(l−1)
n (x+ h)− g(l−1)

n (x) = (l − 1)!

⎡⎣f [x0, ., xn, x+ h, ., x+ h  
l−times

]− f [x0, ., xn, x, ., x  
l−times

]

⎤⎦
= (l − 1)!×

l−1∑
i=0

⎡⎢⎣f [x0, ., xn, x, ., x  
i−times

, x+ h, ., x+ h  
(l−i)−times

]− f [x0, ., xn, x, ., x  
(i+1)−times

, x+ h, ., x+ h  
(l−(i+1))−times

]

⎤⎥⎦
= (l − 1)!h

l−1∑
i=0

f [x0, ., xn, x, ., x  
(i+1)−times

, x+ h, ., x+ h  
(l−i)−times

].

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 257 – 279

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


Hermite interpolation 271

Hence

g(l)n (x) = lim
h→0

g
(l−1)
n (x+ h)− g

(l−1)
n (x)

h

= (l − 1)!

l−1∑
i=0

lim
h→0

f [x0, . . . , xn, x, . . . , x  
(i+1)−times

, x+ h, . . . , x+ h  
(l−i)−times

]

= (l − 1)!
l−1∑
i=0

f [x0, . . . , xn, x, . . . , x  
(l+1)−times

]

= l!f [x0, . . . , xn, x, . . . , x  
(l+1)−times

].

Now a direct consequence of this last result is the next proposition.

Theorem 18. Let us suppose that there are r+1 different values xij for j = 0, . . . , r
which each appears α(xij ) + 1 times in the sequence x0, . . . , xn, in such a way that

r∑
j=0

(
α(xij ) + 1

)
=

r∑
j=0

α(xij ) + (r + 1) = n+ 1.

For f(x) ∈ Cn(R), we have

∂α(xi0
)

∂x
α(xi0

)

i0

· · · ∂α(xir )

∂x
α(xir )
ir

f [xi0 , . . . , xir ] = f [ xi0 , . . . , xi0  
(α(xi0

)+1)−times

, . . . , xir , . . . , xir  
(α(xir )+1)−times

]

= f [x0, . . . , xn].

5 Bases and representations of the Hermite polynomial

5.1 Reformulation of the problem

The Hermite interpolation problem we have solved can be restated as presented in
the last section. We consider r + 1 distinct points x0, x1, . . . , xr, and associated
r + 1 integers α0, α1, . . . , αr. We look for a polynomial pn(x) ∈ Pn such that

p(l)n (xi) = f (l)(xi) for l = 0, . . . , αi; i = 0, . . . , r.

We have
∑r

i=0(αi + 1) =
∑r

i=0 αi + r + 1 = n+ 1. We are going to represent pn(x)
with respect to different bases as was done in [7] for Lagrange interpolation (αi = 0
for all i, so r = n, all distinct xi).
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5.2 Monomial basis

Using the monomial basis
{
1, x, x2, . . . , xn

}
, we can write

pn(x) =
n∑

j=0

ajx
j .

The coefficients aj ’s are obtained by considering the linear system obtained by the
αi + 1 conditions at each xi. So we have

p(l)n (xi) =

n∑
j=l

aj
j!

(j − l)!
xj−l = f (l)(xi) (l = 0, . . . , αi).

Under matrix form, for each index i we have a (αi + 1, n + 1)-matrix Vi and a
(αi + 1, 1)-matrix Fi

Vi =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1!
1!xi

2!
2!x

2
i · · · αi!

αi!
xαi
i · · · n!

n!x
n
i

1 2!
1!xi · · · αi!

(αi−1)!x
αi−1
i · · · n!

(n−1)!x
n−1
i

2 · · · αi!
(αi−2)!x

αi−2
i · · · n!

(n−2)!x
n−2
i

. . .

αi! · · · n!
(n−αi)!

xn−αi
i

⎤⎥⎥⎥⎥⎥⎥⎦ , Fi =

⎡⎢⎢⎢⎢⎢⎣
f(xi)
f ′(xi)
f ′′(xi)

...

f (αi)(xi)

⎤⎥⎥⎥⎥⎥⎦ .

We form the global (n+ 1, n+ 1)-matrix V and the global (n+ 1, 1)-matrix F

V =

⎡⎢⎢⎢⎢⎢⎣
V0

V1

V2
...
Vr

⎤⎥⎥⎥⎥⎥⎦ , F =

⎡⎢⎢⎢⎢⎢⎣
F0

F1

F2
...
Fr

⎤⎥⎥⎥⎥⎥⎦ .

The V matrix is the confluent Vandermonde matrix. The ai’s are the solution of
the system

V a = F

with a = [a0, a1, . . . , an]
ᵀ. We know that this matrix is invertible because the

homogeneous system V a = 0 has only the zero solution a = 0. So

a = V −1F.

If we set M(x) = [1, x, · · · , xn]ᵀ we have

pn(x) = Mᵀ(x)a = Mᵀ(x)V −1F.

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 257 – 279

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


Hermite interpolation 273

5.3 Generalized Lagrange basis

To form this basis, we look for polynomials ℓil(x) ∈ Pn (l = 0, . . . , αi; i = 0, . . . , r),
such that

ℓ
(k)
il (xj) = δijδlk,

where

δrs =

⎧⎨⎩
0 if r ̸= s,

1 if r = s.

For each i, liαi(x) must have a zero of multiplicity αj + 1 at xj for j ̸= i and a zero
of multiplicity αi at xi. So we write

ℓiαi(x) =
(x− xi)

αi

αi!
vi(x),

where

vi(x) =

r∏
j=0
j ̸=i

(
x− xj
xi − xj

)αj+1

.

Hence ℓiαi(x) verifies all the desired conditions. We now construct recursively,
in a decreasing order for the index l, the polynomials ℓil(x) for l = αi − 1, αi −
2, . . . , 1, 0. Suppose ℓik(x) is already defined for k = αi, αi − 1, . . . , l + 1, for an
l ∈ {αi − 1, αi − 2, . . . , 1, 0}. To determine ℓil(x), we start with

ℓ̃il(x) =
(x− xi)

l

l!
vi(x),

which verifies the conditions for each xj (j ̸= i). For xi we have

ℓ̃
(k)
il (xi) = 0 if k < l,

and
ℓ̃
(l)
il (xi) = 1.

Moreover, for k > l, we have

ℓ̃
(k)
il (x)|x=xi =

dk

dxk
(x− xi)

l

l!
vi(x)|x=xi =

k∑
σ=0

(
k
σ

)
v
(k−σ)
i (x)

dσ

dxσ
(x− xi)

l

l!
|x=xi .

But
dσ

dxσ
(x− xi)

l

l!
|x=xi = δσl,

then

ℓ̃
(k)
il (xi) =

(
k
l

)
v
(k−l)
i (xi).
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So we set

ℓil(x) = ℓ̃il(x)−
αi∑

j=l+1

(
j
l

)
v
(j−l)
i (xi)ℓij(x).

A similar construction of the ℓil(x) for i = 0, . . . , r and each i for l = 0, . . . , αi has
been presented in [11]. Finally, we have

pn(x) =

r∑
i=0

αi∑
l=0

f (l)(xi)ℓil(x).

If we set

Li(x) =

⎡⎢⎢⎢⎢⎢⎣
ℓi0(x)
ℓi1(x)
ℓi2(x)

...
ℓiαi(x)

⎤⎥⎥⎥⎥⎥⎦ , for i = 0, . . . , r, and L(x) =

⎡⎢⎢⎢⎢⎢⎣
L0(x)
L1(x)
L2(x)

...
Lr(x)

⎤⎥⎥⎥⎥⎥⎦ ,

we have

pn(x) = Lᵀ(x)F.

We also obtain

V ᵀL(x) = M(x).

5.4 Newton basis

We construct a family of n + 1 polynomials of increasing degree πil(x) ∈ Pn (l =
0, . . . , αi; i = 0, . . . , r) by considering successively the xi. They are linearly independant
and form a basis of Pn. We set

πil(x) = (x− xi)
l
i−1∏
j=0

(x− xj)
αj+1,

such that π00(x) = 1. We can write

pn(x) =

r∑
i=0

αi∑
l=0

λilπil(x).

We observe that

p(l)n (xi) =

i−1∑
j=0

αj∑
k=0

λjkπ
(l)
jk (xi) +

l∑
k=0

λikπ
(l)
ik (xi),
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because for any fixed l = 0, . . . , αi

π
(l)
jk (xi) = 0 for

⎧⎨⎩
j = i and k = l + 1, . . . , αi,

j > i and k = 0, . . . , αi.

Since

π
(l)
il (xi) = l!

i−1∏
j=0

(xi − xj)
αj+1 ̸= 0,

we can solve for λil to get

λil =
f (l)(xi)−

∑i−1
j=0

∑αj

k=0 λjkπ
(l)
jk (xi)−

∑l−1
k=0 λikπ

(l)
ik (xi)

π
(l)
il (xi)

.

So we can find pn(x) by solving recursively one equation. Since πrαr(x) is the unique
polynomial of degree n we get an = λrαr .

Let us observe that with the Newton basis and an ordering of the points (with
their multiplicities), we can compute the divided differences with an appropriate
table (as the usual table for the Lagrange case).

From a matrix point of view, let us set the (αi + 1, αj + 1)-matrices

Πij =

⎡⎢⎣ π
(l)
jk (xi)

⎤⎥⎦
l = 0, . . . , αi

k = 0, . . . , αj

for i = 0, . . . , r and j = 0, . . . , r. Let us observe that

(i) if j > i then Πij = 0,

(ii) if j = i then Πij is a lower triangular matrix because π
(l)
ik (xi) = 0 for k > l,

(iii) if j < i then Πij is a full matrix.

Let

Λi =

⎡⎢⎢⎢⎢⎢⎣
λi0

λi1

λi2
...

λiαi

⎤⎥⎥⎥⎥⎥⎦ for i = 0, . . . , r, and Λ =

⎡⎢⎢⎢⎢⎢⎣
Λ0

Λ1

Λ2
...
Λr

⎤⎥⎥⎥⎥⎥⎦ ,

and

Π =

⎡⎢⎢⎢⎣
Π00 Π01 . . . Π0r

Π10 Π11 . . . Π1r
...

...
...

Πr0 Πr1 . . . Πrr

⎤⎥⎥⎥⎦ .
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So we have ΠΛ = F and Λ = Π−1F . If

Πi(x) =

⎡⎢⎢⎢⎢⎢⎣
πi0(x)
πi1(x)
πi2(x)

...
πiαi(x)

⎤⎥⎥⎥⎥⎥⎦ for i = 0, . . . , r, and Π(x) =

⎡⎢⎢⎢⎢⎢⎣
Π0(x)
Π1(x)
Π2(x)

...
Πr(x)

⎤⎥⎥⎥⎥⎥⎦ ,

we have
pn(x) = Πᵀ(x)Λ = Πᵀ(x)Π−1F.

5.5 An orthogonal basis

Let us consider the inner product defined by

⟨p(•), q(•)⟩ =
r∑

i=0

αi∑
l=0

p(l)(xi)q
(l)(xi)

for two polynomials p(x) and q(x) in Pn. We can construct recursively an orthogonal
basis with this inner product. Let us start with q0(x) = 1, and assume by induction
that the set {qj(x)}kj=0 form a sequence of orthogonal polynomials such that the
degree of qj(x) is j. We get qk+1(x) by

qk+1(x) = xqk(x)−
k∑

j=0

γk+1,jqj(x)

where

γk+1,j =
⟨(•)qk(•), qj(•)⟩
⟨qj(•), qj(•)⟩

for j = 0, . . . , k. Let us observe that we have

⟨(•)p(•), q(•)⟩ = ⟨p(•), (•)q(•)⟩

only in the case αi = 0 for i = 0, . . . , r, for which we have the usual three term
relation for the orthogonal qk(x).

The norm associated to the inner product is

∥p∥ =
√
⟨p(•), p(•)⟩.

Now we look for a polynomial

pn(x) =

n∑
k=0

wkqk(x)
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which minimize ∥f − pn∥. Using the normal equations

⟨f(•)− pn(•), qk(•)⟩ = 0

for k = 0, . . . , n. The solution is given by

pn(x) =
n∑

k=0

⟨f(•), qk(•)⟩ qk(x).

We have for j = 0, . . . , n

Qij =

⎡⎢⎢⎢⎢⎢⎢⎣
qj(xi)
q′j(xi)

q′′j (xi)
...

q
(αi)
j (xi)

⎤⎥⎥⎥⎥⎥⎥⎦ for i = 0, . . . , r, and Qj =

⎡⎢⎢⎢⎢⎢⎣
Q0j

Q1j

Q2j
...

Qrj

⎤⎥⎥⎥⎥⎥⎦ .

Then, let us set

Q =
[
Q0 . . . Qn

]
=

⎡⎢⎢⎢⎣
Q00 . . . Q0n

Q10 . . . Q1n
...

...
Qr0 . . . Qrn

⎤⎥⎥⎥⎦ .

With w =
[
w0 . . . wn

]ᵀ
, we have to solve the linear system

Qw = F.

But QᵀQ = Diag
(
∥qj∥2

)
, so from QᵀQw = QᵀF we get

w = Diag

(
1

∥qj∥2

)
QᵀF.

Then, for Q(x) =
[
q0(x) . . . qn(x)

]ᵀ
, we have

pn(x) = Qᵀ(x)w = Qᵀ(x)Diag

(
1

∥qj∥2

)
QᵀF.

5.6 Links between bases

We have

pn(x) = Mᵀ(x)V −1F = Lᵀ(x)F = Πᵀ(x)Π−1F = Qᵀ(x)Diag

(
1

∥qj∥2

)
QᵀF,
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so obtain

Mᵀ(x)V −1 = Lᵀ(x) = Πᵀ(x)Π−1 = Qᵀ(x)Diag

(
1

∥qj∥2

)
Qᵀ.
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