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ON THE VALUE SHARING OF SHIFT MONOMIAL
OF MEROMORPHIC FUNCTIONS

Abhijit Banerjee and Tania Biswas

Abstract. We employ the notion of weighted and truncated sharing to study the uniqueness

problems of generalized shift monomial sharing the same 1-points. The corollary deducted from our

main results will improve a number of results of recent time. As an application of the main result

we will also improve a recent result under the periphery of a more generalized shift operator. Some

examples have been exhibited by us relevant to the content of the paper.

1 Introduction and Results

We adopt the standard notations of value distribution theory (see [8]) and by
meromorphic functions we shall always mean meromorphic functions in the com-
plex plane. For a non-constant meromorphic function f , we denote by T (r, f)
the Nevanlinna characteristic function of f and by S(r, f) any quantity satisfying
S(r, f) = o{T (r, f)} as r → ∞ possibly outside a set of finite linear measure. The
order of f is defined by

ρ(f) = lim sup
r−→∞

log T (r, f)

log r
.

Let f(z) and g(z) be two non-constant meromorphic functions. Let a be any
complex constant. We say that f(z) and g(z) share the value a CM (counting
multiplicities) if f(z)−a and g(z)−a have the same zeros with the same multiplicities
and we say that f(z), g(z) share a IM (ignoring multiplicities) if we do not consider
the multiplicities.

Let k be a positive integer or infinity and a ∈ C ∪ {∞}. We denote by Ek)(a; f)
the set of all a-points of f with multiplicities not exceeding k, where an a-point is
counted according to its multiplicity. If for some a ∈ C∪{∞}, E∞)(a; f)=E∞)(a; g)
we say that f , g share the value a CM.
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The shift and the difference operator of a meromorphic function are respectively
represented by f(z + c) and ∆f = f(z + c)− f(z), c ∈ C\{0}.

For a transcendental meromorphic function, it is an interesting feature among
researchers to investigate the value distributions of fnf

′
.

In this respect, the first attempt was made by Hayman. 1959, Hayman (see [7],
Corollary of Theorem 9) obtained the following theorem.

Theorem A. Let f be a transcendental meromorphic function and n ∈ N such that
n ≥ 3. Then fnf ′ = 1 has infinitely many solutions.

In 1979, Mues [18] settled the case for n = 2.

Laine-Yang [12] converted the above investigation into the value distribution of
difference products of entire functions as follows.

Theorem B. [12] Let f be a transcendental entire function of finite order, and c
be a non-zero complex constant. Then, for n ≥ 2, fn(z)f(z + c) assumes every
non-zero value a ∈ C infinitely often.

Afterwards, many researchers like Liu-Yang [14], Zhang [25], Chen-Chen [5] fur-
ther extended the results of Laine-Yang [12].

Meanwhile, there have been an increasing interest among the researchers to in-
vestigate the uniqueness problem of entire or meromorphic functions and their shift
or difference operators. In this respect, a handful number of elegant results have
been appeared in the literature.

Around 2001, the notion of weighted sharing was appeared in the literature:
[10], [11]. It indicates the gradual change of shared values from CM to IM. Below
we recall the definition.

Definition 1. [11] Let k ∈ N∪ {0} ∪ {∞}. For a ∈ C∪ {∞} we denote by Ek(a; f)
the set of all a-points of f where an a-point of multiplicity m is counted m times if
m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f , g share the
value a with weight k.

Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or
(a,∞) respectively.

In 2010, motivated by the results of Yang-Hua [22], Qi-Yang-Liu [19] studied
the uniqueness of the difference polynomials of entire functions and obtained the
following result.

Theorem C. [19] Let f(z) and g(z) be two transcendental entire functions of finite
order and c ∈ C \ {0}; let n ∈ N such that n ≥ 6. If fn(z)f(z+ c) and gn(z)g(z+ c)
share (1,∞), then f(z)g(z) ≡ t1 or f(z) ≡ t2g(z) for some constants t1 and t2 that
satisfy tn+1

1 = 1 and tn+1
2 = 1.
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In 2012, Wang-Han-Wen [20] relaxed the nature of sharing in the following man-
ner.

Theorem D. [20] Let f(z) and g(z) be two transcendental entire functions of finite
order and c ∈ C\{0}. Let n ∈ N such that Ek)(1, f

n(z)f(z+c)) = Ek)(1, g
n(z)g(z+

c)).

(i) If k = 3 and n ≥ 6 or

(ii) if k = 2 and n ≥ 7 or

(iii) if k = 1 and n ≥ 10,
then conclusion of Theorem C holds.

In the mean time, in 2011, Liu-Liu-Cao [15] extended Theorem C for meromor-
phic function as follows.

Theorem E. [15] Let f(z) and g(z) be two transcendental meromorphic functions
of finite order and c ∈ C \ {0}. Let n ∈ N such that fn(z)f(z+ c) and gn(z)g(z+ c)
share (1, l).

(i) If l = ∞ and n ≥ 14 or

(ii) if l = 0 and n ≥ 26,
then f(z) ≡ tg(z) or f(z)g(z) ≡ t for some constants t that satisfy tn+1 = 1.

In 2015, for meromorphic function, Liu-Wang-Liu [16] improved Theorem C in
the direction of Theorem D. Their result was as follows:

Theorem F. [16] Let f(z) and g(z) be two transcendental meromorphic functions
of finite order and c ∈ C \ {0}. Let n ∈ N such that Ek)(1, f

n(z)f(z + c)) =
Ek)(1, g

n(z)g(z + c)).

(i) If k ≥ 3 and n ≥ 14 or

(ii) if k = 2 and n ≥ 16 or

(iii) if k = 1 and n ≥ 22,
then conclusion of Theorem C holds.

We would like to point out that though for a meromorphic function h, all the
previous authors mentioned hn(z)h(z + c) as difference polynomial, but there was
no presence of difference operator, in the expression. So to make the definition more
pragmatic, it will be reasonable to call hn(z)h(z + c) as shift monomial. In fact, in
the paper we shall deal with the more generalized shift monomial.

Let us assume that P (z) = anz
n + an−1z

n−1 + . . . + a1z + a0 be a polyno-
mial, where a0, a1, . . . , an ̸= 0 be complex constants and n(≥ 1) is an integer.

Also let µj(≥ 0)(j = 1, 2, . . . , s) are positive integers such that σ =
s∑

j=1
µj . For
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a meromorphic function h and for finite complex constants cj(j = 1, 2, . . . , s) we say

P (h)(z)
s∏

j=1
(h(z + cj))

µj as the generalized shift monomial.

The purpose of this paper is to improve all the Theorems C-F for the most
generalized shift polynomial under different relaxed sharing environment. We have
also relaxed the CM sharing results to sharing of weight 2.

Throughout the paper for sake of convenience we assume that Γ0 = m1+m2 and
Γ1 = m1 + 2m2, where m1, m2 respectively be the number of simple and multiple
zeros of P (z).

We now present the following four theorems which are the main results of the
paper.

Theorem 2. Let f(z), g(z) be two transcendental meromorphic functions of fi-
nite order, cj(j = 1, 2, . . . , s) be finite complex constants. Suppose also that F =

P (f)(z)
s∏

j=1
(f(z + cj))

µj and G = P (g)(z)
s∏

j=1
(g(z + cj))

µj share (1, l). Now

(i) if l ≥ 2 and n > 2Γ1 + 5σ + 4 or

(ii) if l = 1 and n > 2Γ1 +
1
2Γ0 + 5σ + s+ 9

2 or

(iii) if l = 0 and n > 2Γ1 + 3Γ0 + 5σ + 6s+ 7,
then either

P (f)(z)
s∏

j=1

(f(z + cj))
µjP (g)(z)

s∏
j=1

(g(z + cj))
µj ≡ 1

or

P (f)(z)

s∏
j=1

(f(z + cj))
µj ≡ P (g)(z)

s∏
j=1

(g(z + cj))
µj .

If in particular, for an integer n(≥ 1) we take P (f) = fn and

(i) if l ≥ 2 and n > 8 + 5σ or

(ii) if l = 1 and n > 9 + 5σ + s or

(iii) if l = 0 and n > 14 + 5σ + 6s,
then either f ≡ tg, or fg ≡ t, for some constant t such that tn+σ = 1.

From Theorem 2, putting µ1 = 1 = s, we can easily deduce the following corol-
lary.

Corollary 3. Let f(z), g(z) be two non-constant meromorphic functions of finite
order, and c( ̸= 0) be a finite complex constant. Suppose n(≥ 1) be an integer such
that fn(z)(f(z + c)) and gn(z)(g(z + c)) share (1, l). Now

(i) if l ≥ 2 and n ≥ 14 or
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(ii) if l = 1 and n ≥ 16 or

(iii) if l = 0 and n ≥ 26,
then either f ≡ tg or fg ≡ t, for some constant t such that tn+1 = 1.

The following examples show that both conclusions of Theorem 2 actually holds
when P (f) = fn and cj = c, where c(̸= 0) be a finite complex constant, for all
j = 1, 2, . . . , s.

Example 4. Let f = e
zlogω

c

e
2π i z

c −1
and g = ωf , where ω is the n + σ-th root of unity.

Then fn(z)
s∏

j=1
(f(z + c))µj and gn(z)

s∏
j=1

(g(z + c))µj share (1,∞).

Example 5. Let f = e
2 π i z

c −1

e
2 π i z

c +1
and g = ω e

2 π i z
c +1

e
2 π i z

c −1
, where ω is the n + σ-th root

of unity. Then fn(z)
s∏

j=1
(f(z + c))µj and gn(z)

s∏
j=1

(g(z + c))µj share (1,∞). Here

fg ≡ ω.
The following example shows that Corollary 3 is not true for infinite ordered mero-
morphic function.

Example 6. Let f = ee
zlog(−n)

c

ee
zlog(−n)

c +1

and g = 1

ee
zlog(−n)

c +1

, Then it is easy to verify

that fn(z)f(z + c) and gn(z)g(z + c) share (1,∞), but neither f ≡ tg or fg ≡ t, for
some constant t such that where tn+1 = 1.

Theorem 7. Let f(z), g(z) be two transcendental entire functions of finite order,

m(≥ 1), r(≥ 1) be integers. Suppose also that P (f)(z)
s∏

j=1
(f(z + cj))

µj and

P (g)(z)
s∏

j=1
(g(z + cj))

µj share (1, l). Now

(i) if l ≥ 2 and n > 2Γ1 + σ or

(ii) if l = 1 and n > 2Γ1 +
1
2Γ0 + σ + s

2 or

(iii) if l = 0 and n > 2Γ1 + 3Γ0 + σ + 3s,
then the following cases hold:

(I) when P (z) is not of the form of zr(zm − 1), m(≥ 1) or zr(z − 1)m, m(≥ 2), one
of the following two cases holds:

(IA) f(z) ≡ tg(z) for a constant t such that tλ = 1, where λ is the GCD of the
elements of J , J = {σ + k ∈ I : ak ̸= 0} and I = {σ, σ + 1, . . . , σ + n}. In
particular P (z) = anz

n, f ≡ tg for a constant t such that tn+σ = 1.
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(IB) P (f)(z)
s∏

j=1
(f(z + cj))

µj ≡ P (g)(z)
s∏

j=1
(g(z + cj))

µj ;

(II) when P (z) = zr(zm − 1) and n > m + σ + 2s + 2, then f(z) ≡ tg(z), for some
constant t such that tm = tr+σ = 1;

(III) when P (z) = zr(z − 1)m (m ≥ 2), one of the following two cases holds:

(IIIA) f(z) ≡ g(z),

(IIIB) f r(z)(f(z)− 1)m
∏s

j=1(f(z + cj))
µj ≡ gr(z)(g(z)− 1)m

∏s
j=1(g(z + cj))

µj .

(IV) f(z) = eα(z) and g(z) = ζ e−α(z), where α is a non-constant polynomial and ζ
is a complex constant satisfying a2nζ

n+σ ≡ 1.
If in particular, for an integer n(≥ 1), we take P (f) = fn and one of the following
holds

(i) l ≥ 2 and n > 4 + σ or

(ii) l = 1 and n > 41
2 + σ + s

2 or

(iii) l = 0 and n > 7 + σ + 3s,
then either f ≡ tg or fg ≡ t, for some constant t such that tn+σ = 1.

Corollary 8. Let f(z), g(z) be two transcendental entire functions of finite order,
and c(̸= 0) be a finite complex constant. Suppose n(≥ 1) be an integer such that
fn(z)(f(z + c)) and gn(z)(g(z + c)) share (1, l). Now

(i) if l ≥ 2 and n ≥ 6 or

(ii) if l = 1 and n ≥ 7 or

(iii) if l = 0 and n ≥ 12,
then either f ≡ tg, or fg ≡ t, for some constant t such that tn+1 = 1.

The following examples show that both conclusions of Theorem 7 actually holds
when P (f) = fn and cj = c, where c(̸= 0) be a finite complex constant, for all
j = 1, 2, . . . , s.

Example 9. Let f = e
2π i z

c and g = ωf , where ω is the n + σ-th root of unity.

Then fn(z)
s∏

j=1
(f(z + c))µj and gn(z)

s∏
j=1

(g(z + c))µj share (1,∞).

Example 10. Let f = e
2π i z

c and g = ω

e
2π i z

c
, where ω is the n+ σ-th root of unity.

Then fn(z)
s∏

j=1
(f(z + c))µj and gn(z)

s∏
j=1

(g(z + c))µj share (1,∞). Here fg ≡ ω.
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The following example shows that Corollary 8 is not true for infinite ordered
entire function.

Example 11. Let f = ee
zlog(−n)

c +1 and g = 1

ee
zlog(−n)

c

+1, Then it is easy to verify

that fn(z)f(z + c) and gn(z)g(z + c) share (1,∞), but neither f ≡ tg or fg ≡ t, for
some constant t such that where tn+1 = 1.

Theorem 12. Let f(z), g(z) be two transcendental meromorphic functions of finite
order and k(≥ 1) be an integer such that

Ek)(1, P (f)(z)
s∏

j=1
(f(z + cj))

µj ) = Ek)(1, P (g)(z)
s∏

j=1
(g(z + cj))

µj ). Now

(i) if k ≥ 3 and n > 2Γ1 + 5σ + 4 or

(ii) if k = 2 and n > 2Γ1 +
1
2Γ0 + 5σ + s+ 9

2 or

(iii) if k = 1 and n > 2Γ1 + 2Γ0 + 5σ + 4s+ 6,
then either

P (f)(z)

s∏
j=1

(f(z + cj))
µjP (g)(z)

s∏
j=1

(g(z + cj))
µj ≡ 1

or

P (f)(z)
s∏

j=1

(f(z + cj))
µj ≡ P (g)(z)

s∏
j=1

(g(z + cj))
µj .

If in particular, for an integer n(≥ 1) we take P (f) = fn and

(i) if k ≥ 3 and n > 8 + 5σ or

(ii) if k = 2 and n > 9 + 5σ + s or

(iii) if k = 1 and n > 12 + 5σ + 4s,
then either f ≡ tg or fg ≡ t, for some constant t such that tn+σ = 1.

From Theorem 12, putting µ1 = 1 = s, we have the following corollary.

Corollary 13. Let f(z), g(z) be two non-constant meromorphic functions of finite
order, and c(̸= 0) be a finite complex constant. Suppose Ek)(1, f

n(z)(f(z + c))) and
Ek)(1, g

n(z)(g(z + c))). Now

(i) if k ≥ 3 and n ≥ 14 or

(ii) if k = 2 and n ≥ 16 or

(iii) if k = 1 and n ≥ 22,
then either f ≡ tg or fg ≡ t, for some constant t such that tn+1 = 1.

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 341 - 369

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


348 A. Banerjee and T. Biswas

Theorem 14. Let f(z), g(z) be two transcendental entire functions of finite order
and

Ek)(1, P (f)(z)
s∏

j=1
(f(z + cj))

µj ) = Ek)(1, P (g)(z)
s∏

j=1
(g(z + cj))

µj . Now

(i) if k ≥ 3 and n > 2Γ1 + σ or

(ii) if k = 2 and n > 2Γ1 +
1
2Γ0 + σ + s

2 or

(iii) if k = 1 and n > 2Γ1 + 2Γ0 + σ + 2s,
then one of the conclusions (I), (II), (III) or (IV) of Theorem 7 holds.

If in particular, P (f) = fn and one of the following holds

(i) k ≥ 3 and n > 4 + σ or

(ii) k = 2 and n > 41
2 + σ + s

2 or

(iii) k = 1 and n > 6 + σ + 2s,
then either f ≡ tg or fg ≡ t, for some constant t such that tn+σ = 1.

Corollary 15. Let f(z), g(z) be two transcendental entire functions of finite order
and c(̸= 0) be a finite complex constant. Suppose n(≥ 1) be an integer such that
Ek)(1, f

n(z)(f(z + c))) = Ek)(1, g
n(z)(g(z + c))). Now

(i) if k ≥ 3 and n ≥ 6 or

(ii) if k = 2 and n ≥ 7 or

(iii) if k = 1 and n ≥ 10,
then either f ≡ tg or fg ≡ t, for some constant t such that tn+1 = 1.

2 Auxiliary Definitions

Throughout the paper we have used the following definitions and notations.

Definition 16. [9] Let a ∈ C ∪ {∞}. We denote by N(r, a; f |= 1) the counting
function of simple a points of f . For p ∈ N we denote by N(r, a; f |≤ p) the counting
function of those a-points of f (counted with multiplicities) whose multiplicities are
not greater than p. By N(r, a; f |≤ p) we denote the corresponding reduced counting
function.

In an analogous manner we can define N(r, a; f |≥ p) and N(r, a; f |≥ p).

Definition 17. [11] Let p ∈ N∪{∞}. We denote by Np(r, a; f) the counting function
of a-points of f , where an a-point of multiplicity m is counted m times if m ≤ p and
p times if m > p. Then Np(r, a; f) = N(r, a; f)+N(r, a; f |≥ 2)+...+N(r, a; f |≥ p).
Clearly N1(r, a; f) = N(r, a; f).

Definition 18. [23] Let f and g be two non-constant meromorphic functions such
that f and g share (a, 0). Let z0 be an a-point of f with multiplicity p, an a-point
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of g with multiplicity q. We denote by NL(r, a; f) the reduced counting function of

those a-points of f and g where p > q, by N
1)
E (r, a; f) the counting function of those

a-points of f and g where p = q = 1, by N
(2
E (r, a; f) the reduced counting function

of those a-points of f and g where p = q ≥ 2. In the same way we can define

NL(r, a; g), N
1)
E (r, a; g), N

(2
E (r, a; g). In a similar manner we can define NL(r, a; f)

and NL(r, a; g) for a ∈ C ∪ {∞}.

When f and g share (a,m), m ≥ 1, then N
1)
E (r, a; f) = N(r, a; f |= 1).

Definition 19. [10, 11] Let f , g share a value (a, 0). We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ from
the multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f)+NL(r, a; g).

Definition 20. Let f and g be two non-constant meromorphic functions and m be
a positive integer such that Ek)(a; f) = Ek)(a; g) where a ∈ C ∪ {∞}. Let z0 be
an a-point of f with multiplicity p > 0, an a-point of g with multiplicity q > 0.

We denote by N
(k+1
L (r, a; f) (N

(k+1
L (r, a; g)) the counting function of those common

a-points of f and g where p > q ≥ k + 1 (q > p ≥ k + 1), each a-point is counted
only once.

Definition 21. Let k be a positive integer. Also let z0 be a zero of f(z) − a of
multiplicity p and a zero of g(z)−a of multiplicity q. We denote by Nf≥k+1(r, a; f |
g ̸= a) (Ng≥k+1(r, a; g | f ̸= a)) the reduced counting functions of those a-points of
f and g for which p ≥ k + 1 and q = 0 (q ≥ k + 1 and p = 0).

Definition 22. For Ek)(a; f) = Ek)(a; g) we define N⊗(r, a; f, g) as follows

N⊗(r, a; f, g)

= N
(k+1
L (r, a; f) +N

(k+1
L (r, a; g) +Nf≥k+1(r, a; f | g ̸= a)

+Ng≥k+1(r, a; g | f ̸= a)

≤ N(r, a; f |≥ k + 1) +N(r, a; g |≥ k + 1).

3 Lemmas

Henceforth for two non-constant meromorphic functions F and G, H represents
the following function

H =

(
F

′′

F ′ − 2F
′

F − 1

)
−

(
G

′′

G′ − 2G
′

G− 1

)
. (3.1)
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Lemma 23. [21] Let f be a non-constant meromorphic function and let an(z)(̸≡ 0),
an−1(z),. . . , a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f) for
i = 0, 1, 2, . . . , n. Then

T (r, anf
n + an−1f

n−1 + . . .+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 24. [4] Let f(z) be a meromorphic function of finite order ρ and let c ∈
C \ {0} be fixed. Then for each ε > 0, we have

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= O(rρ−1+ε).

The following lemma has little modifications of the original version Theorem 2.1
of [4])

Lemma 25. [6] Let f be a non-constant meromorphic function of finite order and
c ∈ C. Then

N(r, 0; f(z + c)) ≤ N(r, 0; f(z)) + S(r, f), N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f),

N(r, 0; f(z + c)) ≤ N(r, 0; f(z)) + S(r, f), N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f).

Lemma 26. [24] Let F , G be two non-constant meromorphic functions sharing
(1, 0) and H ̸≡ 0. Then

N
1)
E (r, 1;F ) = N

1)
E (r, 1;G) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 27. [13] For Ek)(1;F ) = Ek)(1;G) and H ̸≡ 0.

N(r, 1;F |= 1) = N(r, 1;G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 28. If two non-constant meromorphic functions F and G share (1, 0) and
H ̸≡ 0 then

N(r,∞;H) ≤ N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +N(r,∞;F |≥ 2)

+N(r,∞;G |≥ 2) +N∗(r, 1;F,G) +N0(r, 0;F
′
) +N0(r, 0;G

′
),

where by N0(r, 0;F
′
) we mean the reduced counting function of those zeros of F

′

which are not the zeros of F (F − 1) and N0(r, 0;G
′
) is similarly defined.

Proof. We omit the proof as the same can be carried out in the line of proof of
Lemma 2 [11].
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Lemma 29. Let F and G be two non-constant meromorphic functions such that
Ek)(1;F ) = Ek)(1;G) and H ̸≡ 0 then

N(r,∞;H) ≤ N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +N(r,∞;F |≥ 2)

+N(r,∞;G |≥ 2) +N⊗(r, 1;F,G) +N0(r, 0;F
′
) +N0(r, 0;G

′
),

where by N0(r, 0;F
′
) and N0(r, 0;G

′
) are defined as in Lemma 28.

Proof. The proof can be carried out in the line of proof of Lemma 28. So we omit
the details.

Lemma 30. [3] Let f , g be two non-constant meromorphic functions sharing (1, l),
where
0 ≤ l < ∞. Then

N(r, 1; f)+N(r, 1; g)−N
1)
E (r, 1; f)+

(
l − 1

2

)
N∗(r, 1; f, g) ≤

1

2
[N(r, 1; f)+N(r, 1; g)].

Lemma 31. Let f and g be two non-constant meromorphic functions such that
Ek)(1; f) = Ek)(1; g), where 1 ≤ k < ∞. Then

N(r, 1; f) +N(r, 1; g)−N(r, 1; f |= 1) ≤ 1

2
[N(r, 1; f) +N(r, 1; g)]

−
(
k

2
− 1

2

){
N⊗(r, 1; f, g)

}
.

Proof. We omit the proof as it can be carried out in the line of proof of Lemma 2.3
[2].

Lemma 32. Let f and g be any two meromorphic function and they share (1, l).
Then

N∗(r, 1; f, g) ≤ 1

l + 1

[
N(r, 0; f) +N(r,∞; f) +N(r, 0; g) +N(r,∞; g)

]
+S(r, f) + S(r, g).

Proof. In view of Definition 19, the lemma follows from Lemma 2.14 of [1].

Lemma 33. Let f and g be two non-constant meromorphic functions such that
Ek)(1;F ) = Ek)(1;G), where 1 ≤ k < ∞. Then

N⊗(r, 1; f, g) ≤ 1

k

[
N(r, 0; f) +N(r,∞; f) +N(r, 0; g) +N(r,∞; g)

]
+S(r, f) + S(r, g).

Proof. The Lemma can be proved in the line of proof of Lemma 32. So we omit
it.
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Lemma 34. Let f(z) be a transcendental entire function of finite order. Then for
ε, we have

T (r, P (f)(z)

s∏
j=1

(f(z + cj))
µj ) = (n+ σ)T (r, f) + S(r, f).

Proof. By Lemmas 23 and 24 we have

T (r, P (f)(z)

s∏
j=1

(f(z + cj))
µj )

= m(r, P (f)(z)

s∏
j=1

(f(z + cj))
µj )

≤ m(r, P (f)(z)(f(z))σ) +m

⎛⎜⎜⎜⎝r,

s∏
j=1

(f(z + cj))
µj

(f(z))σ

⎞⎟⎟⎟⎠
≤ m(r, P (f)(z)(f(z))σ) +O(rρ−1+ε)

= T (r, P (f)(z)(f(z))σ) +O(rρ−1+ε)

≤ (n+ σ)T (r, f) +O(rρ−1+ε)

Also we have

(n+ σ)T (r, f) = T (r, fσ(z)P (f)(z)) +O(1)

= m(r, P (f)(z)(f(z))σ) +O(1)

≤ m

⎛⎝r, P (f)(z)
s∏

j=1

(f(z + cj))
µj

⎞⎠+m

⎛⎜⎜⎜⎝r,
(f(z))σ

s∏
j=1

(f(z + cj))µj

⎞⎟⎟⎟⎠
≤ m

⎛⎝r, P (f)(z)

s∏
j=1

(f(z + cj))
µj

⎞⎠+O(rρ−1+ε)

≤ T

⎛⎝r, P (f)(z)

s∏
j=1

(f(z + cj))
µj

⎞⎠+O(rρ−1+ε).

Therefore the lemma is proved.

Lemma 35. Let f(z) be a transcendental meromorphic function of finite orders.
Let F be given as in Theorem 2. Then for n > σ we have

(n− σ) T (r, f) ≤ T (r, F ) + S(r, f) and T (r, F ) ≤ (n+ σ)T (r, f) + S(r, f).
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Proof. By Lemmas 23 and 25 we get

(n+ σ)T (r, f) = T (r, P (f)fσ) +O(1) = m(r, P (f)fσ) +N(r, P (f)fσ) +O(1)

≤ m(r, F ) +m

⎛⎜⎜⎜⎝r,
fσ

s∏
j=1

(f(z + cj))µj

⎞⎟⎟⎟⎠+N(r, F ) +N

⎛⎜⎜⎜⎝r,
fσ

s∏
j=1

(f(z + cj))µj

⎞⎟⎟⎟⎠
+S(r, f)

≤ T (r, F ) +
s∑

j=1

µj m

(
r,

f(z)

f(z + cj)

)
+

s∑
j=1

N

(
r,

f(z)

f(z + cj)

)µj

+ S(r, f)

≤ T (r, F ) + 2σT (r, f) + S(r, f).

So,

(n− σ) T (r, f) ≤ T (r, F ) + S(r, f).

Again in view of Lemmas 24 and 25 we get

T (r, F (z)) = m(r, F (z)) +N(r, F (z))

≤ m(r, P (f)) +m

⎛⎝r, fσ
s∏

j=1

(f(z + cj))
µj

fµj

⎞⎠+N(r, F (z))

≤ nm(r, f) + σm(r, f) +
s∑

j=1

µj m

(
r,
f(z + cj)

f(z)

)
+ nN(r, f)

+N

⎛⎝r,

s∏
j=1

f(z + cj)

⎞⎠+ S(r, f)

≤ (n+ σ)T (r, f) + S(r, f).

This completes the proof of the lemma.

Note 36. From Lemma 35 we see that S(r, F ) can be replaced by S(r, f).

Remark 37. The inequalities in Lemma 35 can not further be improved for the
case cj = c, j = 1, 2, . . . , s can easily be verified from the following two examples.

Let P (z) = anz
n + an−1z

n−1 + . . . + aσz
σ and for a non-zero complex number

d1, f(z) = tan πz
2d1

. Then

P (f)fσ(z + d1) = (−1)σ
[
antan

n−σ πz

2d1
+ an−1tan

n−1−σ πz

2d1
+ . . .+ aσ

]
and so T (r, P (f)fσ(z + d1) = (n− σ)T (r, f) + S(r, f).
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Again for a non-zero complex number d2, choose f(z) = tan πz
2d2

. Then

P (f)f(z + d2) =

[
antan

n+σ πz

2d2
+ an−1tan

n−1+σ πz

2d2
+ . . .+ aσtan

2σ πz

2d2

]
and so T (r, P (f)fσ(z + d2)) = (n+ σ)T (r, f) + S(r, f).

Lemma 38. Let f(z), g(z) be two non-constant meromorphic functions of finite
order and n > 2Γ1 + 5σ+ 4. Also let F and G be given as in Theorem 2. If H ≡ 0,
then F and G share (1,∞) and either

P (f)(z)
s∏

j=1

(f(z + cj))
µjP (g)(z)

s∏
j=1

(g(z + cj))
µj ≡ 1

or

P (f)(z)
s∏

j=1

(f(z + cj))
µj ≡ P (g)(z)

s∏
j=1

(g(z + cj))
µj .

In particular, if P (f) = fn, then either f ≡ tg, or fg ≡ t, for some constant t such
that where tn+σ = 1.

Proof. Since H ≡ 0, on integration we get

1

F − 1
≡ bG+ a− b

G− 1
, (3.2)

where a(̸= 0), b are constants. From (3.2) it is clear that F and G share (1,∞). We
now consider the following cases:
Case 1. Let b ̸= 0 and a ̸= b. If b = −1, then from (3.2) we have

F ≡ −a

G− a− 1
.

From Lemma 25 we see that

N(r, a+ 1;G) = N(r,∞;F ) ≤ (s+ 1)N(r,∞; f).

So in view of Lemma 35 using the second fundamental theorem we get

(n− σ) T (r, g) ≤ N(r, 0;G) +N(r,∞;G) +N(r, a+ 1;G) + S(r, g)

≤ (m1 +m2)T (r, g) + sN(r, 0; g(z + cj)) + (s+ 1){N(r,∞; g) +N(r,∞; f)}
+S(r, g)

≤ (m1 +m2 + 2s+ 1)T (r, g) + (s+ 1)T (r, f) + S(r, g).
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As F and G are symmetric, in a similar manner we can get

(n− σ) T (r, f) ≤ (m1 +m2 + 2s+ 1)T (r, f) + (s+ 1)T (r, g) + S(r, f).

Combining the above two we can get

(n− σ){T (r, f) + T (r, g)} ≤ (Γ0 + 3s+ 2){T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

a contradiction for n > 2Γ1 + 5σ + 4.
If b ̸= −1, from (3.2) we obtain that

F −
(
1 +

1

b

)
≡ −a

b2[G+ a−b
b ]

.

So

N(r,
(b− a)

b
;G) = N(r,∞;F ).

Using Lemma 35 and with the same argument as used in the case for b = −1 we can
get a contradiction.
Case 2. Let b ̸= 0 and a = b. If b = −1, then from (3.2) we have

FG ≡ 1,

i.e.,

P (f)(z)

s∏
j=1

(f(z + cj))
µjP (g)(z)

s∏
j=1

(g(z + cj))
µj ≡ 1.

In particular, when P (f) = fn, choose M(z) = f(z)g(z). When M(z) is non-
constant, we get from above

Mn(z) ≡ 1
s∏

j=1
(M(z + cj))µj

.

So using first fundamental theorem we get

nT (r,M) =
s∑

j=1

µjT (r,M(z + cj)) +O(1) = σT (r,M) + S(r,M),

a contradiction. So M(z) must be a constant and so M(z)n+σ ≡ 1, which implies
fg ≡ t, where tn+σ = 1.

If b ̸= −1, from (3.2) we have

1

F
≡ bG

(1 + b)G− 1
.
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Therefore

N

(
r,

1

1 + b
;G

)
= N(r, 0;F ).

So in view of Lemma 35 using the second fundamental theorem we get

(n− σ) T (r, g) ≤ N(r, 0;G) +N(r,∞;G) +N(r,
1

1 + b
;G) + S(r, g)

≤ (m1 +m2 + 2s+ 1)T (r, g) + (m1 +m2 + s)T (r, f) + S(r, g).

As F and G are symmetric, in a similar manner we can get

(n− σ) T (r, f) ≤ (m1 +m2 + 2s+ 1)T (r, f) + (m1 +m2 + s)T (r, g) + S(r, f).

Combining the above two we can get

(n− σ){T (r, f) + T (r, g)} ≤ (2Γ0 + 3s+ 1){T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

a contradiction for n > 2Γ1 + 5σ + 4.
Case 3. Let b = 0. From (3.2) we obtain

F ≡ G+ a− 1

a
. (3.3)

If a ̸= 1 then from (3.3) we obtain

N(r, 1− a;G) = N(r, 0;F ).

So using the same argument as done in Case 2, for b ̸= −1, we can similarly deduce
a contradiction. Therefore a = 1 and from (3.3) we obtain F ≡ G, i.e.,

P (f)(z)
s∏

j=1

(f(z + cj))
µj ≡ P (g)(z)

s∏
j=1

(g(z + cj))
µj .

In particular, when P (f) = fn, choose H(z) = f(z)
g(z) . Now proceeding in the same

way as for the case b = −1, in Case 2, we can show that H(z) must be a constant
and f ≡ tg, where tn+σ = 1.

This completes the proof.

Lemma 39. Let f(z), g(z) be two transcendental entire functions of finite order
and n > 2Γ1 + σ. Also let F and G be given as in Theorem 2. If H ≡ 0, then F
and G share (1,∞) and either

P (f)(z)

s∏
j=1

(f(z + cj))
µjP (g)(z)

s∏
j=1

(g(z + cj))
µj ≡ 1

or

P (f)(z)

s∏
j=1

(f(z + cj))
µj ≡ P (g)(z)

s∏
j=1

(g(z + cj))
µj .
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Proof. Using Lemma 34, instead of Lemma 35 the proof can be carried out in the
line of proof of Lemma 38. So we omit the details.

Lemma 40. Let f(z), g(z) be two transcendental entire functions of finite order
and n(≥ 1), m(≥ 1), r(≥ 1), be integers. Suppose also

P (f)(z)
s∏

j=1

(f(z + cj))
µj ≡ P (g)(z)

s∏
j=1

(g(z + cj))
µj .

(I) When P (z) is not of the form of zr(zm − 1) or zr(z − 1)m, when m(≥ 2), one of
the following two cases holds:

(IA) f(z) ≡ tg(z) for a constant t such that tλ = 1, where λ is the GCD of the
elements of J , J = {σ + k ∈ I : ak ̸= 0} and I = {σ, σ + 1, . . . , σ + n}. In
particular P (z) = anz

n, f ≡ tg for a constant t such that tn+σ = 1.

(IB) P (f)(z)
s∏

j=1
(f(z + cj))

µj ≡ P (g)(z)
s∏

j=1
(g(z + cj))

µj ;

(II) when P (z) = zr(zm − 1) and n > m + σ + 2s + 2, then f(z) ≡ tg(z) for some
constant t such that tm = tr+σ = 1;

(III) when P (z) = zr(z − 1)m(m ≥ 2), one of the following two cases holds:

(IIIA) f(z) ≡ g(z),

(IIIB) f r(z)(f(z)− 1)m
s∏

j=1
(f(z + cj))

µj ≡ gr(z)(g(z)− 1)m
s∏

j=1
(g(z + cj))

µj .

Proof. Suppose

P (f)(z)

s∏
j=1

(f(z + cj))
µj ≡ P (g)(z)

s∏
j=1

(g(z + cj))
µj . (3.4)

Case 1. Suppose P (z) is not of the form of zr(zm−1) or zr(z−1)m, when m(≥ 2).
Let h = f

g and h is a constant. Putting f = hg in (3.4) we get

ang
n(z)(hn+σ−1)+an−1g

n−1(z)(hn−1+σ−1)+. . .+a1g(z)(h
σ+1−1)+a0(h

σ−1) ≡ 0.

We shall prove that hλ = 1, where λ is the GCD of the elements of J , J = {k+ σ ∈
I : ak ̸= 0} and I = {σ, σ + 1, . . . , n + σ}. In particular if P (z) = anz

n, then from
above we get hn+σ = 1. Thus f ≡ tg for a constant t such that tn+σ = 1. Suppose
there exist at least one non-zero coefficient ak, k ̸= n, then if hλ ̸= 1, from (3.4)
we get T (r, g) = S(r, g), a contradiction to the fact that g is transcendental. So
hλ = 1, where λ is the GCD of the elements of J , J = {k + σ ∈ I : ak ̸= 0} and
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I = {σ, σ + 1, . . . , n+ σ}.
Next suppose that h is not a constant. Then we get (3.4).
Case 2. Let P (z) = zr(zm − 1). Clearly n = r +m.

Then from (3.4) we have

f r(z)(fm(z)− 1)
s∏

j=1

(f(z + cj))
µj ≡ gr(z)(gm(z)− 1)

s∏
j=1

(g(z + cj))
µj . (3.5)

Let h = f
g . From (3.5) we get

gm(z)[hr+m(z)
s∏

j=1

(h(z + cj))
µj − 1] ≡ hr(z)

s∏
j=1

(h(z + cj))
µj − 1. (3.6)

First we suppose that h is non-constant. We assert that both hr+m(z)
s∏

j=1
(h(z+cj))

µj

and hr(z)
s∏

j=1
(h(z + cj))

µj are non-constant. Suppose on the contrary

hr+m(z)

s∏
j=1

(h(z + cj))
µj ≡ d ∈ C \ {0}

. Then we have hr+m(z) ≡ d
s∏

j=1
(h(z+cj))

µj
.

Now by Lemmas 23, 24 and 25 we get

(r +m) T (r, h) = T (r, hr+m) + S(r, h)

= T

⎛⎜⎜⎜⎝r,
d

s∏
j=1

(h(z + cj))µj

⎞⎟⎟⎟⎠+ S(r, h)

≤
s∑

j=1

µjN(r, 0;h(z + cj)) +
s∑

j=1

µj m

(
r,

1

h(z + cj)

)
+ S(r, h)

≤
s∑

j=1

µj N(r, 0;h(z)) +

s∑
j=1

µj m(r,
1

h(z)
) + S(r, h)

≤ σ T (r, h) + S(r, h),

which is a contradiction. Similarly we can prove that hn(z)
s∏

j=1
(h(z + cj))

µj is non-

constant.

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 341 - 369

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


On the value sharing of shift monomial of meromorphic functions 359

Thus from (3.6) we have

fm(z) ≡ hm(z)
hr(z)

∏s
j=1(h(z + cj))

µj − 1

hr+m(z)
∏s

j=1(h(z + cj))µj − 1

and

gm(z) ≡
hr(z)

∏s
j=1(h(z + cj))

µj − 1

hr+m(z)
∏s

j=1(h(z + cj))µj − 1
.

Let z0 be a zero of hr+m(z)
∏s

j=1(h(z + cj))
µj − 1. Since g is an entire function, it

follows that z0 is also a zero of hr(z)
∏s

j=1(h(z+cj))
µj−1. Then clearly hm(z0)−1 =

0 and so

N(r, 1;hr+m
s∏

j=1

(h(z + cj))
µj ) ≤ N(r, 1;hm) ≤ m T (r, h) +O(1),

So in view of Lemmas 23, 25, 35 and the second fundamental theorem we get

(n− σ) T (r, h)

= (r +m− σ) T (r, h)

= T (r, hr+m(z)
s∏

j=1

(h(z + cj))
µj ) + S(r, h)

≤ N(r, 0;hr+m
s∏

j=1

(h(z + cj))
µj ) +N(r,∞;hr+m

s∏
j=1

(h(z + cj))
µj )

+N(r, 1;hr+m
s∏

j=1

(h(z + cj))
µj ) + S(r, h)

≤ N(r, 0;h) +

s∑
j=1

N(r, 0;h(z + cj)) +N(r,∞;h)

+

s∑
j=1

N(r,∞;h(z + cj)) +m T (r, h) + S(r, h)

≤ N(r, 0;h) +
s∑

j=1

N(r, 0;h(z)) +N(r,∞;h) +

s∑
j=1

N(r,∞;h(z)) +m T (r, h)

+S(r, h)

≤ (m+ 2s+ 2) T (r, h) + S(r, h),

which contradicts with n > m+ σ + 2s+ 2.
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Hence h is a constant. Since g is transcendental entire function, from (3.6) we
have

hr+m(z)
s∏

j=1

(h(z + cj))
µj − 1 ≡ 0 ⇐⇒ hr(z)

s∏
j=1

(h(z + cj))
µj − 1 ≡ 0

and so hm(z) = 1, hr+σ = 1. Thus f(z) ≡ tg(z) for a constant t such that tm =
tr+σ = 1.
Case 3. Let P (z) = zr(z − 1)m, m(≥ 2).

Then from (3.6) we have

f r(z)(f(z)− 1)m
s∏
j

(f(z + cj))
µj ≡ gr(z)(g(z)− 1)m

s∏
j=1

(g(z + cj))
µj . (3.7)

Let h = f
g . First we suppose that h is a constant.

Then from (3.7) we get

f r(z)
s∏

j=1

(f(z + cj))
µj

m∑
i=0

(−1)i mCm−i f
m−i(z) (3.8)

≡ gr(z)

s∏
j=1

(g(z + cj))
µj

m∑
i=0

(−1)i mCm−ig
m−i(z).

Now substituting f = gh in (3.8) we get

m∑
i=0

(−1)i mCm−i g
m−i(z)(hr+m+σ−i(z)− 1) ≡ 0,

which implies that h = 1. Hence f(z) ≡ g(z).
Next we suppose that h is non-constant.
Then from (3.7) we can say that

f r(z)(f(z)− 1)m
s∏

j=1

(f(z + cj))
µj ≡ gr(z)(g(z)− 1)m

s∏
j=1

(g(z + cj))
µj .

This completes the proof of the lemma.

Lemma 41. Let f(z), g(z) be two transcendental entire functions of finite order. If[
P (f)(z)

s∏
j=1

(f(z + cj))
µj

][
P (g)(z)

s∏
j=1

(g(z + cj))
µj

]
≡ 1,

then f(z) = eα(z) and g(z) = ζ e−α(z), where α is a non-constant polynomial and ζ
be a complex constant satisfying a2nζ

n+σ ≡ 1.
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Proof. Suppose

[
P (f)(z)

s∏
j=1

(f(z + cj))
µj

][
P (g)(z)

s∏
j=1

(g(z + cj))
µj

]
≡ 1. (3.9)

Noting that f and g are transcendental entire function, we see that P (f) ̸= 0,
P (g) ̸= 0. As f and g can have only one finite Picard exceptional value, we must
have P (f) = an(f − a)n, P (g) = an(g − a)n, for some complex constant a. So (3.9)
reduces to[

an(f − a)n
s∏

j=1

(f(z + cj))
µj

][
an(g − a)n

s∏
j=1

(g(z + cj))
µj

]
≡ 1. (3.10)

Also we know that f − a and g − a do not have zeros. It follows that f(z) =
eα(z) + a, g(z) = eβ(z) + a, where α(z) and β(z) be two non-constant polynomials.
As f(z + cj) ̸= 0, g(z + cj) ̸= 0, for j = 1, 2, . . . , s, we see that eα(z+cj) + a ̸= 0,
eβ(z+cj) + a ̸= 0, which implies a = 0. So f(z) = eα(z), g(z) = eβ(z). Hence from
(3.10) we get

a2ne

{
n{α(z)+β(z)}+

s∑
j=1

µj [(α(z+cj))+β(z+cj)]

}
≡ 1. (3.11)

From (3.10) we get α(z)+β(z) = ξ, for some constant ξ. Finally we get f(z) = eα(z)

and g(z) = ζ e−α(z), where α is a non-constant polynomial and ζ be a complex
constant satisfying a2nζ

n+σ ≡ 1. So the proof of the lemma is complete.

4 Proofs of the Theorems

Proof of Theorem 2. Let

F (z) = P (f)(z)
s∏

j=1

(f(z + cj))
µj ; and G(z) = P (g)(z)

s∏
j=1

(g(z + cj))
µj .

Then F and G share (1, l).

Case-1 Let H ̸≡ 0. By the second fundamental theorem we get

T (r, F ) ≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F )−N0(r, 0;F
′
) + S(r, f).(4.1)

Similarly we have

T (r,G) ≤ N(r, 0;G) +N(r,∞;G) +N(r, 1;G)−N0(r, 0;G
′
) + S(r, g).(4.2)
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Combining (4.1) and (4.2) with the help of Lemmas 26, 28, 30 and 32 we have

[T (r, F ) + T (r,G)] ≤ [N(r, 0;F ) +N(r, 0;G)] +N(r,∞;F ) +N(r,∞;G)] (4.3)

+[N(r, 1;F ) +N(r, 1;G)]− [N0(r, 0;F
′
) +N0(r, 0;G

′
)]

+S(r, f) + S(r, g)

≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)

+
1

2
[T (r, F ) + T (r,G)]−

(
l − 3

2

)
N∗(r, 1;F,G)

+S(r, f) + S(r, g)

≤ +
1

2
[T (r, F ) + T (r,G)] +N2(r, 0;F ) +N2(r, 0;G)

+N2(r,∞;F ) +N2(r,∞;G) +
(3− 2l)

2(l + 1)
[N(r, 0;F )

+N(r,∞;F ) +N(r, 0;G) +N(r,∞;G)] + S(r, f) + S(r, g).

Subcase 1.1. While l ≥ 2, in view of Lemma 25 and Lemma 35, from (4.3) we get

(n− σ)

2
[T (r, f) + T (r, g)] (4.4)

≤ (m1 + 2m2)T (r, f) +
s∑

j=1

µjN(r, 0; f(z + cj)) + (m1 + 2m2)T (r, g)

+
s∑

j=1

µjN(r, 0; g(z + cj)) + 2N(r,∞; f) +
s∑

j=1

µjN(r,∞; f(z + cj))

+2N(r,∞; g) +
s∑

j=1

µjN(r,∞; g(z + cj))] + S(r, f) + S(r, g)

≤ [m1 + 2m2 + 2σ + 2] {T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

From (4.4) it follows that

(n− σ)[T (r, f) + T (r, g)]

≤ [2Γ1 + 4σ + 4] {T (r, f) + +T (r, g)}+ S(r, f) + S(r, g),

which is a contradiction for n > 2Γ1 + 5σ + 4.
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Subcase 1.2. While l = 1, using 25 and Lemma 35, from (4.3) we get

(n− σ)

2
[T (r, f) + T (r, g)] (4.5)

≤ (m1 + 2m2)T (r, f) +

s∑
j=1

µjN(r, 0; f(z + cj)) + (m1 + 2m2)T (r, g)

+
s∑

j=1

µjN(r, 0; g(z + cj)) + 2N(r,∞; f) +
s∑

j=1

µjN(r,∞; f(z + cj))

+2N(r,∞; g) +
s∑

j=1

µjN(r,∞; g(z + cj))] +

(
1

4

)
[(m1 +m2)T (r, f)

+sN(r, 0; f(z + cj)) + (s+ 1)N(r,∞; f) + (m1 +m2)T (r, g)

+sN(r, 0; g(z + cj)) + (s+ 1)N(r,∞; g)] + S(r, f) + S(r, g).

≤
[
m1 + 2m2 + 2σ + 2 +

1

4
(m1 +m2 + 2s+ 1)

]
{T (r, f) + T (r, g)}

+S(r, f) + S(r, g).

From (4.5) it follows that

(n− σ)[T (r, f) + T (r, g)]

≤
[
2Γ1 + 4σ + 4 +

1

2
(Γ0 + 2s+ 1)

]
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

which is a contradiction for n > 2Γ1 +
1
2Γ0 + 5σ + s+ 9

2 .
Subcase 1.3. Next let l = 0. Again using Lemma 25 and Lemma 35, from (4.3)

we get

(n− σ)

2
[T (r, f) + T (r, g)] (4.6)

≤
[
m1 + 2m2 + 2σ + 2 +

3

2
(m1 +m2 + 2s+ 1)

]
{T (r, f) + T (r, g)}

+S(r, f) + S(r, g).

From (4.6) we get

(n− σ)[T (r, f) + T (r, g)]

≤ [2Γ1 + 4σ + 4 + 3(Γ0 + 2s+ 1)] {T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

which is a contradiction for n > 2Γ1 + 3Γ0 + 5σ + 6s+ 7.
Case-2 Let H ≡ 0.

The theorem follows from Lemma 38. This competes the proof of the theorem.
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Proof of Theorem 7. In this case we have to proceed in the same manner as done
in the proof of Theorem 2. Only difference is that in the case H ̸= 0 we will use
Lemma 34 instead of Lemma 35. Again when H ≡ 0, the theorem follows from
Lemmas 39, 40 and 41.

Proof of Theorem 12. Let F and G be given as in Theorem 2. Combining (4.1)
and (4.2) with the help of Lemmas 27, 29, 31 and 33 we have

[T (r, F ) + T (r,G)] ≤ 1

2
[T (r, F ) + T (r,G)] +N2(r, 0;F ) +N2(r, 0;G)

+N2(r,∞;F ) +N2(r,∞;G) +
(3− k)

2k
[N(r, 0 : F )

+N(r,∞;F ) +N(r, 0 : G) +N(r,∞;G)]

+S(r, f) + S(r, g). (4.7)

The rest can be proved easily. So we omit that.

Proof of Theorem 14. Theorem 14 can be proved in the line of proof of Theorem
7. So we omit the detail.

5 Applications

Let f(z) and g(z) be two non-constant meromorphic functions. Let p(z) =
anz

n + an−1z
n−1 + . . .+ a1z+ a0 be a polynomial. We say that f(z) and g(z) share

p(z) with weight l if f(z)− p(z) and g(z)− p(z) share (0, l).

Recently Majumder [17] improved Theorem E by replacing the value sharing to
a non-zero polynomial sharing as follows.

Theorem G. [17] Let f(z) and g(z) be two transcendental meromorphic functions
of finite order, c ∈ C \ {0}. Let p(z) be a non zero polynomial such that fn(z)f(z +
c)− p(z) and gn(z)g(z + c)− p(z) share (0, l).

(i) If l = 2 and n ≥ 14, or

(ii) if l = 1 and n ≥ 16 or if

(iii) If l = 0 and n ≥ 26 and deg(p) < n−1
2

then either f(z) ≡ tg(z) for some constant t such that tn+1 = 1 or f(z)g(z) ≡ t,
where p(z) reduces to a non-zero constant d, say, and t is a constant such that
tn+1 = d2.

As an application of Theorem 2 we can significantly improve Theorem G in the
following manner:
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Theorem 42. Let f(z) and g(z) be two transcendental meromorphic functions of
finite order, c ∈ C \ {0}. Let cj(j = 1, 2, . . . , s) be finite complex constants and p(z)

be a non-zero polynomial such that fn(z)
s∏

j=1
(f(z+ cj))

µj −p(z) and gn(z)
s∏

j=1
(g(z+

cj))
µj − p(z) share (0, l).

(i) If l ≥ 2 and n > 8 + 5σ or

(ii) if l = 1 and n > 9 + 5σ + s or

(iii) if l = 0 and n > 14 + 5σ + 6s
and deg(p) < n−σ

2 then either f(z) ≡ tg(z) for some constant t such that tn+σ = 1
or f(z)g(z) ≡ t, where p(z) reduces to a non-zero constant d, say and t is a constant
such that tn+σ = d2. In particular, when f and g are transcendental entire functions
and deg(p) < n+σ

2 , then either f(z) ≡ tg(z) for some constant t such that tn+σ = 1

or f(z) = eQ(z) and g(z) = te−Q(z), Q(z) is a non-constant polynomial, t is a
constant such that tn+σ = d2, where p(z) reduces to a non-zero constant d.

Proof. Let F (z) = fn(z)f(z+c)
p(z) and G(z) = gn(z)g(z+c)

p(z) . Also F , G share (1, l) except

for zeros of p(z). Noting that f and g are transcendental the theorem can be proved
in the line of proof of Theorem 2. The only difference is that when we will use Case
2 of Lemma 38, we will get

fn(z)

s∏
j=1

(f(z + cj))
µjgn(z)

s∏
j=1

(g(z + cj))
µj ≡ p2. (5.1)

Let h1 = fg. Then from (5.1) we have

Mn
1 (z) ≡

p2(z)
s∏

j=1
(M1(z + cj))µj

. (5.2)

First we suppose that M1(z) is a non-constant meromorphic function. We now
consider following two cases.
Case 1. Let M1(z) be a transcendental meromorphic function.
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Now by Lemmas 23, 24 and 25 we get

nT (r,M1) = T (r,Mn
1 ) + S(r,M1)

= T

⎛⎜⎜⎜⎝r,
p2

s∏
j=1

(M1(z + cj))µj

⎞⎟⎟⎟⎠+ S(r,M1)

≤
s∑

j=1

µjN(r, 0;M1(z + cj)) +m

⎛⎜⎜⎜⎝r,
1

s∏
j=1

(M1(z + cj))µj

⎞⎟⎟⎟⎠+ S(r,M1)

≤ σN(r, 0;M1(z)) + σm

(
r,

1

M1(z)

)
+ S(r,M1)

≤ σT (r,M1) + S(r,M1),

which is a contradiction.
Case 2. Let M1(z) be a rational function.
Let

M1 =
M2

M3
, (5.3)

where M2 and M3 are two nonzero relatively prime polynomials. From (5.3) we have

T (r,M1) = max{deg(M2), deg(M3)} log r +O(1). (5.4)

Now from (5.2), (5.3) and (5.4) we have

n max{deg(M2),deg(M3)} log r (5.5)

= T (r,Mn
1 ) +O(1)

≤ T

⎛⎝r,
s∏

j=1

(M1(z + cj))
µj

⎞⎠+ 2 T (r, p) + S(r, f)

= σmax{deg(M2),deg(M3)} log r + 2 deg(p) log r + S(r, f).

We see that max{deg(M2), deg(M3)} ≥ 1. Now from (5.5) we deduce that n−σ ≤
2 deg(p), which contradicts our assumption that 2 deg(p) < n− σ.

Hence M1(z) is a non-zero constant. Let

M1 = t ∈ C \ {0}. (5.6)

Therefore in this case p(z) reduces to a non-zero constant. Let p(z) = d ∈ C\{0}.
So from (5.6) we see that

Mn+σ
1 ≡ d2, i.e., tn+σ ≡ d2.
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Therefore f(z)g(z) ≡ t, where t is a constant such that tn+σ = d2.
In particular, when f(z) and g(z) are transcendental entire function, from (5.1) it

is easy to see that f(z) and g(z) have no zeros that is to say 0 is a Picard exceptional
value of both f(z) and g(z).

Let M1 = fg. First we suppose that M1 is non-constant.
From Case 1, one can easily say that M1 can not be a transcendental entire

function. Hence M1 is a non-constant polynomial. Since 2 deg(p) < n + σ, from
(5.1), we arrive at a contradiction. HenceM1 is a non-zero constant, say t. Therefore
in this case p(z) reduces to a non-zero constant. Let p(z) = d ∈ C \ {0}.

Consequently, f(z) and g(z) take the forms f(z) = eQ(z) and g(z) = te−Q(z),
Q(z) being a non-constant polynomial and t is a constant such that tn+σ = d2. This
completes the proof.
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