MATRIX POWER MEANS AND PÓLYA-SZEGÖ TYPE INEQUALITIES

Mohsen Kian and Fatemeh Rashid

Abstract

It has been shown that if μ is a compactly supported probability measure on \mathbb{M}_{n}^{+}, then for every unit vector $\eta \in \mathbb{C}^{n}$, there exists a compactly supported probability measure (denoted by $\langle\mu \eta, \eta\rangle$) on \mathbb{R}^{+}so that the inequality $$
\left\langle P_{t}(\mu) \eta, \eta\right\rangle \leq P_{t}(\langle\mu \eta, \eta\rangle) \quad(t \in(0,1])
$$ holds. In particular, we consider a reverse of the above inequality and present some Pólya-Szegö type inequalities for power means of probability measures on positive matrices.

1 Introduction and preliminaries

In what follows, assume that \mathbb{M}_{n} is the algebra of all $n \times n$ matrices with complex entries and \mathbb{H}_{n} is the real subspace of all Hermitian matrices in \mathbb{M}_{n}. A matrix $A \in \mathbb{H}_{n}$ is called positive semi-definite (positive definite) and denoted by $A \geq 0(A>0)$ if all of its eigenvalues are non-negative (positive). We denote by \mathbb{M}_{n}^{+}the set of all positive definite matrices. The well-known Loewner partial order on \mathbb{H}_{n} is defined by

$$
A \leq B \quad \Longleftrightarrow \quad B-A \geq 0, \quad\left(A, B \in \mathbb{H}_{n}\right)
$$

In particular, if δ is an scalar, then we mean by $A \leq \delta$ that $A \leq \delta I$, where I denotes the identity matrix.

Matrix means have raised in the matrix theory as non-commutative extensions of scalar-valued means. Some of the most familiar matrix means are $A \nabla_{t} B=(1-$ t) $A+t B$ (weighted arithmetic mean), $A \sharp_{t} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}$ (weighted geometric mean) and $A!_{t} B=\left((1-t) A^{-1}+t B^{-1}\right)^{-1}$ (weighted harmonic mean), where $t \in[0,1]$ and A, B are positive matrices, see e.g. [3].

Let $a=\left(a_{1}, \cdots, a_{k}\right)$ be a k-tuple of positive real numbers, $t \in(0,1]$ and let $\omega=\left(\omega_{1}, \cdots, \omega_{k}\right)$ be a weight vector. The weighted power mean of a_{1}, \cdots, a_{k} is

2020 Mathematics Subject Classification: Primary 47A64; Secondary 47A63.
Keywords: Power means; Pólya-Szegö inequality; probability measure; positive matrix
This work was supported by a grant from University of Bojnord (No. 96/367/17164).
http://www.utgjiu.ro/math/sma
defined by $P_{t}(\omega ; a)=\left(\sum_{i=1}^{k} \omega_{i} a_{i}^{t}\right)^{\frac{1}{t}}$. It turns out to be the unique positive solution of the equation $x=\sum_{i=1}^{k} \omega_{i} x^{1-t} a_{i}^{t}$. When $t \rightarrow 0$, the power mean converges to the geometric mean of a_{1}, \cdots, a_{k}.

The matrix arithmetic and harmonic means can be naturally extended to a k tuple $\mathbb{A}=\left(A_{1}, \cdots, A_{k}\right)$ of positive matrices,

$$
\nabla(\omega ; \mathbb{A})=\sum_{i=1}^{k} \omega_{i} A_{i}, \quad!(\omega ; \mathbb{A})=\left(\sum_{i=1}^{k} \omega_{i} A_{i}^{-1}\right)^{-1}
$$

Recently, there have been several works regarding extension of the matrix geometric mean to several variables. The notion of power means for positive matrices $\mathbb{A}=$ $\left(A_{1}, \cdots, A_{k}\right)$ denoted by $P_{t}(\omega ; \mathbb{A})$ has been introduced in [7] as the unique positive invertible solution of the non-linear matrix equation

$$
\begin{equation*}
X=\sum_{i=1}^{k} \omega_{i}\left(X \sharp_{t} A_{i}\right) \quad(t \in(0,1]) \tag{1.1}
\end{equation*}
$$

For $t \in[-1,0)$, put $P_{t}(\omega ; \mathbb{A}):=P_{-t}\left(\omega ; \mathbb{A}^{-1}\right)^{-1}$, where $\mathbb{A}^{-1}=\left(A_{1}^{-1}, \ldots, A_{k}^{-1}\right)$.
The matrix power mean interpolates between the weighted harmonic and arithmetic means (see also [4]) and

$$
\begin{equation*}
\left(\sum_{i=1}^{k} \omega_{i} A_{i}^{-1}\right)^{-1} \leq P_{t}(\omega ; \mathbb{A}) \leq \sum_{i=1}^{k} \omega_{i} A_{i} \tag{1.2}
\end{equation*}
$$

The notion of power mean for probability measures on \mathbb{M}_{n}^{+}has also been studied [5]: If μ is a probability measure of compact support on \mathbb{M}_{n}^{+}and $t \in(0,1]$, then the equation

$$
X=\int_{\mathbb{M}_{n}^{+}} X \sharp_{t} Z d \mu(Z)
$$

has a unique solution in \mathbb{M}_{n}^{+}. It defines the power mean as a map P_{t} from the set of all probability measures of compact support on \mathbb{M}_{n}^{+}into \mathbb{M}_{n}^{+}. In the case of $t \in[-1,0)$, the power mean is defined by $P_{t}(\mu)=P_{-t}(\nu)^{-1}$, where $\nu(\mathcal{E})=\mu\left(\mathcal{E}^{-1}\right)$ for every measurable set \mathcal{E}. The above integral is in the sense of vector-valued. If f is a continuous function from a topological space \mathcal{X} into a Banach space and μ is a probability measure of compact support on the Borel σ-algebra of \mathcal{X}, then

$$
\int_{X} f d \mu=\lim _{m \rightarrow \infty} \sum_{i=1}^{N_{m}} f\left(a_{i}\right) \mu\left(B_{m, i}\right)
$$

in which $\left\{B_{m, i} ; i=1, \cdots, N_{m}\right\}$ is a partition of $\operatorname{supp}(\mu)$ and a_{i} is an arbitrary point in $B_{m, i}$.

It is known that a matrix mean σ has a monotonicity property via any positive unital linear mapping Φ, say $\Phi(A \sigma B) \leq \Phi(A) \sigma \Phi(B)$, see [3, 9, 10]. In particular,

$$
\begin{equation*}
\langle(A \sigma B) \eta, \eta\rangle \leq\langle A \eta, \eta\rangle \sigma\langle B \eta, \eta\rangle \tag{1.3}
\end{equation*}
$$

for every $\eta \in \mathbb{C}^{n}$, see $[1,2,10]$.
In this paper, we present inequality (1.3) for power mean of probability measures. It provides some inequalities of type (1.3) and its reverses for matrix power means.

2 main results

Assume that t is a non-zero real number and μ is a probability measure of compact support on the positive half line. Consider the equation

$$
\begin{equation*}
x=\int_{\mathbb{R}^{+}} x^{1-t} z^{t} d \mu(z) . \tag{2.1}
\end{equation*}
$$

This equation has a unique solution, say

$$
\begin{equation*}
x=\left(\int_{\mathbb{R}^{+}} z^{t} d \mu(z)\right)^{\frac{1}{t}} \tag{2.2}
\end{equation*}
$$

This unique solution, which we denote it by $P_{t}(\mu)$, can be regarded as a power mean and gives an extension of $P_{t}(\omega ; a)$. If $a=\left(a_{1}, \cdots, a_{k}\right)$ is a k-tuple of positive real numbers, $\omega=\left(\omega_{1}, \cdots, \omega_{k}\right)$ is a weight vector and the measure μ is defined on the Borel σ-algebra of \mathbb{R}^{+}satisfying that $\mu\left(\left\{a_{i}\right\}\right)=\omega_{i}$ for all $i=1, \cdots, k$, then equation (2.1) turns to

$$
x=\sum_{i=1}^{k} \omega_{i} x^{1-t} a_{i}^{t}
$$

and

$$
P_{t}(\mu)=\left(\sum_{i=1}^{k} \omega_{i} a_{i}^{t}\right)^{\frac{1}{t}}=P_{t}(\omega ; a) .
$$

Suppose that μ is a probability measure of compact support on \mathbb{M}_{n}^{+}. Assume that \mathcal{E} is a Borel subset of \mathbb{R}^{+}and put $\overline{\mathcal{E}}=\left\{A \in \mathbb{M}_{n}^{+} ;\langle A \eta, \eta\rangle \in \mathcal{E}\right\}$. We define a measure denoted by $\langle\mu \eta, \eta\rangle$ on \mathbb{R}^{+}by $\langle\mu \eta, \eta\rangle(\mathcal{E})=\mu(\overline{\mathcal{E}})$. It is easy to see that $\langle\mu \eta, \eta\rangle$ is a probability measure on \mathbb{R}^{+}. Now if f is a continuous function on \mathbb{R}^{+} and integrable with respect to μ, then

$$
\begin{equation*}
\int_{\mathbb{M}_{n}^{+}} f(\langle Z \eta, \eta\rangle) d \mu(Z)=\int_{\mathbb{R}^{+}} f(z) d\langle\mu \eta, \eta\rangle(z) . \tag{2.3}
\end{equation*}
$$

We will use the following known result (see e.g., [3, 6])

Lemma 1 (Hölder-McCarthy inequality). Let $A \in \mathbb{M}_{n}$. If $\eta \in \mathbb{C}^{n}$ is a unit vector, then
(i) $\langle A \eta, \eta\rangle^{r} \leq\left\langle A^{r} \eta, \eta\right\rangle \quad$ for all $r>1$;
(ii) $\langle A \eta, \eta\rangle^{r} \geq\left\langle A^{r} \eta, \eta\right\rangle \quad$ for all $0<r<1$;
(iii) If A is invertible, then $\langle A \eta, \eta\rangle^{r} \leq\left\langle A^{r} \eta, \eta\right\rangle \quad$ for all $r<0$.

The next theorem gives inequality (1.3) for power means.
Theorem 2. Let μ be a probability measure of compact support on \mathbb{M}_{n}^{+}. If η is a unit vector in \mathbb{C}^{n} and $t \in(0,1]$, then

$$
\begin{equation*}
\left\langle P_{t}(\mu) \eta, \eta\right\rangle \leq P_{t}(\langle\mu \eta, \eta\rangle) \tag{2.4}
\end{equation*}
$$

If $t \in[-1,0)$, then a reverse inequality holds.
Proof. Let $t \in(0,1]$ and let the function f be defined on \mathbb{M}_{n}^{+}by $f(X)=\int_{\mathbb{M}_{n}^{+}} X \sharp_{t} Z d \mu(Z)$. Then

$$
f(X)=\lim _{m \rightarrow \infty} \sum_{i=1}^{N_{m}} X \#_{t} Z_{i} \mu\left(B_{m, i}\right)
$$

where $\left\{B_{m, i} ; \quad i=1, \cdots, N_{n}\right\}$ is a Borel partition of $\operatorname{supp}(\mu)$ and Z_{i} is an arbitrary point in $B_{m, i}$, see [5]. If $\eta \in \mathbb{C}^{n}$ is a unit vector, then

$$
\begin{aligned}
\langle f(X) \eta, \eta\rangle & =\left\langle\int_{\mathbb{M}_{n}^{+}} X \#_{t} Z \mu(d Z) \eta, \eta\right\rangle \\
& =\left\langle\lim _{m \rightarrow \infty} \sum_{i=1}^{N_{m}} X \#_{t} Z_{i} \mu\left(B_{m, i}\right) \eta, \eta\right\rangle \\
& =\lim _{m \rightarrow \infty} \sum_{i=1}^{N_{m}} \mu\left(B_{m, i}\right)\left\langle\left(X \#{ }_{t} Z_{i}\right) \eta, \eta\right\rangle \\
& =\lim _{m \rightarrow \infty} \sum_{i=1}^{N_{m}} \mu\left(B_{m, i}\right)\left\langle\left(X^{-1 / 2} Z_{i} X^{-1 / 2}\right)^{t} X^{1 / 2} \eta, X^{1 / 2} \eta\right\rangle \\
& =\lim _{m \rightarrow \infty} \sum_{i=1}^{N_{m}} \mu\left(B_{m, i}\right)\left\|X^{1 / 2} \eta\right\|^{2}\left\langle\left(X^{-1 / 2} Z_{i} X^{-1 / 2}\right)^{t} \frac{X^{1 / 2} \eta}{\left\|X^{1 / 2} \eta\right\|}, \frac{X^{1 / 2} \eta}{\left\|X^{1 / 2} \eta\right\|}\right\rangle
\end{aligned}
$$

Since $t \in(0,1]$, using Lemma 1 we get

$$
\begin{aligned}
\langle f(X) \eta, \eta\rangle & \leq \lim _{m \rightarrow \infty} \sum_{i=1}^{N_{m}} \mu\left(B_{m, i}\right)\left\|X^{1 / 2} \eta\right\|^{2(1-t)}\left\langle Z_{i} \eta, \eta\right\rangle^{t} \\
& =\langle X \eta, \eta\rangle^{1-t} \lim _{m \rightarrow \infty} \sum_{i=1}^{N_{m}} \mu\left(B_{m, i}\right)\left\langle Z_{i} \eta, \eta\right\rangle^{t}
\end{aligned}
$$

Set $C=\lim _{m \rightarrow \infty} \sum_{i=1}^{N_{m}} \mu\left(B_{m, i}\right)\left\langle Z_{i} \eta, \eta\right\rangle^{t}$, so that

$$
\begin{equation*}
\langle f(X) \eta, \eta\rangle \leq\langle X \eta, \eta\rangle^{1-t} C \tag{2.5}
\end{equation*}
$$

It follows from (2.5) that

$$
\begin{equation*}
\left\langle f^{2}(X) \eta, \eta\right\rangle \leq\langle f(X) \eta, \eta\rangle^{1-t} C \quad \text { and } \quad\langle f(X) \eta, \eta\rangle^{1-t} \leq\langle X \eta, \eta\rangle^{(1-t)^{2}} C^{1-t} \tag{2.6}
\end{equation*}
$$

Combining two inequalities in (2.6) we get

$$
\begin{equation*}
\left\langle f^{2}(X) \eta, \eta\right\rangle \leq\langle X \eta, \eta\rangle^{(1-t)^{2}} C^{1+(1-t)} \tag{2.7}
\end{equation*}
$$

By using an induction process, we reach

$$
\begin{aligned}
\left\langle f^{\ell}(X) \eta, \eta\right\rangle & \leq\langle X \eta, \eta\rangle^{(1-t)^{\ell}} C^{1+(1-t)+(1-t)^{2}+\ldots+(1-t)^{\ell-1}} \\
& =\langle X \eta, \eta\rangle^{(1-t)^{\ell}} C^{\frac{1-(1-t)^{\ell}}{1-(1-t)}} \quad(\ell \in \mathbb{N})
\end{aligned}
$$

Letting $\ell \rightarrow \infty$ and noting that $f^{\ell}(X) \rightarrow P_{t}(\mu)$ we observe that $\left\langle P_{t}(\mu) \eta, \eta\right\rangle \leq C^{1 / t}$. It follows from the definition of the vector-valued integrals that

$$
\begin{aligned}
C=\lim _{m \rightarrow \infty} \sum_{i=1}^{N_{m}} \mu\left(B_{m, i}\right)\left\langle Z_{i} \eta, \eta\right\rangle^{t} & =\int_{\mathbb{M}_{n}^{+}}\langle Z \eta, \eta\rangle^{t} d \mu(Z) \\
& =\int_{\mathbb{R}^{+}} z^{t} d\langle\mu \eta, \eta\rangle(z)
\end{aligned}
$$

where the last equality follows from (2.3). Therefore,

$$
C^{1 / t}=\left(\int_{\mathbb{R}^{+}} z^{t} d\langle\mu \eta, \eta\rangle(z)\right)^{1 / t}=P_{t}(\langle\mu \eta, \eta\rangle)
$$

This gives (2.4).
Now assume that $t \in[-1,0)$ and $\nu(\mathcal{E})=\mu\left(\mathcal{E}^{-1}\right)$ for every measurable set \mathcal{E}. Inequality (2.4) then implies that $\left\langle P_{-t}(\nu) \eta, \eta\right\rangle \leq P_{-t}(\langle\nu \eta, \eta\rangle)$. It follows from Lemma 1 that

$$
P_{t}(\langle\mu \eta, \eta\rangle)=P_{-t}(\langle\nu \eta, \eta\rangle)^{-1} \leq\left\langle P_{-t}(\nu) \eta, \eta\right\rangle^{-1} \leq\left\langle P_{-t}(\nu)^{-1} \eta, \eta\right\rangle=\left\langle P_{t}(\mu) \eta, \eta\right\rangle
$$

This completes the proof.
It is known that a reverse of (1) holds as follows:

Lemma 3. [8] Let $0<r<1$ and m, M be two positive real numbers. If A is a positive definite matrix with $0<m \leq A \leq M$, then

$$
\begin{equation*}
\left\langle A^{r} \eta, \eta\right\rangle \geq \alpha(m, M, r)\langle A \eta, \eta\rangle^{r} \tag{2.8}
\end{equation*}
$$

where $\alpha(m, M, r)=\frac{M m^{r}-m M^{r}}{(1-r)(M-m)}\left(\frac{1-r}{r} \frac{M^{r}-m^{r}}{M m^{r}-m M^{r}}\right)^{r}$. If $r \in[-1,0)$, then a reverse inequality holds in (2.8).

Utilizing Lemma 3 and an argument as in the proof of Theorem 2 we obtain the next result. We omit the proof.

Proposition 4. Let μ be a probability measure of compact support on \mathbb{M}_{n}^{+}and η be a unit vector in \mathbb{C}^{n}. If

$$
m P_{t}(\mu) \leq Z \leq M P_{t}(\mu), \quad(Z \in \operatorname{supp}(\mu))
$$

then

$$
\left\langle P_{t}(\mu) \eta, \eta\right\rangle \geq \alpha(m, M, t) P_{t}(\langle\mu \eta, \eta\rangle)
$$

for every $t \in(0,1]$. If $t \in[-1,0)$, then a reverse inequality holds.

Let $\mathbb{A}=\left(A_{1}, \ldots, A_{k}\right)$ be a k-tuple of positive definite matrices and let $\omega=$ $\left(\omega_{1}, \ldots, \omega_{k}\right)$ be a weight vector. Consider the probability measure μ on the set $\left\{A_{1}, \ldots, A_{k}\right\} \subseteq \mathbb{M}_{n}^{+}$by $\mu\left(\left\{A_{i}\right\}\right)=\omega_{i}$ for every $i=1, \cdots, k$. If $X_{t}=P_{t}(\mu)$, then

$$
X_{t}=\int_{\mathbb{M}_{n}^{+}} X_{t} \sharp_{t} Z d \mu(Z)=\sum_{i=1}^{k} \omega_{i} X_{t} \sharp_{t} A_{i}=P_{t}(\omega ; \mathbb{A}) .
$$

Therefore, we have the next corollary.
Corollary 5. Let $\mathbb{A}=\left(A_{1}, \ldots, A_{k}\right)$ be a k-tuple of positive definite matrices and let $\omega=\left(\omega_{1}, \ldots, \omega_{k}\right)$ be a weight vector. Then

$$
\begin{equation*}
\left\langle P_{t}(\omega ; \mathbb{A}) \eta, \eta\right\rangle \leq P_{t}\left(\omega ;\left\langle A_{1} \eta, \eta\right\rangle, \cdots,\left\langle A_{k} \eta, \eta\right\rangle\right) \quad(t \in(0,1]) \tag{2.9}
\end{equation*}
$$

for every $\eta \in \mathbb{C}^{n}$. If in addition $m \leq A_{i} \leq M$ for two positive real numbers m, M, then

$$
\begin{equation*}
\left\langle P_{t}(\omega ; \mathbb{A}) \eta, \eta\right\rangle \geq \alpha(m, M, t) P_{t}\left(\omega ;\left\langle A_{1} \eta, \eta\right\rangle, \cdots,\left\langle A_{k} \eta, \eta\right\rangle\right) \quad(t \in(0,1]) \tag{2.10}
\end{equation*}
$$

If $t \in[-1,0)$, then inequalities (2.9) and (2.10) are reversed.

As a simple example, let $A, B>0$ and $\omega \in[0,1]$. Then

$$
P_{t}(\omega ; A, B)=A^{\frac{1}{2}}\left((1-\omega) I+\omega\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{t}\right)^{\frac{1}{t}} A^{\frac{1}{2}}
$$

Consider

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 4 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Assume that $t=-1 / 2, \omega=1 / 2$ and $\eta=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. Then

$$
\left\langle P_{t}(\omega ; A, B) \eta, \eta\right\rangle=\left\langle P_{-t}\left(\omega ; A^{-1}, B^{-1}\right)^{-1} \eta, \eta\right\rangle=1
$$

and

$$
P_{t}(\omega ;\langle A \eta, \eta\rangle,\langle B \eta, \eta\rangle)=0.615
$$

Remark 6. If $\mathbb{A}=\left(A_{1}, \ldots, A_{k}\right)$ is a k-tuple of commuting positive matrices, then $P_{t}(\omega ; \mathbb{A})=\left(\sum_{i=1}^{k} \omega_{i} A_{i}^{t}\right)^{\frac{1}{t}}$. Corollary 5 implies that

$$
\left\langle\left(\sum_{i=1}^{k} \omega_{i} A_{i}^{t}\right)^{\frac{1}{t}} \eta, \eta\right\rangle \leq\left(\sum_{i=1}^{k} \omega_{i}\left\langle A_{i} \eta, \eta\right\rangle^{t}\right)^{\frac{1}{t}}
$$

Theorem 7. Let μ be a probability measure of compact support on \mathbb{M}_{n}^{+}and η be a unit vector in \mathbb{C}^{n}. If

$$
m \leq Z \leq M \quad \text { for every } Z \in \operatorname{supp}(\mu)
$$

then

$$
P_{t}(\langle\mu \eta, \eta\rangle)-\left\langle P_{t}(\mu) \eta, \eta\right\rangle \leq(\sqrt{M}-\sqrt{m})^{2} \quad(t \in(0,1])
$$

Proof. The power means $P_{t}(\mu)$ satisfy [5] the inequality

$$
\begin{equation*}
\left(\int_{\mathbb{M}_{n}^{+}} Z^{-1} d \mu(Z)\right)^{-1} \leq P_{t}(\mu) \leq \int_{\mathbb{M}_{n}^{+}} Z d \mu(Z) \tag{2.11}
\end{equation*}
$$

where $P_{-1}(\mu)=\left(\int_{\mathbb{M}_{n}^{+}} Z^{-1} d \mu(Z)\right)^{-1}$ is the harmonic mean and $P_{1}(\mu)=\int_{\mathbb{M}_{n}^{+}} Z d \mu(Z)$ is the arithmetic mean for every compactly supported probability measure μ on \mathbb{M}_{n}^{+}.

Assume that $\left\{B_{m, i} ; i=1, \cdots, N_{m}\right\}$ is a partition of $\operatorname{supp}(\mu)$ and Z_{i} is an arbitrary point in $B_{m, i}$ for $i=1, \cdots, N_{m}$. Then

$$
\begin{align*}
\int_{\mathbb{M}_{n}^{+}} Z d \mu(Z)-P_{t}(\mu) & \leq \int_{\mathbb{M}_{n}^{+}} Z d \mu(Z)-\left(\int_{\mathbb{M}_{n}^{+}} Z^{-1} d \mu(Z)\right)^{-1} \tag{2.11}\\
& =\lim _{m \rightarrow \infty}\left[\sum_{i=1}^{N_{m}} Z_{i} \mu\left(B_{m, i}\right)-\left(\sum_{i=1}^{N_{m}} Z_{i}^{-1} \mu\left(B_{m, i}\right)\right)^{-1}\right] .
\end{align*}
$$

Define a unital positive linear mapping $T: \mathbb{M}_{n N_{m}}^{+} \rightarrow \mathbb{M}_{n}^{+}$by $T\left(A_{1} \oplus \cdots \oplus A_{N_{m}}\right)=$ $\sum_{i=1}^{N_{m}} \mu\left(B_{m, i}\right) A_{i}$. Then

$$
\begin{align*}
\sum_{i=1}^{N_{m}} Z_{i} \mu\left(B_{m, i}\right)-\left(\sum_{i=1}^{N_{m}} Z_{i}^{-1} \mu\left(B_{m, i}\right)\right)^{-1} & =T\left(Z_{1} \oplus \cdots \oplus Z_{N_{m}}\right)-T\left(Z_{1}^{-1} \oplus \cdots \oplus Z_{N_{m}}^{-1}\right)^{-1} \\
& \leq(\sqrt{M}-\sqrt{m})^{2} \tag{2.12}
\end{align*}
$$

since $m \leq Z_{i} \leq M$ for $i=1, \cdots, N_{n}$. Therefore

$$
\begin{equation*}
\int_{\mathbb{M}_{k}^{+}} Z d \mu(Z)-P_{t}(\mu) \leq(\sqrt{M}-\sqrt{m})^{2} \tag{2.13}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
P_{t}(\langle\mu \eta, \eta\rangle)-\left\langle P_{t}(\mu) \eta, \eta\right\rangle & \leq \int_{\mathbb{R}^{+}} z d\langle\mu \eta, \eta\rangle(z)-\left\langle P_{t}(\mu) \eta, \eta\right\rangle \\
& =\int_{\mathbb{M}_{k}^{+}}\langle Z \eta, \eta\rangle d \mu(Z)-\left\langle P_{t}(\mu) \eta, \eta\right\rangle \quad(\text { by }(2.3)) \\
& =\left\langle\int_{\mathbb{M}_{k}^{+}} Z d \mu(Z) \eta, \eta\right\rangle-\left\langle P_{t}(\mu) \eta, \eta\right\rangle \\
& \leq(\sqrt{M}-\sqrt{m})^{2},
\end{aligned}
$$

where the last inequality follows from (2.13).

Corollary 8. Let $\mathbb{A}=\left(A_{1}, \ldots, A_{k}\right)$ be a k-tuple positive matrices and let $\omega=$ $\left(\omega_{1}, \ldots, \omega_{k}\right)$ be a weight vector. If $0<m \leq A_{i} \leq M \quad(i=1, \cdots, k)$ for some scalars $0<m \leq M$, then

$$
\left\langle A_{1} \eta, \eta\right\rangle^{\omega_{1}} \cdots\left\langle A_{k} \eta, \eta\right\rangle^{\omega_{k}}-\left\langle P_{t}(\omega, \mathbb{A}) \eta, \eta\right\rangle \leq(\sqrt{M}-\sqrt{m})^{2}
$$

for every $\eta \in \mathbb{C}^{n}$.

Proof. It follows from the arithmetic-geometric mean inequality that

$$
\left\langle A_{1} \eta, \eta\right\rangle^{\omega_{1}} \cdots\left\langle A_{k} \eta, \eta\right\rangle^{\omega_{k}} \leq \sum_{i=1}^{k} \omega_{i}\left\langle A_{i} \eta, \eta\right\rangle=\left\langle\left(\sum_{i=1}^{k} \omega_{i} A_{i}\right) \eta, \eta\right\rangle
$$

The desired inequality therefore follows from (2.13).

Let $A, B \in \mathbb{M}_{n}$ be positive matrices with $0<m \leq A, B \leq M$ and $\omega \in[0,1]$. It follows from Corollary 8 that

$$
\begin{equation*}
\langle A \eta, \eta\rangle^{\omega}\langle B \eta, \eta\rangle^{1-\omega} \leq\left\langle P_{t}(\omega, A, B) \eta, \eta\right\rangle+(\sqrt{M}-\sqrt{m})^{2} \tag{2.14}
\end{equation*}
$$

for every unit vector $\eta \in \mathbb{C}^{n}$. Assume that a_{1}, \cdots, a_{n} and b_{1}, \cdots, b_{n} are positive scalars such that $m \leq a_{i}, b_{i} \leq M \quad(i=1, \cdots, k)$. Put $\eta=\frac{1}{\sqrt{n}}(1, \cdots, 1) \in \mathbb{C}^{n}$, $A=\operatorname{diag}\left(a_{1}, \cdots, a_{n}\right)$ and $B=\operatorname{diag}\left(b_{1}, \cdots, b_{n}\right)$. Inequality (2.14) implies that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{\omega}\left(\sum_{i=1}^{n} b_{i}\right)^{1-\omega} \leq \sum_{i=1}^{n}\left(\omega a_{i}^{t}+(1-\omega) b_{i}^{t}\right)^{\frac{1}{t}}+n(\sqrt{M}-\sqrt{m})^{2}
$$

which is a reverse Hölder type inequality.
Acknowledgement. The authors would like to thank the referee for careful reading of manuscript and useful comments. This research was in part supported by a grant from University of Bojnord (No. 96/367/17164).

References

[1] M. Dehghani, M. Kian and Y. Seo, Developed matrix inequalities via positive multilinear mappings, Linear Algebra Appl., 484 (2015), 63-85. MR3385054. Zbl1330.47071.
[2] M. Dehghani, M. Kian and Y. Seo, Matrix power mean and the information monotonicity, Linear Algebra Appl., 521 (2017), 57-69. MR3611475. Zbl06691789.
[3] T. Furuta, H. Mićić, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Zagreb Element, 2005. MR3026316. Zbl1135.47012.
[4] T. Hoa Dinh, R. Dumitru and J.A. Franco, The matrix power means and interpolations, Adv. Oper. Theory (2018), https://doi.org/10.15352/aot.1801-1288. MR3795106. Zbl06902458.

Surveys in Mathematics and its Applications 15 (2020), 315 - 324
http://www.utgjiu.ro/math/sma
[5] S. Kim and H. Lee, The power mean and the least squares mean of probability measures on the space of positive definite matrices, Linear algebra Appl., 465 (2015), 325-346. MR3274680. Zbl1311.60013.
[6] M. Kian and S.S. Dragomir, Inequalities involving superquadratic functions and Operators, Mediterr. J. Math., 11 (2014), 1205-1214. MR3268817. Zbl1321.47038.
[7] Y. Lim and M. Pálfia, Matrix power means and the Karcher mean, J. Funct. Anal., 262 (2012), 1498-1514. MR2873848. Zbl1244.15014.
[8] J. Mićić, J. Pečarić and Y. Seo, Complementary inequalities to inequalities of Jensen and Ando based on the Mond-Pečarić method, Linear Algebra Appl. 318 (2000), 87-107. MR1787226. Zbl0971.47014.
[9] M. Niezgoda, On f-connections of positive definite matrices, Ann. Funct. Anal. 5 (2014), no. 2, 147-157. MR3192017. Zbl1297.15023.
[10] Y. Seo, Generalized Pólya-Szegö type inequalities for some non-commutative geometric means, Linear Algebra Appl., 438 (2013), 1711-1726. MR3005252. Zbl1272.47031.

Mohsen Kian
Department of Mathematics University of Bojnord, P. O. Box 1339, Bojnord 94531, Iran.
e-mail: kian@ub.ac.ir
https://ub.ac.ir/ kian

Fatemeh Rashid
Department of Mathematics University of Bojnord, P. O. Box 1339, Bojnord 94531, Iran.
e-mail: f_rashid@yahoo.com

License

This work is licensed under a Creative Commons Attribution 4.0 International License.

