НОРМАЛЬНОЕ СТРОЕНИЕ ПРИСОЕДИНЕННОЙ ГРУППЫ В РАДИКАЛЬНЫХ КОЛЬЦАХ $R_n(K,J)$

В. М. Левчук, Г. С. Сулейманова

Аннотация: Пусть $R_n(K,J)$ — кольцо всех $n \times n$ -матриц над ассоциативно-коммутативным кольцом K с единицей и элементами из идеала J на главной диагонали и над ней. Ранее при условии сильной максимальности идеала J в K (в частности, когда J — максимальный идеал кольца Z_m , m>0, или Z) каждый идеал в кольце $R_n(K,J)$ с (n,1)-проекцией T был охарактеризован определенным порождающим подмножества кольца $R_n(K,J)$, называемым T-границей. При дополнительных ограничениях изучались также лиевы идеалы кольца $R_n(K,J)$. Известно, что нормальные подгруппы присоединенной группы кольца $NT_n(K) = R_n(K,0)$ нильтреугольных матриц — это в точности идеалы ассоциированного кольца Ли. Показано, что для радикальных колец $R_n(K,J)$, $n\geq 2$, случай J=0 является единственным, когда указанное структурное соответствие выполняется. Основная цель статьи — исследовать гипотезу о существовании алгоритма построения нормальных подгрупп присоединенной группы кольца $R_n(K,J)$ из его лиевых идеалов при естественных ограничениях на K,J.

Вводятся лиевы и нормальные T-границы кольца $R_n(K,J)$. В этих терминах теорема 2 описывает лиевы идеалы кольца $R_n(K,J)$ с сильно максимальным идеалом J таким, что 2I=I для любого идеала $I\subset J$ кольца K. При дополнительном условии нильпотентности J теорема 3 аналогично описывает нормальные подгруппы присоединенной группы кольца $R_n(K,J)$ и, по существу, дает алгоритм их получения из лиевых идеалов. Библиогр. 10.

Введение

Кольцо всех $n \times n$ -матриц над ассоциативным кольцом K с единицей с элементами из идеала J на главной диагонали и над ней обозначают через $R_n(K,J)$. При J=0 это обычное кольцо $NT_n(K)$ (нижних) нильтреугольных матриц степени n над K. Присоединенная группа кольца $NT_n(K)$ изоморфна унитреугольной группе $UT_n(K)$. Ее нормальные подгруппы суть идеалы кольца Ли, ассоциированного с кольцом $NT_n(K)$, и они допускают явное описание, когда K — тело, см. [1,2]; позднее аналогичные результаты устанавливались для унипотентных подгрупп групп Шевалле других лиевых типов [3-6]. Кольца $R_n(K,J)$ с квазирегулярным идеалом J всегда радикальны. Известно, однако, что указанное соответствие в них между нормальными подгруппами присоединенной группы кольца $R_n(K,J)$ и его лиевыми идеалами нарушается, если идеал J содержит элемент с ненулевым квадратом [7, пример 1.1]. Оказывается, для радикальных колец $R_n(K,J)$, $n\geq 2$, случай J=0 (с коммутативным кольцом K) является единственным, когда указанное структурное соответствие выполняется (см. пример 1.3 в § 1, предложенный вторым автором, вопрос 6.19 с комментарием Е. И. Хухро и вопрос 10.19 из [8]). С другой стороны, ранее

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 99-01-01256).

⁽с) 2002 Левчук В. М., Сулейманова Г. С.

высказывалась гипотеза (в частности см. [9]) о существовании алгоритма построения нормальных подгрупп присоединенной группы кольца $R_n(K,J)$ из его лиевых идеалов при естественных ограничениях на K,J. Гипотеза исследуется в статье.

Всюду далее K — ассоциативно-коммутативное кольцо с единицей. Его идеал J назван в [7] сильно максимальным, если любой идеал, заключенный между произвольным J-подмодулем L кольца K и JL, совпадает либо с L, либо с JL. Для этого случая в [7] явно описаны в терминах T-границ идеалы кольца $R_n(K,J),\ n\geq 2$, а в [9] построены лиевы идеалы кольца $R_n(K,J)$ при ограничениях n>4 и 2K=K.

Теорема 2 настоящей статьи обобщает теорему 2 из [1] и усиливает основную теорему из [9]. Она описывает лиевы идеалы кольца $R_n(K,J)$ в терминах лиевых T-границ (определение 1.1). Последние тесно связаны с введенными в определении 1.4 нормальными T-границами кольца $R_n(K,J)$. С их помощью для случая, когда J — нильпотентный сильно максимальный идеал, теорема 3 дает описание нормальных подгрупп присоединенной группы кольца $R_n(K,J)$ и, по существу, алгоритм их получения из лиевых идеалов.

Примеры сильно максимальных идеалов указаны в [7, предложение 2.5]. В частности, нильпотентными сильно максимальными идеалами являются нулевой идеал произвольного поля и максимальный идеал в любом локальном кольце классов вычетов целых чисел.

\S 1. T-границы кольца $R_n(K,J)$

Множество $H_{km} = \{a_{km} \mid ||a_{st}|| \in H\}$, обозначаемое также через $\pi_{km}(H)$, назовем (k,m)-проекцией произвольного множества H матриц. Через e_{uv} будем обозначать $n \times n$ -матрицу, у которой (u,v)-проекция равна единице, а остальные проекции нулевые (матричная единица).

Как и в [7], будем использовать частичный порядок \succeq на множестве матричных позиций, полагая $(u,v)\succeq (k,m)$, когда $u\ge k,\ v\le m$; если еще $(u,v)\ne (k,m)$, то пишем $(u,v)\succ (k,m)$. Для множества $\mathscr L$ матричных позиций полагаем также $(u,v)\succeq \mathscr L$, если $(u,v)\succeq (k,m)$ хотя бы для одной позиции $(k,m)\in \mathscr L$; конечно, при $\mathscr L=\varnothing$ позиций (u,v) с таким условием не существует. Множеством углов степени n называем пару $\mathscr L,\mathscr L'$ множеств матричных позиций вида

$$\mathcal{L} = \{(i_1, j_1), (i_2, j_2), \dots, (i_r, j_r)\}, \quad r \ge 1,$$
(1)

$$1 \le j_1 < j_2 < \dots < j_r \le n, \quad 1 \le i_1 < i_2 < \dots < i_r \le n;$$

$$\mathcal{L}' = \{(k_1, m_1), (k_2, m_2), \dots, (k_q, m_q)\}, \quad q \ge 0,$$
(2)

$$j_r < m_1 < m_2 < \dots < m_q \le n, \quad 1 \le k_1 < k_2 < \dots < k_q < i_1.$$

Очевидно, множество углов не содержит двух матричных позиций из одной строки или одного столбца, а также сравнимых позиций $(u,v) \succ (k,m)$, лежащих одновременно либо в \mathcal{L} , либо в \mathcal{L}' .

Пусть T — какой-либо J-подмодуль кольца K. Согласно [7] T-границей кольца $R_n(K,J)$ называется любая его аддитивная подгруппа A, для которой существует множество углов $(\mathcal{L},\mathcal{L}')$ со следующими условиями:

существует множество углов
$$(\mathcal{L},\mathcal{L}')$$
 со следующими условиями:
$$(\Gamma 0)\ JB \subset A \subset B = \sum_{(i,j)\in\mathcal{L}} Te_{ij} + \sum_{(k,m)\in\mathcal{L}'} (JT)e_{km};$$

- (Г1) $\mathscr{L}' = \varnothing$ при $JT = J^2T$ и $\mathscr{L} = \{(1, n)\}$ при JT = T;
- $(\Gamma 2)$ $\pi_{n1}(A) = T$ при $\mathscr{L} = \{(n,1)\}$, а в остальных случаях идеал $K\pi_{ij}(A)$ совпадает с T при всех $(i,j) \in \mathscr{L}$ и с JT при всех $(i,j) \in \mathscr{L}'$.

Идеал кольца $R_n(K,J)$, порожденный T-границей $A=A(T;\mathcal{L},\mathcal{L}')$, записывается явно в виде

$$A + \sum_{(i,j) \succ \mathcal{L}} Te_{ij} + \sum_{(k,m) \succ \mathcal{L}'} (JT)e_{km} + \sum_{(k,m) \succeq \{(1,j_r),(i_1,n)\}} (JT)e_{km} + \sum_{(k,m) \succeq (1,n)} (J^2T)e_{km}$$

и представляется наглядно с использованием формальной $n \times n$ -матрицы

$$i_{1} \begin{pmatrix} \mathcal{L} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Оказывается [7], что при условии сильной максимальности идеала J в кольце K любой идеал кольца $R_n(K,J)$ порождается подходящей T-границей. Более точно, справедлива (см. [7, теорема 2.2])

Теорема 1. Пусть H — произвольный идеал кольца $R_n(K,J)$, $n \geq 2$, u T — его (n,1)-проекция. Если J — сильно максимальный идеал кольца K, то существует и единственна T-граница $A = A(T; \mathcal{L}, \mathcal{L}')$ кольца $R_n(K,J)$, порождающая H, причем $A = H \cap B$.

Для подобного описания нормальных подгрупп присоединенной группы кольца $R_n(K,J)$ и идеалов ассоциированного кольца Ли ниже вводятся понятия нормальной и лиевой T-границ.

Кольцо $R_n(K,J)$ порождается аддитивными подгруппами вида $Ke_{v,v-1}$ и Je_{1n} . Для выявления лиевой замкнутости его подмножеств используем понятия связанных углов. Угол (u,v) назовем npago- (nego-) ceasannым, если $\mathscr{L} \cup \mathscr{L}'$ содержит угол в (v-1)-й строке (соответственно в (u+1)-м столбце) или \mathscr{L} содержит угол в n-й строке и v=1 (соответственно, в 1-м столбце и u=n).

Множеству углов $(\mathcal{L},\mathcal{L}')$ будем сопоставлять множества $\widehat{\mathcal{L}},\widehat{\mathcal{L}'}$ матричных позиций. Множество $\widehat{\mathcal{L}'}$ получаем присоединением к \mathcal{L}' следующих позиций:

(v,t), если (v-1,t) — угол из \mathscr{L}' , лево-связанный с углом из \mathscr{L}' ;

(i,n), если (i,1) — право-связанный угол в \mathscr{L} , и еще позиция (i+1,n), когда $(i,1)\in\mathscr{L}$ и $(n,i+1)\in\mathscr{L}$.

Множество $\mathscr L$ получается из $\mathscr L$ присоединением позиций:

(v,t), если (v-1,t) — лево-связанный угол в $\mathscr L$ или (v,t+1) — угол из $\mathscr L$, право-связанный с углом из $\mathscr L'$;

(u+1,v),(u,v-1) и (u+1,v-1), когда $(u,v)\in \mathscr{L}$ и $(v-1,u+1)\in \mathscr{L}'.$ Положим

$$\widetilde{B} = \widetilde{B}(T; \mathcal{L}, L') = \sum_{(i,j)\in\widetilde{\mathcal{L}}} Te_{ij} + \sum_{(k,m)\in\widetilde{\mathcal{L}'}} (JT)e_{km}, \quad D = \sum_{u=1}^{n} Je_{uu}.$$
 (3)

Определение 1.1. Аддитивная подгруппа A кольца $R_n(K,J)$ называется его *лиевой Т-границей*, если существует множество углов $(\mathcal{L},\mathcal{L}')$, которое не содержит позиций главной диагонали, удовлетворяет условиям $(\Gamma 1)$, $(\Gamma 2)$ и следующим условиям:

- $(\Gamma 3) \ J\widetilde{B} \subset A \subset \widetilde{B} + D;$
- $(\Gamma 4)$ если $\|a_{st}\| \in A$ и $1 \leq v < u \leq n$, то $K(a_{uu} a_{vv}) \subset T$ и при $a_{uu} \neq a_{vv} \mod JT$ имеем $(u,v) \succeq \mathscr{L}$ и $(v,u) \succeq \mathscr{L}'$, причем $Te_{uv} \subset A$, $JTe_{un} \subset A$, $JTe_{u+1,n} \subset A$ и $JTe_{vu} \subset A$ соответственно случаям $(u,v) \in \widetilde{\mathscr{L}}'$, $(u,n) \in \widetilde{\mathscr{L}}'$, $(u+1,n) \in \widetilde{\mathscr{L}}'$ и $(v,u) \in \widetilde{\mathscr{L}}'$;
- $(\Gamma 5)$ если $\|a_{st}\| \in A$, $1 \le v < u \le n$ и $a_{uu} \ne a_{vv} \mod J^2T$, то $(u,v) \succeq \mathscr{L}'$, причем $JTe_{uv} \subset A$, когда $(u,v) \in \widetilde{\mathscr{L}'}$;
- $(\Gamma 6)$ если $A \subset A_1 \subset \widetilde{B} + D$ и лиевы идеалы в $R_n(K,J)$, которые порождают A и A_1 , совпадают, то $A = A_1$.

В терминах введенных лиевых T-границ кольца $R_n(K,J)$ описание его лиевых идеалов по аналогии с теоремой 1 устанавливает основная в § 2 теорема 2. Понятие лиевой T-границы, по существу, вводится уже в [9], однако без условия (Γ 6). С другой стороны, как выявляется в § 2, именно условие (Γ 6) обеспечивает утверждение единственности в теореме 2 и позволяет заменить требование аддитивности лиевой T-границы A в определении 1.1 условием $A \subset R_n(K,J)$.

Присоединенное умножение $a\circ b=a+b+ab$ в ассоциативном кольце всегда является полугрупповой операцией. Кольцо называют радикальным, если присоединенное умножение — групповая операция. Известно [7], что условие радикальности кольца $R_n(K,J)$ равносильно квазирегулярности идеала J, т. е. (J,\circ) — группа. В этом случае отображение $\alpha\mapsto e+\alpha$ присоединенной группы кольца $R_n(K,J)$ (e — единичная матрица) является ее мономорфизмом в $GL_n(K)$.

Лемма 1.2 (см. [1, теорема 1]). Лиевы идеалы кольца $NT_n(K) = R_n(K,0)$, и только они, являются нормальными подгруппами присоединенной группы. В частности, для всякой нормальной подгруппы H присоединенной группы кольца $R_n(K,J)$ пересечение $H \cap NT_n(K)$ будет подкольцом и лиевым идеалом кольца $NT_n(K)$.

Как показывает теорема 1 из [1], при условии $1 \in K$ или даже при более слабом условии $K = K^2$ на ассоциативное кольцо K класс всех нормальных подгрупп присоединенной группы кольца $NT_n(K)$ совпадает с классом всех идеалов ассоциированного кольца Ли. (Существенность условия $K = K^2$ показывает пример 1 из [1]). Вопрос о характеризации радикальных колец с отмеченным структурным соответствием записан в [8, вопрос 10.19] и остается открытым. Оказывается, для радикальных колец $R_n(K,J)$ (с коммутативным кольцом K), $n \geq 2$, случай J = 0 является единственным, когда указанное структурное соответствие выполняется. Это показывает следующий, предложенный вторым автором пример.

ПРИМЕР 1.3. Подмножество M всех матриц со следом 0 в кольце $R_n(K,J)$, очевидно, будет лиевым идеалом. Однако M не является даже подгруппой присоединенной группы, если $J \neq 0$. Действительно, при ненулевом $y \in J$ присоединенное произведение $e_{21} \circ ye_{12} = e_{21} + ye_{12} + ye_{22}$ матриц из M имеет ненулевой след, равный y, и поэтому не лежит в M.

Ранее в [7, пример 1.1] уже показывалось, что для радикальных колец $R_n(K,J),\ n\geq 2,$ указанное структурное соответствие нарушается, если кольцо K коммутативно, а идеал J содержит элемент с ненулевым квадратом.

Конечно, для описания нормальных подгрупп присоединенной группы кольца $R_n(K,J)$ поиски аналога теоремы 2 целесообразны, лишь когда кольцо $R_n(K,J)$ радикально. Элемент, квазиобратный к α , обозначаем через α' , так что $\alpha \circ \alpha' = \alpha' \circ \alpha = 0$. При $\alpha = \|a_{st}\|$ полагаем $\alpha' = \|a_{st}^*\|$.

Определение 1.4. Подмножество A радикального кольца $R_n(K,J)$ называется его *нормальной Т-границей*, если существует множество углов $(\mathcal{L},\mathcal{L}')$, которое не содержит позиций главной диагонали, удовлетворяет условиям $(\Gamma 1)$ – $(\Gamma 3)$ и следующим условиям:

 $(\Gamma 4')$ если $\|a_{st}\| \in A$ и $1 \leq v < u \leq n$, то $K(a_{uu} \circ a_{vv}^*) \subset T$ и при $a_{uu} \circ a_{vv}^* \notin JT$ имеем $(u,v) \succeq \mathscr{L}$ и $(v,u) \succeq \mathscr{L}'$, причем $Te_{uv} \subset A$, $JTe_{un} \subset A$, $JTe_{u+1,n} \subset A$ и $JTe_{vu} \subset A$ соответственно случаям $(u,v) \in \widetilde{\mathscr{L}}'$, $(u,n) \in \widetilde{\mathscr{L}}'$, $(u+1,n) \in \widetilde{\mathscr{L}}'$ и $(v,u) \in \widetilde{\mathscr{L}}'$;

 $(\Gamma 5')$ если $||a_{st}|| \in A$, $1 \leq v < u \leq n$ и $a_{uu} \circ a_{vv}^* \notin J^2T$, то $(u,v) \succeq \mathcal{L}'$, причем $JTe_{uv} \subset A$, когда $(u,v) \in \widetilde{\mathcal{L}'}$;

 $(\Gamma 6')$ если $A \subset A_1 \subset \widetilde{B} + D$ и нормальные замыкания подмножеств A и A_1 в присоединенной группе кольца $R_n(K,J)$ совпадают, то $A = A_1$.

Основная в $\S 3$ теорема 3 дает описание нормальных подгрупп присоединенной группы кольца $R_n(K,J)$ в терминах нормальных T-границ.

§ 2. Теорема об идеалах ассоциированного кольца Ли

Цель параграфа — доказать следующую теорему.

Теорема 2. Пусть J- сильно максимальный идеал кольца K со свойством 2I=I для любого идеала $I\subseteq J$ кольца K. Если H- идеал лиева кольца $R_n(K,J),\ n\geq 2,\ u\ T-$ его (n,1)-проекция, то существует и единственна лиева T-граница $A=A_L(T;\mathscr{L},\mathscr{L}')$ кольца $R_n(K,J),$ порождающая H как лиев идеал, причем $A=H\cap (\widetilde{B}+D).$

По существу, при ограничениях n>4 и 2K=K теорему 2 без утверждения единственности устанавливает основная теорема в [9]; схема ее доказательства существенно используется ниже.

Ассоциированное лиево умножение в кольце $R=R_n(K,J)$ обозначаем через *, т. е. $\alpha*\beta=\alpha\beta-\beta\alpha$. Через $\Lambda(R)$ обозначаем ассоциированное лиево кольцо. Основные соотношения между матричными единицами дают следующую формулу:

$$\alpha * (xe_{km}) = x \left(\sum_{s=1}^{n} a_{sk} e_{sm} - \sum_{t=1}^{n} a_{mt} e_{kt} \right) \quad (\alpha = ||a_{st}||, \ x \in K).$$
 (4)

Лемма 2.1. Пусть H — идеал лиева кольца $\Lambda(R)$. Тогда

- (a) $JH_{uv} \subset H_{ij}$ при $u \neq v$;
- (б) если (i,j) \succ (u,v) и $u \neq v$, то $2KH_{u,u+1} \subset H_{u+1,u}$, когда v=u+1 и (i,j)=(u+1,u), и $KH_{uv} \subset H_{ij}$ в остальных случаях;
 - (в) если $||a_{km}|| \in H$ и u > v, то $K(a_{vv} a_{uu}) \subset H_{uv}$ и $J(a_{vv} a_{uu}) \subset H_{vu}$;
- (г) если $T=H_{n1}$, то T-J-подмодуль кольца K и либо $KH_{uv}\neq T$ для всех $(u,v)\neq (n,1),\, u\neq v,\,$ либо T- идеал кольца K.

Доказательство следует из (4); см. также лемму 1 из [9].

Пусть $\mathcal{L}(H)$ — множество всех минимальных относительно введенного упорядочения \succeq матричных позиций (i,j), не лежащих на главной диагонали и таких, что идеал, порожденный H_{ij} , содержит T. Через $\mathcal{L}'(H)$ обозначаем множество (возможно, пустое) всех минимальных относительно упорядочения \succeq

матричных позиций (k, m), $k \neq m$, для которых H_{km} порождает идеал JT, причем k < i и m > j для всех $(i, j) \in \mathcal{L}(H)$.

Лемма 2.2. Пусть H — лиев идеал кольца $R_n(K,J), \mathcal{L} = \mathcal{L}(H)$ и $\mathcal{L}' = \mathcal{L}'(H)$. Тогда $\mathcal{L}, \mathcal{L}'$ — множество углов степени n. Если J — сильно максимальный идеал кольца K, то при $(k,m) \notin \mathcal{L} \cup \mathcal{L}', k \neq m$, имеем либо $(k,m) \succ \mathcal{L}$ и $H_{km} = T$, либо $(k,m) \succ \mathcal{L}'$, $(k,m) \not\succ \mathcal{L}$ и $H_{km} = J^2T$.

ДОКАЗАТЕЛЬСТВО. С учетом леммы 2.1 первое утверждение вытекает из определений множества углов и множеств \mathcal{L} , \mathcal{L}' . Пусть J — сильно максимальный идеал кольца K. По лемме 2.1 всякая недиагональная проекция H_{km} лежит в T и содержит J^2T . Следовательно, если она содержит JT, то совпадает с T или JT; при $H_{km} \subset JT$ проекция H_{km} должна совпадать с JT или J^2T в силу выбора J. Учитывая определения \mathcal{L} , \mathcal{L}' и то, что при $(i,j) \in \mathcal{L}$ лемма 2.1 дает также включения $H_{1j} \supset JH_{ij} = JKH_{ij} = JT$ и $H_{in} \supset JH_{ij} = JKH_{ij} = JT$, получаем второе утверждение леммы (см. матрицу (*)). Лемма доказана.

Далее предполагаем, что J — сильно максимальный идеал кольца K, H — фиксированный лиев идеал кольца $R_n(K,J), \mathcal{L}=\mathcal{L}(H)$ и $\mathcal{L}'=\mathcal{L}'(H)$. По лемме $2.1\ T=H_{n1}$ является J-подмодулем, а при $\mathcal{L}\neq\{(n,1)\}$ — даже идеалом кольца K. Наша цель — показать, что H порождается как лиев идеал подходящей лиевой T-границей $A_L(T;\mathcal{L},\mathcal{L}')$.

В этом параграфе через $P_{ij}(F)$ (аналогично $Q_{ij}(F)$) при $F\subseteq K$ обозначаем аддитивную подгруппу кольца R, порожденную множествами Fe_{km} для всех $(k,m)\succeq (i,j)$ (соответственно $(k,m)\succ (i,j)$), $k\neq m$, и при i< j еще множествами $F(e_{kk}-e_{mm}), i\leq k< m\leq j$.

Лемма 2.3. Пусть H — лиев идеал кольца $R_n(K,J)$ и H_0 — аддитивная полгруппа

$$\sum_{(i,j)\in\mathcal{L},i< j} [Q_{i+1,j}(T) + Q_{i,j-1}(T)] + \sum_{(i,j)\in\mathcal{L},i> j} [P_{i+2,j}(T) + P_{i,j-2}(T)]$$

$$+ \sum_{(i,i+1)\in\mathcal{L}} Q_{i,i+1}(T) + (JT)(e_{11} - e_{nn})$$

$$+ \sum_{(i,j)\in\mathcal{L}} [Q_{1,j-1}(JT) + P_{2j}(JT)] + \sum_{(i,j)\in\mathcal{L}} [Q_{i+1,n}(JT) + P_{i,n-1}(JT)]$$

$$+ \sum_{(k,m)\in\mathcal{L}',k>m} [Q_{k+1,m}(JT) + Q_{k,m-1}(JT)]$$

$$+ \sum_{(k,m)\in\mathcal{L}',k< m} [P_{k+2,m}(JT) + P_{k,m-2}(JT)] + \sum_{(k,k+1)\in\mathcal{L}'} Q_{k,k+1}(JT) + P_{1n}(J^2T).$$
(5)

Если любой идеал $I \subseteq J$ кольца K удовлетворяет условию 2I = I, то $H \supseteq H_0$.

ДОКАЗАТЕЛЬСТВО. Поскольку идеал J^2T кольца K лежит в J, то $2J^2T=J^2T$ в силу выбора J в лемме. Поэтому H содержит множество

$$J^2H_{n1}e_{1n} = J^2(2H_{n1})e_{1n} = (Je_{1n} * H) * Je_{1n}$$

и его лиево замыкание $P_{1n}(J^2T)$. Следовательно, включение $H \supset P_{1n}(J^2T)$, доказанное в лемме 2 из [9] при условии 2K = K, выполняется и при нашем более слабом ограничении на J, K. Включение в H остальных порождающих из (5) получаем аналогично, как и в леммах 2–8 из [9], опираясь на уже доказанное включение. Лемма доказана. Сопоставим с каждой матрицей $||a_{st}||$ кольца $R_n(K,J)$ следующие аддитивные подгруппы:

$$P_{ij}(T) + P_{1j}(JT) + P_{in}(JT)$$
 при $i > j$, $a_{ii} \neq a_{jj} \mod JT$; (6)

$$P_{ij}(JT)$$
, если $J(a_{ii}-a_{jj}) \neq 0 \mod J^2T$ или $i>j$, $a_{ii} \neq a_{jj} \mod J^2T$; (7)

$$K(a_{ij}e_{i,j-1} - a_{j-1,i+1}e_{j,i+1} + a_{i+1,j}e_{i+1,j-1} - a_{j-1,i}e_{ji}), K(a_{ij}e_{i+1,j} - a_{j-1,i+1}e_{j-1,i} + a_{i,j-1}e_{i+1,j-1} - a_{j,i+1}e_{ji}), K(a_{ij}e_{i+1,j-1} + a_{j-1,i+1}e_{ji}) \quad ((i,j) \in \mathcal{L}, \ (j-1,i+1) \in \mathcal{L}');$$

$$(8)$$

$$K(a_{ij}e_{i,j-1} - a_{j-1,m}e_{jm}) \quad ((i,j), (j-1,m) \in \mathcal{L} \cup \mathcal{L}', \ m \neq i+1, \ (i,m) \neq (n,1));$$
(9)

$$K(a_{nj}e_{n,j-1} - a_{j-1,1}e_{j1} + a_{1j}e_{1,j-1} - a_{j-1,n}e_{jn}), J(a_{nj}e_{1j} - a_{j-1,1}e_{j-1,n} + a_{n,j-1}e_{1,j-1} - a_{j1}e_{jn}), J(a_{nj}e_{1,j-1} + a_{j-1,1}e_{jn}) \quad ((n,j), (j-1,1) \in \mathcal{L});$$

$$(10)$$

$$J(a_{nj}e_{1j} - a_{i1}e_{in}) \quad ((n,j), (i,1) \in \mathcal{L}, \ i \neq j-1). \tag{11}$$

Лемма 2.4. Лиев идеал H содержит следующие аддитивные подгруппы:

- (a) $P_{km}(T)$, если либо (k-1,m)- угол из \mathscr{L} , не являющийся лево-связанным, либо (k,m+1)- угол из \mathscr{L} , не являющийся право-связанным, либо $(k-1,m+1)\in\mathscr{L}$ и $(m,k)\notin\mathscr{L}';$
- (б) $P_{km}(JT)$, если либо (k-1,m) угол из \mathscr{L}' , не являющийся левосвязанным, либо (k,m+1) угол из \mathscr{L}' , не являющийся право-связанным, либо $(k-1,m+1)\in \mathscr{L}'$ и $(m,k)\notin \mathscr{L}$;
- (в) $P_{1j}(JT)$, если либо $(n,j+1) \in \mathcal{L}$ лево-связанный с углом из \mathcal{L} , но не является право-связанным с этим углом, либо $(n,j) \in \mathcal{L}$ угол, не являющийся лево-связанным, либо $(i,j) \in \mathcal{L}$ для i < n;
- (г) $P_{in}(JT)$, если либо $(i-1,1) \in \mathcal{L}$ право-связан c углом из \mathcal{L} , но не является лево-связанным c этим углом, либо $(i,1) \in \mathcal{L}$ угол, не являющийся право-связанным, либо $(i,j) \in \mathcal{L}$ для j > 1.

Кроме того, H содержит множества (6)–(11) для любой матрицы $||a_{st}|| \in H$.

Доказательство. Отметим, что включение в H аддитивных подгрупп (a) и (б) при k=m, а также (в) при j=1 и (г) при i=n вытекает из леммы 2.3.

Покажем, что множество (6) лежит в H. При i-j>1, пользуясь включением $H\supset H*Ke_{ij}+H_0$, находим $H\supset K\{a_{ii}-a_{jj}\mid \|a_{st}\|\in H\}e_{ij}$. Кроме того, в условиях (6) $(i,j)\succeq \mathscr{L}$, и поэтому $H\supset JTe_{ij}$ в силу леммы 2.3. Идеал $K\{a_{ii}-a_{j}j\mid \|a_{st}\|\in H\}+JT$ кольца K лежит между J-подмодулями JT и T, не совпадает с JT и, значит, совпадает с T, поскольку J — сильно максимальный идеал. Таким образом, получаем включение в H множества Te_{ij} , а следовательно, и множества $P_{ij}(T)+P_{1j}(JT)+P_{in}(JT)$, так как H — лиев идеал. То же самое включение получим и при j=i-1. Нужно лишь заметить, что множество $H*Ke_{ij}+JTe_{ij}$ лежит в пересечении

$$(Te_{ij} + Te_{i,j-1} + Te_{i+1,i} + H_0) \cap H$$

и имеет (i,j)-проекцию, равную T. Включение $P_{ij}(JT)\subset H$ в условиях (7) доказывается аналогично.

Рассмотрим (а). В первом случае, когда $(k-1,m) \in \mathcal{L}$, множество $H * Ke_{k,k-1}$ по модулю H_0 лежит в $(Te_{km} + Te_{k,k-1} + JTe_{kn}) \cap H$, причем его (k,m)-проекция равна T. Если $H \supset P_{k,k-1}(T)$, то для m > k требуемое включение $H \supset P_{km}(T)$ получим из равенства $H * Ke_{k,k-1} = Te_{km} \mod Q_{km}(T)$.

При $H \not\supseteq P_{k,k-1}(T)$ имеем m < k и, значит, последнее равенство также выполняется. Второй случай рассматривается аналогично с помощью соотношения $H \supset H*Ke_{m+1,m} \mod H_0$. В третьем случае $H \supset (H*Ke_{m+1,m})*e_{k,k-1} = Te_{km} \mod H_0$. Включения в случае (б) доказываются аналогично.

Если в случае (в) $(i,j)\in \mathcal{L}$, то при $i\leq n-2$ по лемме $2.3~H\supset P_{i+2,j}(T)$ и $H\supset P_{1,j}(JT)$. При i=n-1 имеем

$$(H * Ke_{n,n-1}) * Je_{1n} \subset (JTe_{1j} + JTe_{1,n-1} + H_0) \cap H$$

и поэтому либо $H\supset P_{1,n-1}(JT)\supset P_{1j}(JT)$, либо $H\not\supset P_{1,n-1}(JT)$, так что $j\neq n-1$ и $(H*Ke_{n,n-1})*Je_{1n}=JTe_{1j}\mod Q_{1j}(JT)$, откуда вновь $H\supset P_{1j}(JT)$. Это же включение при $(n,j+1)\in \mathscr{L}, (j,1)\notin \mathscr{L}$ получаем аналогично с помощью соотношения $H\supset (H*Ke_{j+1,j})*Je_{1n}$. Если угол (n,j) лежит в \mathscr{L} и не является лево-связанным, то $H\supset Te_{n,j-1}+JTe_{1,j-1}$ по доказанному и с учетом включения в H множеств $H*Je_{1n}, H_0$ и (7) вновь находим $H\supset JTe_{1j}$.

Включение $H \supset P_{in}(JT)$ в случае (г) доказывается аналогично.

Ясно, что H содержит лиевы произведения

$$e_{i+1,i} * (H * Ke_{i,i-1}), Je_{1n} * (H * Ke_{i,i-1})$$

и, как следствие, последние множества из (8) и (10) соответственно. Прибавляя к произведению $Je_{1n}*\alpha$ матрицы из H_0 и из множеств (a)–(г) и (7), получаем включение в H множества (11) при $i\neq j-1$ и второго множества из (10) для i=j-1. Аналогично, используя включения в H множеств (a)–(г), (6), лиевых произведений $Ke_{i+1,i}*H$, $H*Ke_{j,j-1}$, а также лемму 2.3, выводим включения в H первого множества из (10) и множеств (8), (9). Лемма доказана.

Лемма 2.5. Пусть α — произвольная матрица из лиева идеала H, а \widetilde{B} и D определены по формуле (3). Тогда в пересечении $H \cap (\widetilde{B} + D)$ существует матрица c такими же, как и у α , (u,v)-проекциями при u=v и для всех $(u,v) \in \mathscr{L} \cup \mathscr{L}'$. Кроме того, H аддитивно порождается пересечением $H \cap (\widetilde{B} + D)$ и множествами (5), (а)–(г) из леммы 2.4, а также множествами (6)–(11) для всевозможных $\|a_{st}\| \in H$.

ДОКАЗАТЕЛЬСТВО. Пусть $\alpha = \|a_{st}\| \in H$. Все недиагональные проекции H_{km} и, следовательно, a_{km} ($k \neq m$), лежат в T, JT или в J^2T в соответствии с их описанием в лемме 2.2. В частности, если $(k,m) \not\succeq \mathscr{L}'$, то $a_{km} \in J^2T$. По лемме 2.3 имеем $P_{1n}(J^2T) \subset H$. Поэтому, прибавляя к α элементарные матрицы $-a_{km}e_{km}$ для всевозможных указанных (k,m), находим в H матрицу, у которой все недиагональные (u,v)-проекции при $(u,v) \not\succeq \mathscr{L}'$ равны нулю, а остальные проекции такие же, как у α . Далее, аналогично прибавляем к α элементарные матрицы из H, которые выбираются из множества (5) и из множеств (а)–(г) леммы 2.4. Получим матрицу, у которой все элементы на недиагональных позициях вне $\mathscr{L} \cup \mathscr{L}'$ являются нулевыми, исключая при n > 2, быть может, следующие позиции:

- (a) $(j-1,i),\,(j,i+1)$ или (j,i), когда $(i,j)\in \mathscr{L}$ и $(j-1,i+1)\in \mathscr{L}';$
- (б) (i,j-1) или (i+1,j), когда (i,j) право- или соответственно левосвязанный угол, причем $(j-1,i+1) \notin \mathcal{L} \cup \mathcal{L}';$
- (в) (1,j), если (n,j) лево-связанный угол, и еще позиция (1,j-1), когда (n,j) и (j-1,1) лежат в \mathscr{L} .

По лемме 2.4 в исключительном случае (a) можно обратить в нуль (j-1,i)-и (j,i+1)-проекции матрицы α , прибавляя к ней матрицы из первых двух множеств в (8). Используя также прибавления матриц из последнего множества в (8), обращаем в нуль (j,i)-проекцию α . Исключительные случаи (6), (в)

рассматриваем аналогично, учитывая множества (9)–(11) и лемму 2.4. Лемма доказана.

Основной в доказательстве теоремы 2 является следующая

Лемма 2.6. Пусть H — идеал лиева кольца $R_n(K,J)$, а \widetilde{B} и D определены по формуле (3). Тогда пересечение $H \cap (\widetilde{B} + D)$ порождает H как лиев идеал и является лиевой T-границей в $R_n(K,J)$.

Доказательство. Положим $A = H \cap (\widetilde{B} + D)$. По лемме 2.6 (k,m)-проекции множеств A и H совпадают при $(k,m) \in \mathcal{L} \cup \mathcal{L}'$ и, следовательно, условия $(\Gamma 1)$ и $(\Gamma 2)$ для A выполняются. Используя включение $J\widetilde{B} \subset H_0$, получаем $J\widetilde{B} \subset A \subset \widetilde{B} + D$, так что A удовлетворяет условию $(\Gamma 3)$. Свойства $(\Gamma 4)$ и $(\Gamma 5)$ для A также выполняются в силу утверждения леммы 2.5 о диагоналях матриц из пересечения $H \cap (\widetilde{B} + D)$.

По лемме 2.5 множества (5), (а)–(г) из леммы 2.4 и множества (6)–(11) для всевозможных $\|a_{st}\| \in H$, вместе с A, аддитивно порождают H, см. матрицу (*). Кроме того, по лемме 2.5 множества (5), (а)–(г) из леммы 2.4, а также (6), (7), (9) и (11) для всевозможных $\|a_{st}\| \in H$ полностью определяются множеством углов \mathcal{L} , \mathcal{L}' и диагоналями матриц из A, так что в силу лемм 2.3 и 2.4 все они лежат в лиевом замыкании множества A. Очевидно, то же самое верно и для последнего множества как в (8), так и в (10). Порождаемость H как лиева идеала множеством A сейчас будет доказана, если мы покажем, что оставшиеся множества в (8) и (10) также лежат в лиевом замыкании множества A. Для любой матрицы $\alpha = \|a_{st}\| \in R_n(K,J)$ положим

$$\varphi_{ij}(\alpha) = a_{ij}e_{i+1,j-1} + a_{j-1,i+1}e_{ji},$$

$$\varphi_{ij}^+(\alpha) = a_{ij}e_{i,j-1} - a_{j-1,i+1}e_{j,i+1} + a_{i+1,j}e_{i+1,j-1} - a_{j-1,i}e_{ji},$$

$$\varphi_{ij}^-(\alpha) = a_{ij}e_{i+1,j} - a_{j-1,i+1}e_{j-1,i} + a_{i,j-1}e_{i+1,j-1} - a_{j,i+1}e_{ji}.$$

По лемме 2.4 множества $K\varphi_{ij}(H),\ K\varphi_{ij}^+(H)$ и $K\varphi_{ij}^-(H)$ лежат в H при любом выборе $(i,j)\in \mathscr{L},\ (j-1,i+1)\in \mathscr{L}'.$ Первое из них, как уже отмечалось, лежит даже в лиевом замыкании множества A; докажем это же включение для оставшихся множеств.

Пусть $\alpha = \|a_{st}\| \in H$. В силу выбора (i,j) и лемм 2.1, 2.2 (j,i)-, (j-1,i)- и (j,i+1)-проекции H совпадают с идеалом JT, который, в свою очередь, порождается (j-1,i+1)-проекцией H. Поэтому существует конечное семейство матриц $\gamma^{(k)} = \|c_{uv}^{(k)}\| \in H$ таких, что

$$a_{j-1,i} = \sum_{k} x_k c_{j-1,i+1}^{(k)}, \quad a_{j,i+1} = \sum_{k} y_k c_{j-1,i+1}^{(k)},$$

$$a_{ji} - \sum_{k} x_k c_{j,i+1}^{(k)} - \sum_{k} y_k c_{j-1,i}^{(k)} = -\sum_{k} z_k c_{j-1,i+1}^{(k)}$$

для некоторых элементов $x_k, y_k, z_k \in K$. Поскольку матрица

$$\alpha + \sum_{k} x_k \varphi_{ij}^-(\gamma^{(k)}) + \sum_{k} y_k \varphi_{ij}^+(\gamma^{(k)}) + \sum_{k} z_k \varphi_{ij}(\gamma^{(k)}) = \bar{\alpha}$$

имеет нулевые (j,i)-, (j-1,i)- и (j,i+1)-проекции, то матрицы $\varphi_{ij}^+(\bar{\alpha})$ и $\varphi_{ij}^-(\bar{\alpha})$ лежат в A. Кроме того,

$$\varphi_{ij}^+(\alpha) = \varphi_{ij}^+(\bar{\alpha}) - \sum_k x_k \varphi_{ij}(\gamma^{(k)}), \quad \varphi_{ij}^-(\alpha) = \varphi_{ij}^-(\bar{\alpha}) - \sum_k y_k \varphi_{ij}(\gamma^{(k)}).$$

Отсюда уже следует, что $\varphi_{ij}^+(\alpha)$ и $\varphi_{ij}^-(\alpha)$ лежат в A. При 1 < j < n полагаем

$$\varphi_j(\alpha) = a_{nj}e_{1,j-1} + a_{j-1,1}e_{jn},$$

$$\varphi_j^+(\alpha) = a_{nj}e_{n,j-1} - a_{j-1,1}e_{j1} + a_{1j}e_{1,j-1} - a_{j-1,n}e_{jn},$$

$$\varphi_j^-(\alpha) = a_{nj}e_{1j} - a_{j-1,1}e_{j-1,n} + a_{n,j-1}e_{1,j-1} - a_{j1}e_{jn}.$$

При $(n,j), (j-1,1) \in \mathcal{L}$ множества $J\varphi_j(H), J\varphi_j^-(H)$ и $K\varphi_j^+(H)$ из (10) лежат в H по лемме 2.4. Более того, как и выше, показывается, что они лежат даже в лиевом замыкании множества A.

Таким образом, H порождается как лиев идеал множеством A. Очевидно также, что если $A \subset A_1 \subset \widetilde{B} + D$ и A_1 порождает H как лиев идеал, то $A_1 \subset H \cap (\widetilde{B} + D) = A$ и $A_1 = A$. Поэтому условие (Г6) для A также выполняется и A является лиевой T-границей. Лемма доказана.

Сейчас теорема 2 легко следует из лемм 2.2 и 2.6. Попутно доказана

Лемма 2.7. Пусть $A = A_L(T; \mathcal{L}, \mathcal{L}')$ — произвольная лиева T-граница кольца $R_n(K, J)$. Тогда минимальный лиев идеал в $R_n(K, J)$, содержащий A, аддитивно порождается множествами A, (5), (a)–(r) из леммы 2.4 и еще множествами (6)–(11) для всевозможных матриц $||a_{st}|| \in A$.

§ 3. Нормальные подгруппы присоединенной группы

Основным результатом параграфа является

Теорема 3. Пусть J — нильпотентный сильно максимальный идеал кольца K со свойством 2I=I для любого идеала $I\subseteq J$ кольца K. Если H — произвольная нормальная подгруппа присоединенной группы кольца $R_n(K,J)$, $n\geq 2$, и T — ее (n,1)-проекция, то существует и единственна нормальная T-граница $A=A_N(T;\mathscr{L},\mathscr{L}')$ кольца $R_n(K,J)$, нормальное замыкание которой совпадает с H, причем $A=H\cap (\widetilde{B}+D)$.

Вначале выпишем стандартные соотношения между элементарными матрицами в присоединенной группе кольца $R_n(K,J)$, используя для коммутатора обычное обозначение $[a,b]=a'\circ b'\circ a\circ b$:

$$(xe_{ii})' = x'e_{ii}, \quad (xe_{ij})' = -xe_{ij}, \quad i \neq j;$$

 $[xe_{ii}, ye_{jj}] = [xe_{ij}, ye_{kt}] = 0, \quad j \neq k, \ t \neq i;$
 $[xe_{ij}, ye_{jt}] = xye_{it}, \quad i \neq j, \ t \neq i.$

Всюду в этом параграфе кольцо $R=R_n(K,J)$ радикально. Конечно, это условие выполняется при условии нильпотентности идеала J. Через $P_{ij}(F)$ (аналогично $Q_{ij}(F)$) при $F\subset K$ здесь в отличие от \S 2 будем обозначать подгруппу присоединенной группы кольца R, порожденную множествами Fe_{km} ($k\neq m$) при $(k,m)\succeq (i,j)$ (соответственно $(k,m)\succ (i,j)$) и еще, когда i< j, множествами $\{xe_{kk}+x'e_{mm}\mid x\in F\}(i\leq k< m\leq j)$. Ясно, что $P_{ii}(F)=Q_{ii}(F)$.

Зафиксируем нормальную подгруппу H присоединенной группы кольца R.

Лемма 3.1. Для всякого идеала F кольца K при $H \supset Fe_{km}, k \neq m$, выполняется включение $H \supset P_{km}(F)$. Кроме того, если k > m и H_{km} — идеал, то $P_{km}(H_{km}) \supset H \cap P_{km}(K)$.

ДОКАЗАТЕЛЬСТВО. Последнее утверждение леммы вытекает почти непосредственно из леммы 1.2. Докажем первое утверждение.

Известно (см., например, [10]), что произвольную матрицу $\alpha \in R_n(K,J)$ можно представить, причем единственным способом, в виде $\alpha = \beta \circ \delta \circ \gamma$, где $\beta \in \sum_{i>j} Ke_{ij}$, $\delta \in \sum_{i=1}^n Je_{ii}$ и $\gamma \in \sum_{i< j} Je_{ij}$. Установим соответствующее разложение для коммутатора $[xe_{km}, ye_{mk}]$. Согласно его определению имеем

$$[xe_{km}, ye_{mk}] = (x^2y^2 + xy)e_{kk} - xye_{mm} + x^2ye_{km} - xy^2e_{mk}, \quad x \in K, \ y \in J.$$

Легко проверяется равенство

$$[xe_{km}, ye_{mk}] = xt'e_{km} \circ te_{mm} \circ t'e_{kk} \circ (-yt')e_{mk}, \quad t = -xy.$$
 (12)

Используя (12), получаем

$$H \supset [e_{vu}, Fe_{uv}] = \{t'e_{vu} \circ te_{uu} \circ t'e_{vv} \circ tt'e_{uv} \mid t = -y \in F\}, \quad k \le u < v \le m.$$

Учитывая, что $H \supset [Fe_{km}, e_{mv}] = Fe_{kv}$ при всех $v < m, v \neq k$ и $H \supset [e_{uk}, Fe_{km}] = Fe_{um}$ при всех $u < k, u \neq m$, имеем $H \supset \{t'e_{vu} \circ te_{uu} \circ t'e_{vv} \mid t \in F\}$ и $H \ni [xe_{vu}, t'e_{vu} \circ te_{uu} \circ t'e_{vv}] = (t \circ t)e_{vu} = Kt(2+t)e_{vu}, t \in F$. Так как $F \subset J$ при k < m, то $H \supset Fe_{vu}$. Отсюда $H \supset \{te_{uu} \circ t'e_{vv} \mid t \in F\}$. Кроме того, $H \supset Fe_{uv}$ для всех $(u,v) \succ (k,m), u \neq v$, и поэтому $H \supset P_{km}(F)$. Лемма доказана.

Вычислим коммутатор произвольной матрицы $\alpha = \|a_{st}\| \in R$ с элементарной матрицей $xe_{km} \in R$. Полагая $\alpha' = \|a_{st}^*\|$, прямыми вычислениями находим

$$[xe_{km}, \alpha] = x \sum_{u \neq k} \sum_{v \neq m} a_{uk}^* a_{mv} e_{uv} + x(1 + a_{mm}) \sum_{u \neq k} a_{uk}^* e_{um}$$

$$+ x (1 + a_{kk}^* - x a_{mk}^*) \sum_{v \neq m} a_{mv} e_{kv} + x (a_{mm} \circ a_{kk}^* - x a_{mk}^* (1 + a_{mm})) e_{km}; \quad (13)$$

$$[xe_{kk}, \alpha] = x \sum_{u \neq k} \sum_{v \neq k} a_{uk}^* a_{kv} e_{uv} + x(1 + a_{kk}) \sum_{u \neq k} a_{uk}^* e_{uk} - x'(1 + a_{kk}^*) \sum_{v \neq k} a_{kv} e_{kv} + x' (a_{kk}^* \circ a_{kk}) e_{kk}.$$
(14)

Лемма 3.2. Пусть $\alpha = \|a_{st}\| \in H$ и $xe_{km} \in R$, $k \neq m$. Если $\beta = [xe_{km}, \alpha] = \|b_{st}\|$, то в H существует матрица $\bar{\beta} = \|\bar{b}_{st}\|$ с такими же, как у β , недиагональными элементами m-го столбца и нулями в остальных столбцах, быть может, исключая их элементы в k-й и m-й строках. А именно, полагая $\lambda_i = a_{mi}(1 + a_{mm})^{-1}$ при $1 \leq i \leq n, i \neq m$, матрицу $\bar{\beta}$ можно задать по правилу

$$\bar{b}_{st} = \begin{cases} b_{st}, & s \neq m, \ t = m, \\ -x^2 a_{mk}^* a_{mk} - \lambda_k x, & (s, t) = (m, m), \\ \lambda_t x, & s = k, \ t \neq m, \\ \lambda_k \lambda_t x, & s = m, \ t \neq m, \\ 0, & s \neq k, m, \ t \neq m \end{cases}$$

ДОКАЗАТЕЛЬСТВО. Пусть $\beta = [xe_{km}, \alpha]$ и λ_t выбраны, как в лемме 3.2. Зафиксируем $t \neq m$ и рассмотрим сопряженную с β матрицу

$$\gamma = (\lambda_t e_{mt}) \circ \beta \circ (-\lambda_t e_{mt}) = \beta - e + \lambda_t \sum_{v \neq t} b_{kv} e_{sv} - \lambda_t \sum_{u \neq t} b_{um} e_{ut} - \lambda_t^2 b_{tm} e_{mt}.$$

Она отличается от β самое большее элементами m-й строки и t-го столбца, причем

$$\pi_{mt}(\gamma) = b_{mt} - \lambda_t (b_{tt} - b_{mm}) - \lambda_t^2 b_{tm}, \quad \pi_{mv}(\gamma) = b_{mv} + \lambda_t b_{tv} \quad (v \neq t).$$

В силу выбора λ_t и (12) все элементы t-го столбца матрицы γ нулевые, исключая, быть может, k-й и m-й. Оставшиеся его элементы также восстанавливаются явно, причем $\pi_{kt}(\gamma) = b_{kt} - \lambda_t b_{km} = \lambda_t x$.

К построенной сопряженной матрице будем применять повторно аналогичные сопряжения элементарными матрицами, меняя t. Более точно, построим матрицы $\beta = \beta^{(0)}, \beta^{(1)}, \dots, \beta^{(n)}$ рекуррентно по правилу

$$\beta^{(i)} = \begin{cases} \lambda_i e_{mi} \circ \beta^{(i-1)} \circ (-\lambda_i e_{mi}), & 1 \le i \le n, \ i \notin \{k, m\}, \\ \beta^{(i-1)}, & i \in \{k, m\}. \end{cases}$$

Ясно, что матрица $\beta^{(n)}$ может иметь ненулевые элементы лишь в строках и столбцах с номерами k или m; как показано выше, все эти элементы восстанавливаются явно. Несложно убедиться, что матрица $\bar{\beta} = \lambda_k e_{mk} \circ \beta^{(n)} \circ (-\lambda_k e_{mk})$ удовлетворяет всем требованиям леммы 3.2. Лемма доказана.

С использованием аналога (13) для коммутатора $[\alpha, xe_{km}]$ аналогично до-

Лемма 3.3. Пусть $\alpha = \|a_{st}\| \in H$ и $xe_{km} \in R$, $k \neq m$. Если $\beta = [\alpha, xe_{km}] = \|b_{st}\|$, то в H существует матрица $\bar{\beta} = \|\bar{b}_{st}\| \in H$ с такими же, как у β , недиагональными элементами k-й строки и нулями в остальных строках, быть может, исключая их элементы в k-м и m-м столбцах. Более точно, если $\lambda_i = -a_{ik}^* \big(1 + a_{kk}^*\big)^{-1}$, $1 \leq i \leq n, i \neq k$, то матрицу $\bar{\beta}$ можно задать по правилу

$$\bar{b}_{st} = \begin{cases} b_{st}, & s = k, \ t \neq k, \\ -x^2 a_{mk}^* a_{mk} - \lambda_m x, & (s, t) = (k, k), \\ \lambda_s x, & s \neq k, \ t = m, \\ -\lambda_m \lambda_s x, & s \neq k, \ t = k, \\ 0, & s \neq k, \ t \neq k, m. \end{cases}$$

Лемма 3.4. Пусть $\alpha = ||a_{st}|| \in H, v \neq m$ и $u \neq k$. Тогда

- (a) если k > m, то $Ka_{mv} \subset H_{kv}$ и $Ka_{uk} \subset H_{um}$;
- (б) $Ja_{mv} \subset H_{kv}$ и $Ja_{uk} \subset H_{um}$.

ДОКАЗАТЕЛЬСТВО. При всех $x \in K$ из (13) получаем включения $xa_{uk}^*(1+a_{mm}) \in H_{um} \ (u \neq k)$ и $x(1+a_{kk}^*-xa_{mk}^*)a_{mv} \in H_{kv} \ (v \neq m)$. Учитывая обратимость элементов $1+a_{mm}$ и $1+a_{kk}^*-xa_{mk}^*$, получаем требуемые в (а) включения.

Случай (б) рассматривается аналогично при $k \neq m$, а при k = m достаточно заметить, что в силу (14)

$$J(1 + a_{kk}^*)a_{kv} = Ja_{kv} \subset H_{kv} \ (v \neq k), \quad J(1 + a_{kk})a_{uk}^* = Ja_{uk} \subset H_{uk} \ (u \neq k).$$

Остается воспользоваться произволом α в H. Лемма доказана.

Лемма 3.5. Пусть $(k,m) \prec (u,v)$ и $k \neq m$. Если 2I = I для любого идеала $I \subset J$ кольца K, то H_{uv} содержит идеал, порожденный проекцией H_{km} в K.

Доказательство. Вначале докажем включение $Ka_{km}\subset H_{uv}$ для произвольной матрицы $\alpha=\|a_{st}\|\in H$. В силу леммы 3.4 (а) достаточно рассмотреть случай, когда m=k+1 и (u,v)=(k+1,k). Пусть $x\in K$ и $\beta=[\alpha,xe_{k+1,k}]$. Тогда H содержит матрицу $\bar{\beta}$, коэффициенты которой определяются по лемме 3.2. Следовательно, H содержит матрицу $[e_{k+1,k},\bar{\beta}]$ с (k+1,k)-проекцией $x\lambda_k(2+d)$, где $\lambda_k=-a_{k,k+1}^*\left(a_{k+1,k+1}^*+1\right)^{-1}$ и $d=\lambda_k+x\lambda_k+x\lambda_k^2$. По условию $2Ka_{k,k+1}=Ka_{k,k+1}$ и, в частности, существует элемент $c\in Ka_{k,k+1}^*$ такой, что

$$d = 2c$$
, $K\lambda_k(2+d) = 2K\lambda_k(1+c) = 2K\lambda_k = K\lambda_k = Ka_{k,k+1}^*$.

Учитывая произвол в выборе $\alpha \in H$, получаем включение $Ka_{k,k+1} \subset H_{k+1,k}$ и, следовательно, включение $Ka_{km} \subset H_{uv}$ доказано.

Если v < m, то $H \supset [Ke_{mv}, \alpha']$ и в силу равенств $\pi_{kv}[Ke_{mv}, \alpha'] = Ka_{km}(1 + a_{vv}^*) = Ka_{km}$ должны иметь $\pi_{kv}([Ke_{mv}, \alpha']) = Ka_{km}$. Отсюда для любого конечного семейства матриц $\alpha_i = \|a_{st}^{(i)}\| \in H$ прямыми вычислениями находим

$$\pi_{kv}([Ke_{mv}, \alpha_1'] \circ \cdots \circ [Ke_{mv}, \alpha_s']) = Ka_{km}^{(1)} + \cdots + Ka_{km}^{(s)}.$$

Поэтому проекция H_{kv} содержит идеал, порожденный H_{km} в K. Аналогично $KH_{km}\subset H_{um},\ u>k$. Комбинируя полученные включения, получаем утверждение леммы для всех $(k,m)\prec (u,v)$, исключая случай, когда m=k+1 и (u,v)=(k+1,k). То же самое включение в исключительном случае получаем, используя дополнительно соотношения $\pi_{k+1,k}([e_{k+1,k},[Ke_{k+1,k},\alpha']])=Ka_{k,k+1}$. Лемма доказана.

Как следствие должны иметь $KH_{uv} \subset H_{n1}$ для всех $(u,v) \neq (n,1), u \neq v$. Доказанная лемма показывает, что определение множеств $\mathcal{L}(H)$ и $\mathcal{L}'(H)$ после леммы 2.1 в $\S 2$ дословно переносится и на случай нормальной подгруппы H присоединенной группы. Когда J — сильно максимальный идеал, легко переносится и лемма 2.2 вместе с доказательством. С учетом леммы 3.5 получается

Лемма 3.6. Пусть $\mathscr{L} = \mathscr{L}(H)$, $\mathscr{L}' = \mathscr{L}'(H)$ и $T = H_{n1}$. Тогда \mathscr{L} , $\mathscr{L}' - M$ множество углов степени n, и если $\mathscr{L}(H) \neq \{(n,1)\}$, то T — идеал кольца K. Если J — сильно максимальный идеал кольца K, то при $(k,m) \notin \mathscr{L} \cup \mathscr{L}'$, $k \neq m$, имеем либо $(k,m) \succ \mathscr{L}$ и $H_{km} = T$, либо $(k,m) \succ \mathscr{L}'$, $(k,m) \not\vdash \mathscr{L}$ и $H_{km} = JT$, либо $(k,m) \not\vdash \mathscr{L}'$ и $H_{km} = J^2T$.

Лемма 3.7. Пусть F — идеал кольца K, $\alpha = \|a_{st}\| \in H$ и $H \supset P_{km}(F)$, $k \neq m$. Тогда найдется матрица $\beta = \|b_{st}\| \in H$ такая, что $\det(\beta + e) = \det(\alpha + e)$ и

- (a) $b_{uv} = a_{uv}$ при u < k, и $b_{uv} = a_{uv} \mod JF$ при $u \ge k, v > m$;
- (б) если $(u,v) \succeq (k,m)$ и $a_{uv} \notin F$, то $b_{uv} = a_{uv} \mod JF$;
- (в) если $(u,v) \succeq (k,m)$ и $a_{uv} \in F$, то $b_{uv} = 0 \mod JF$, исключая, быть может, фиксированную (произвольно) позицию (t,t) с условием $k \leq t \leq m$.

ДОКАЗАТЕЛЬСТВО. Покажем, что требуемую матрицу β можно найти, умножая матрицу $\alpha \in H$ на элементарные матрицы из $P_{km}(F)$. Вначале преобразуем в α коэффициенты a_{uv} при $(u,v)\succeq (k,m),\ u\neq v$. Произведение $xe_{uv}\circ\alpha=xe_{uv}+\alpha+x\sum_j a_{vj}e_{uj}$ имеет (u,v)-проекцию $x(1+a_{vv})+a_{uv}$. Поэтому

при $a_{uv} \in F$ существует $x \in F$, при котором произведение лежит в H, а его (u,v)-проекция равна нулю. Ясно, что определитель матрицы $\alpha + e$ не изменился. Элементы матрицы α , расположенные выше u-й строки, не изменились, а

расположенные правее v-го столбца, не изменились по модулю JF. Аналогично умножаем α на элементарные матрицы xe_{uv} при $a_{uv} \in F$ и $u \geq k$ последовательно для $v = m, m-1, \ldots, 1$. Получаем матрицу, у которой все элементы удовлетворяют условиям леммы, исключая, быть может, элементы на позициях $(t,t), k \leq t \leq m$.

Зафиксируем указанное t при k < m, и пусть $a_{vv} \in F, \ k \le v \le m, \ v \ne t.$ Положим $x = a'_{vv}$. Тогда матрица

$$H \ni x'e_{tt} \circ xe_{vv} \circ \alpha = x'e_{tt} + xe_{vv} + \alpha + x'\sum_{j} a_{tj}e_{tj} + x\sum_{j} a_{vj}e_{vj}$$

лежит в H. По модулю JF она совпадает с $x'e_{tt}+xe_{vv}+\alpha$, а ее (v,v)-проекция равна нулю. Кроме того, проведенное преобразование не изменяет элементов выше k-й строки. В силу произвола в выборе v лемма доказана.

Лемма 3.8. Если J — нильпотентный идеал, то $H \supset P_{1n}(J^2T)$.

ДОКАЗАТЕЛЬСТВО. Пусть $\alpha \in H$, $x,y \in J$. Тогда $H \ni [xe_{1n},\alpha] = \beta$. Выберем в H матрицу $\bar{\beta}$, как указано в лемме 3.2, в частности, $\pi_{un}(\bar{\beta}) = \pi_{un}(\beta)$ при $u \neq n$. Коммутатор $\gamma = \|c_{st}\| = [ye_{1n},\bar{\beta}']$, а при n > 2 также коммутаторы

$$[e_{n,n-1},\gamma'] = c_{nn}e_{n,n-1} \circ c_{1n}e_{1,n-1}, \quad [c_{nn}e_{n,n-1} \circ c_{1n}e_{1,n-1},e_{n1}] = c_{1n}e_{n,n-1}$$

лежат в H, причем $c_{nn}\in J^2T$. Как и в доказательстве леммы $3.5,\ (1,n)$ -проекции коммутаторов $[ye_{1n},\bar{\beta}']\ (n\geq 2)$ для всевозможных $y\in J$ и $\alpha\in H$ пробегают весь идеал J^2T . Поэтому $H\supset J^2Te_{n,n-1}$ и, следовательно, $H\supset J^2Te_{1,n-1}$. Аналогично $H\supset J^2Te_{2n}$ и по лемме $3.1\ H\supset Q_{1n}(J^2T)$. Применяя к матрице γ лемму 3.7 и учитывая равенство $\det(\gamma+e)=1$, получаем $H\supset J^2Te_{1n}$. Таким образом, включение $H\supset P_{1n}(J^2T)$ при n>2 доказано.

Пусть n=2. Поскольку утверждение леммы тривиально при $J^2=0$, будем предполагать, что ступень нильпотентности m идеала J больше 2. Как отмечалось выше, (1,2)-проекция множества $M=\{[ye_{12},\bar{\beta}']\mid y\in J,\ \alpha\in H\}$ совпадает с J^2T . Нетрудно убедиться, что его диагональные проекции также лежат в J^2T , а (2,1)-проекция — в J^3T . С помощью соотношения (14) исследуем следующий коммутатор веса $s+1\geq 1$: $[[...[M,Je_{11}],Je_{11}]...],Je_{11}]=M_s$. Его (1,2)-проекция равна $J^{s+2}T$, а диагональные проекции и (2,1)-проекция лежат соответственно в $J^{s+2}T$ и в $J^{s+3}T$. Кроме того, $M_{m-3}=J^{m-1}Te_{12}$, и, следовательно, $H\supset P_{12}(J^{m-1}T)$. Допустим, что включение $H\supset P_{12}(J^tT)$ уже доказано для некоторого $t,\ 2< t\leq m$. Взаимный коммутант $[Ke_{21},M_{t-3}]$ по модулю $P_{12}(J^tT)$ совпадает с множеством $\{xe_{11}+x'e_{22}|x\in J^{t-1}T\}$, и поэтому последнее лежит в H. Отсюда и из приведенного выше описания M_{t-3} легко следует включение $H\supset J^{t-1}Te_{12}$ и, как следствие, $H\supset P_{1n}(J^{t-1}T)$. Индукция по m-t завершает доказательство леммы.

Далее предполагаем, что J — нильпотентный сильно максимальный идеал, причем 2I=I для любого идеала $I\subset J$ кольца K.

Лемма 3.9. Пусть $M \subset H \cap (P_{km}(JT) + P_{1n}(J^2T))$ и $M_{km} = JT$ для фиксированной позиции $(k,m), \ k \neq m,$ причем $\det(\alpha + e) = 1$ для всех $\alpha \in M$. Тогда $H \supset P_{km}(JT)$.

Доказательство. По лемме $3.8~H \supset P_{1n}(J^2T)$, так что достаточно рассмотреть случай, когда $M \subset H \cap P_{km}(JT)$ и $M_{km} = JT$. При k > m требуемое в лемме включение вытекает сейчас непосредственно из последнего утверждения леммы 3.1. Если m = k + 1, то пересечение $H \cap NT_n(K)$ содержит множества

$$[e_{k+1,k},[Ke_{k+1,k},M]],\quad [e_{k,k-1},[Ke_{k+1,k},M]],\quad [e_{k+2,k+1},[Ke_{k+1,k},M]]$$

и по доказанному множества $P_{k+1,k}(JT)$, $P_{k,k-1}(JT)$ и $P_{k+2,k+1}(JT)$ соответственно. Учитывая также соотношение $H \supset [Ke_{k+1,k}, M]$, как и выше, находим $H \supset P_{k,k+1}(JT)$.

Далее проводим индукцию по m-k. Выберем для каждой матрицы $\alpha \in M$ матрицу $\beta = \beta_{\alpha} \in H$ так, как указано в лемме 3.7 при $F = J^2T$. Все (u,v)-проекции множества β_M лежат в JT при $(u,v)\succeq (k,m)$, исключая, быть может, случай (u,v)=(t,t) для фиксированного t, а в остальных случаях они лежат в J^3T . Кроме того, (k,m)-проекция множества β_M равна JT по построению. Далее применяем лемму 3.7 к матрицам из множества β_M при $F = J^3T$, и т. д. В силу нильпотентности идеала J через конечное число шагов найдем множество $M'\subset (P_{km}(JT)\circ J^2Te_{tt})\cap H$ с условием $M'_{km}=JT$. Ввиду выбора M по лемме 3.7 определители матриц из множеств e+M и e+M' равны 1 и поэтому $M'\subset P_{km}(JT)\cap H$. К множествам $[Ke_{m,m-1},M]$ (m>1) и $[Ke_{k+1,k},M]$ (k< n) применимо индуктивное предположение. Получаем соответственно включения $H\supset P_{k,m-1}(JT)$ и $H\supset P_{k+1,m}(JT)$. Отсюда вытекают включения $H\supset I$ демма доказана.

Лемма 3.10. Пусть $M \subset H \cap (P_{km}(T) + P_{1m}(JT) + P_{kn}(JT) + P_{1n}(J^2T))$ и $M_{km} = T$ для фиксированной позиции $(k,m), k \neq m$, причем $\det(\alpha + e) = 1$ для всех $\alpha \in M$. Тогда $H \supset P_{km}(T)$.

Доказательство. Множество $[Je_{1k},M]$ лежит в H. При k>1 к нему применима лемма 3.9, и с ее помощью получим $H\supset P_{1m}(JT)$. Аналогично при m< n должны иметь $H\supset P_{kn}(JT)$. Поскольку также по лемме 3.7 $P_{1n}(J^2T)\subset H$, можно предполагать, что $M\subset H\cap P_{km}(T)$ и по-прежнему $M_{km}=T$. Включение $H\supset P_{km}(T)$ при k>m вытекает сейчас из леммы 3.1; при k< m оно доказывается индукцией по m-k по аналогии с доказательством предыдущей леммы. Лемма доказана.

Следующие леммы 3.11–3.18 переносят на наш случай леммы 2.3 и 2.4 о включении в H определенных множеств.

Лемма 3.11. Если $(i,j) \in L(H)$, то $H \supset Q_{i+1,j-1}(T)$ при $2 \le j < i \le n-1$ и $H \supset P_{i+1,j-1}(T)$ при i < j.

Доказательство. Поскольку $H\supset [e_{i+2,i+1},[e_{i+1,i},[Ke_{j,j-1},H]]]$ и $H\supset [e_{j-1,j-2},[e_{i+1,i},[Ke_{j,j-1},H]]]$, из лемм 3.7–3.10 вытекает первое включение, а также второе включение при j=i+2. Случаи j=i+1 и i< j-2 рассматриваются аналогично с использованием соотношения $H\supset [e_{i+1,i},[Ke_{i+1,i},H]]$ и соответственно $H\supset [e_{i+1,i},[H,Ke_{j,j-1}]]$. Лемма доказана.

Аналогично лемме 3.11 доказывается

Лемма 3.12. Если $(k,m) \in \mathcal{L}'(H)$, то $H \supset Q_{k+1,m-1}(JT)$ при k < m и $H \supset P_{k+1,m-1}(JT)$ при $2 \le m < k \le n-1$.

Лемма 3.13. Пусть $(i,j) \in L(H)$. Тогда H содержит подгруппы $Q_{1,j-1}(JT),\ Q_{i+1,n}(JT)$ при 1 < j < i < n и подгруппы $P_{1,j-1}(JT),\ P_{i+1,n}(JT)$ при i < j.

Доказательство. При 1 < j < i < n по лемме 3.9 в силу включений $H \supset [Ke_{21},[e_{j,j-1},[Je_{1i},H]]]$ и $H \supset [e_{j-1,j-2},[e_{j,j-1},[Je_{1i},H]]]$ имеем $H \supset P_{2,j-1}(JT)$ и $H \supset P_{1,j-2}(JT)$ соответственно. Отсюда $H \supset Q_{1,j-1}(JT)$. Включение $H \supset Q_{i+1,n}(JT)$ получаем аналогично. Утверждение леммы для i < j вытекает непосредственно из леммы 3.11. Лемма доказана.

Очевидно, если $\mathcal{L}(H)=\{(1,n)\}$, то $H\circ D=Q_{1n}(T)\circ (H_{1n}e_{1n})\circ D$ и по лемме $3.11\ H=Q_{1n}(T)\circ (H\cap (D\circ H_{1n}e_{1n})).$

Лемма 3.14. Пусть $(i,j) \in \mathcal{L}(H)$. Тогда

- (a) $H \supset P_{i,j-2}(T)$ при j > 2 и $H \supset P_{i+2,j}(T)$ при i < n-1;
- (б) $H \supset Q_{ij}(T)$ при j = i + 1;
- (в) H содержит подгруппы $Q_{i,j-1}(T)$, $Q_{i+1,j}(T)$ при j=i+2;
- (г) H содержит подгруппы $P_{2j}(JT), P_{i,n-1}(JT);$
- (д) $H \supset P_{1j}(JT)$ при i < n и $H \supset P_{in}(JT)$ при j > 1.

Доказательство. Утверждение (а) вытекает из лемм 3.11, 3.13 и соотношений $H\supset [e_{j-1,j-2},[Ke_{j,j-1},H]]$ и $H\supset [e_{i+2,i+1},[Ke_{i+1,i},H]]$. Применяя (а) к соотношению $H\supset [Ke_{i+1,i},H]$ и те же леммы, получаем утверждение (б). С помощью включений $H\supset [e_{i+1,i},[Ke_{i+2,i+1},H]]$ и $H\supset [e_{i+2,i+1},[Ke_{i+1,i},H]]$ аналогично доказывается утверждение (в).

Утверждение (г) следует из включений $H\supset [Je_{2i},H],\ H\supset [Je_{j,n-1},H]$ и леммы 3.13. По лемме 3.14 (а) первое и второе включения в (д) выполняются при $i\le n-2$ или $j\ge 3$ соответственно или когда i< j. С другой стороны, используя включение $H\supset [Je_{1n},[e_{j,j-1},[Ke_{n,n-1},H]]]$ при i=n-1, находим $H\supset P_{1,j-1}(JT)$. Случай j=2 рассматривается аналогично. Лемма доказана.

Точно так же доказывается следующая

Лемма **3.15.** Пусть $(k, m) \in \mathcal{L}'(H)$. Тогда

- (a) $H \supset P_{k,m-2}(JT)$ при m > 2 и $H \supset P_{k+2,m}(JT)$ при k < n-1;
- (б) $H \supset Q_{km}(JT)$ при m = k + 1;
- (в) H содержит подгруппы $Q_{k,m-1}(JT)$, $Q_{k+1,m}(JT)$ при m=k+2.

Лемма 3.16. Множество $\{xe_{11} + x'e_{nn} \mid x \in JT\}$ лежит в H.

Доказательство. Если существует матрица $\|a_{st}\| \in H$ такая, что $a_{11} \circ a_{nn}^* \notin JT$, то $J(a_{11} \circ a_{nn}^*) + J^2T = JT$ в силу сильной максимальности J. Поэтому, применяя лемму 3.9 к множеству $[Je_{1n}, H]$ с (1,n)-проекцией JT, получим $H \supset P_{1n}(JT) \supset \{xe_{11} + x'e_{nn} \mid x \in JT\}$. Допустим, что $a_{11} \circ a_{nn}^* \in JT$ для всякой матрицы $\|a_{st}\| \in H$. Тогда $[Je_{1n}, H] = [Te_{n1}, Je_{1n}]$ по модулю $P_{1n}(J^2T)$ при $\mathscr{L} = \{(n,1)\}$. С другой стороны, нормальная подгруппа H при $\mathscr{L} \neq \{(n,1)\}$ всегда содержит подмножество, у которого (n,1)-проекция равна T, а остальные проекции лежат в JT. Поскольку $P_{1n}(J^2T) \circ P_{n1}(JT) \supset H$ в силу лемм 3.7 и 3.14 (г), то во всех случаях получаем включение $H \supset [Te_{n1}, Je_{1n}]$. Принимая сейчас во внимание (12), получаем требуемое в лемме включение. Лемма доказана.

Напомним, что по лемме 3.6 проекция $T=H_{n1}$ при $\mathscr{L}(H)\neq\{(n,1)\}$ — идеал кольца K. Исключительный случай рассматривает

Лемма 3.17. (а) Если $\mathcal{L}(H) = \{(n,1)\}$, то T есть J-подмодуль кольца K; (б) если $\|a_{st}\| \in H$, то $J(a_{kk}^* \circ a_{mm}) \subset H_{km}$ для всех $k \neq m$ и $K(a_{kk}^* \circ a_{mm}) \subset H_{km}$ при k > m.

Доказательство. (а) Пусть $\alpha = \|a_{st}\|$, $\beta = \|b_{st}\| \in H$. Из условия леммы следует, что $H^2 \subset P_{1n}(JT)$, и по лемме 3.14 (г) $H \supset JTe_{n1}$. В частности, $JT \subset T$. Поскольку $\alpha \circ \beta = \alpha + \beta + \alpha\beta$, то (n,1)-проекции в $\alpha \circ \beta$ и $\alpha + \beta$ различаются на элемент $c_1 \in JT$, в $\alpha \circ \beta \circ (-c_1e_{n1})$ и $\alpha + \beta$ — на элемент $c_2 \in J^2T$, в $\alpha \circ \beta \circ [(-c_1e_{n1}) \circ (-c_2e_{n1})$ и $\alpha + \beta$ — на элемент $c_3 \in J^3T$, и т. д. В силу нильпотентности идеала J через конечное число шагов найдется элемент $\gamma \in JTe_{n1}$ такой, что (n,1)-проекция произведения $\alpha \circ \beta \circ \gamma$ равна $a_{n1} + b_{n1}$. Аналогично существует элемент $\gamma \in JTe_{n1}$ такой, что (n,1)-проекция произведения $\alpha' \circ \gamma$ равна $-a_{n1}$. Это доказывает аддитивность T.

Обозначим через H_0 подгруппу присоединенной группы, порожденную множествами из H, перечисленными в леммах 3.8, 3.11–3.16. Тогда утверждение (б) следует из соотношений (13) и включения $H \supset H_0$. Лемма доказана.

В соответствии с введенными в начале параграфа обозначениями будем рассматривать множества (а)–(г) из леммы 2.4 как подгруппы присоединенной группы; подгруппа H_0 из доказательства предыдущей леммы используется вместо множества (5). Кроме того, сопоставим с каждой матрицей $\|a_{st}\| \in R$ следующие множества:

$$P_{ij}(T), P_{1j}(JT), P_{in}(JT)$$
 при $i > j, a_{ii} \circ a_{ij}^* \notin JT;$ (15)

$$P_{ij}(JT)$$
, если $J(a_{ii} \circ a_{jj}^*) \not\subset J^2T$ или $i > j, \ a_{ii} \circ a_{jj}^* \notin J^2T$; (16)

$$K(a_{ij}e_{i,j-1} + a_{j-1,i+1}^*e_{j,i+1} + a_{i+1,j}e_{i+1,j-1} + a_{j-1,i}^*e_{ji}),
K(a_{ij}e_{i+1,j} + a_{j-1,i+1}^*e_{j-1,i} + a_{i,j-1}e_{i+1,j-1} + a_{j,i+1}^*e_{ji}),
K(a_{ij}e_{i+1,j-1} + a_{j-1,i+1}e_{ji}) \quad ((i,j) \in \mathcal{L}, \ (j-1,i+1) \in \mathcal{L}');$$
(17)

$$K(a_{ij}e_{i,j-1} + a_{j-1,m}^*e_{jm}) \quad ((i,j), (j-1,m) \in \mathcal{L} \cup \mathcal{L}', \ m \neq i+1, \ (i,m) \neq (n,1));$$

$$(18)$$

$$K(a_{nj}e_{n,j-1} + a_{j-1,1}^*e_{j1} + a_{1j}e_{1,j-1} + a_{j-1,n}^*e_{jn}), J(a_{nj}e_{1j} + a_{j-1,1}^*e_{j-1,n} + a_{n,j-1}e_{1,j-1} + a_{j1}^*e_{jn}), J(a_{nj}e_{1,j-1} + a_{j-1,1}e_{jn}) \quad ((n,j), (j-1,1) \in \mathcal{L});$$

$$(19)$$

$$J(a_{nj}e_{1j} + a_{i1}^*e_{in}) \quad ((n,j), \ (i,1) \in \mathcal{L}, \ i \neq j-1).$$
 (20)

Лемма 3.18. Нормальная подгруппа H присоединенной группы кольца R содержит подгруппы (a)–(r) из леммы 2.4 и, кроме того, для любой матрицы $\|a_{st}\| \in H$ множества (15)–(20).

Доказательство является несложным перенесением доказательства леммы 2.4, и мы его опускаем.

Как и в $\S 1$, определяем множества $\widetilde{\mathscr{L}},\,\widetilde{\mathscr{L}'},\,$ а по формулам (3) определены также подгруппы \widetilde{B} и D присоединенной группы кольца R.

Лемма 3.19. H совпадает c нормальным замыканием пересечения $H \cap (\widetilde{B} + D)$, а как подгруппа присоединенной группы порождается подгруппами (a)–(r) из леммы 2.4, H_0 , $H \cap (\widetilde{B} + D)$ и множествами (15)–(20) для всевозможных матриц $\|a_{st}\| \in H$. Кроме того, пересечение $H \cap (\widetilde{B} + D)$ является нормальной T-границей в кольце R.

ДОКАЗАТЕЛЬСТВО. Пусть $\beta = \|b_{st}\| \in H$. Все недиагональные проекции H_{uv} и, следовательно, b_{uv} ($u \neq v$), лежат в T, JT или J^2T в соответствии с их описанием в лемме 3.6. По аналогии с доказательством леммы 2.5 будем аннулировать недиагональные элементы на позициях $(u,v) \notin \widetilde{\mathscr{L}} \cup \widetilde{\mathscr{L}}'$. Вначале рассмотрим позиции (u,v), перечисленные в пп. (а)–(в) доказательства леммы 2.5. Умножением (присоединенным) β на подходящую матрицу из множеств (17)–(20) аннулируем по модулю J^2T коэффициенты b_{uv} для всевозможных позиций (u,v) из пп. (а), (в) и для позиций $(u,v) \not\succeq \mathscr{L}$ из п. (б). Используя также множества (18) и первое множество из (19), аннулируем по модулю JT коэффициенты b_{uv} для оставшихся позиций (u,v) из п. (б).

Очевидно, найденные условия для перечисленных позиций не изменяются, если использовать умножения слева на элементарные матрицы из множеств (a)–(г) леммы 2.4 в H и из H_0 : $-b_{uv}e_{uv}\circ\beta=-b_{uv}e_{uv}+\beta-b_{uv}\sum_i b_{vj}e_{uj}$. С другой

стороны, такие умножения позволяют аннулировать по модулю JT недиагональные коэффициенты на позициях $(u,v) \notin \widetilde{\mathscr{L}} \cup \widetilde{\mathscr{L}}', (u,v) \succ \mathscr{L}$; умножения проводим последовательно: вначале для позиций из j_r -го столбца, затем (j_r-1) -го, . . . , 1-го столбцов, см. (1) и (*).

Отметим, что после указанных преобразований β ее диагональные коэффициенты на позициях (u,u) не изменяются по модулю JT при $u \geq i_1$ (в обозначениях (1)) и не изменяются по модулю J^2T при $u < i_1$.

Будем аналогично аннулировать недиагональные элементы на позициях $(u,v) \notin \widetilde{\mathscr{L}} \cup \widetilde{\mathscr{L}}'$ по модулю J^2T . При этом используем умножения слева только на элементарные матрицы $-a_{uv}e_{uv}$ из множеств (б)–(г) леммы 2.4 в H и из H_0 , причем рассматриваем последовательно случаи $v=n,\,n-1,\ldots,1$. Кроме того, если в v-м столбце встречается угол (k,v) из \mathscr{L} , то добавку из JT к коэффициенту a_{kv} , возможную на предыдущем этапе, аннулируем по модулю J^2T , пользуясь включением $H \supset P_{kv}(JT)$ из леммы 3.14 (г), (д). Заметим также, что диагональные коэффициенты матрицы, полученной на предыдущем этапе, не изменились по модулю J^2T .

Включение $P_{1n}(J^2T)\subset H$ позволяет далее аналогично аннулировать недиагональные элементы на позициях $(u,v)\notin\widetilde{\mathscr{L}}\cup\widetilde{\mathscr{L}}'$ по модулю J^3T , и т. д. В силу нильпотентности идеала J матрица β через конечное число шагов преобразуется к матрице $\gamma\in H\cap (\widetilde{B}+D)$. Коэффициенты матрицы β на позициях $(u,v)\in\mathscr{L}\cup\mathscr{L}'$ остаются без изменений, а ее диагональные коэффициенты b_{uu} не изменяются по модулю J^2T при $u\leq i_1$.

Таким образом, множества (15)–(20) для всевозможных матриц $\|a_{st}\| \in H$ и подгруппы (a)–(г) из леммы 2.4, H_0 и $H \cap (\widetilde{B} + D)$ порождают произвольную матрицу β из H, а следовательно, порождают H как подгруппу присоединенной группы.

Как и в доказательстве леммы 2.6, множество $A=H\cap(\widetilde{B}+D)$ удовлетворяет условиям (Γ 1)–(Γ 3). Множества (17)–(20) для всевозможных $\|a_{st}\|\in H$, кроме последних множеств в (17) и (19), и подгруппы H_0 , (a)–(г) из леммы 2.4 полностью определяются множеством углов \mathscr{L} , \mathscr{L}' , и по построению все они лежат в нормальном замыкании множества A. Последнее включение выполняется и для исключительных множеств в (17) и (19); это несложно устанавливается перенесением соответствующего доказательства леммы 2.6.

Допустим, что для матрицы β имеем $b_{uu} \circ b_{vv}^* \notin J^kT$; в этом случае будем говорить, что β удовлетворяет $((u,v),J^kT)$ -условию. Рассмотрим случай, когда k=1 и, следовательно, множества $P_{ij}(T),P_{1j}(JT)$ и $P_{in}(JT)$ из (15) по лемме 3.18 лежат в H. Используем отмеченное выше свойство диагональных элементов матрицы β при ее преобразовании к матрице γ из A. Нетрудно убедиться, что либо γ также удовлетворяет ((u,v),JT)-условию, либо указанные множества входят уже в подгруппу H_0 из H в силу описания H_0 . Исследуя аналогично $((u,v),J^2T)$ -условие матриц из H, устанавливаем включение множеств (15) и (16) в нормальное замыкание множества A; это завершает доказательство равенства H и нормального замыкания множества A в присоединенной группе. Вместе с тем получаем справедливость свойств $(\Gamma 4')$ и $(\Gamma 5')$ для A.

Сейчас очевидно, что если $A\subset A_1\subset \widetilde{B}+D$ и нормальное замыкание множества A_1 совпадает с H, то $A_1\subset H\cap (\widetilde{B}+D)=A$ и $A_1=A$. Поэтому условие (Г6') для A также выполняется и A является нормальной T-границей. Лемма доказана.

В доказательстве леммы 3.19 установлена также

Лемма 3.20. Пусть $A = A(T; \mathcal{L}, \mathcal{L}')$ — произвольная нормальная T-граница кольца R. Тогда минимальная нормальная подгруппа присоединенной группы R, содержащая A, порождается как присоединенная группа множествами A, H_0 , (a)–(r) из леммы 3.17 и еще множествами (15)–(20) для всевозможных матриц $\|a_{st}\| \in A$.

Теорема 3 легко следует из лемм 3.6 и 3.19.

ЛИТЕРАТУРА

- 1. Левчук В. М. Связи унитреугольной группы с некоторыми кольцами // Алгебра и логика. 1976. Т. 15, № 5. С. 558–578.
- Левчук В. М. Некоторые локально нильпотентные кольца и их присоединенные группы // Мат. заметки. 1987. Т. 42, № 5. С. 631–641.
- Levchuk V. M. Chevalley groups and their unipotent subgroups // Contem. Math. 1992.
 V. 131, N 1. P. 227–242.
- **4.** *Мартынова Л. А.* Нормальное строение и автоморфизмы унипотентных подгрупп групп лиевых типов. Дис. . . . канд. физ.-мат. наук. М.: МГУ, 1994.
- 5. Левчук В. М., Сулейманова Г. С. Нормальное строение унипотентной подгруппы группы Стейнберга над полем // Вестн. Красноярск. гос. техн. ун-та. 1999. С. 44–48.
- 6. Сулейманова Γ . С. Нормальное строение максимальной унипотентной подгруппы унитарной группы над полем // Симметрия и дифференциальные уравнения. Красноярск: ИВМ СО РАН, 2000. С. 206–209.
- Kuzucuoglu F., Levchuk V. M. Ideals of some matrix rings // Comm. Algebra. 2000. V. 28, N 7. P. 3503–3513.
- Коуровская тетрадь (нерешенные вопросы теории групп). 12-е изд. Новосибирск: ИМ СО РАН, 1992.
- 9. Сулейманова Γ . С. Об идеалах некоторых матричных лиевых колец // Абелевы группы и модули. Томск, 2000. Вып. 15. С. 89–97.
- **10.** *Левчук В. М.* Коммутаторное строение некоторых подгрупп групп Шевалле // Укр. мат. журн. 1992. Т. 44, № 6. С. 786–795.

Cтатья поступила 14 сентября 2001 г.

Левчук Владимир Михайлович

Красноярский гос. университет, математический факультет,

кафедра алгебры и математической логики.

пр. Свободный, 79, Красноярск 660041

levchuk@lan.krasn.ru, levchuk@home.krasnoyarsk.ru

Сулейманова Галина Сафиуллановна

Красноярский гос. университет, математический факультет,

 $\kappa a \phi e \partial pa$ алгебры и математической логики.