СОХРАНЕНИЕ ДОПУСТИМОСТИ ПРАВИЛ ВЫВОДА В ЛОГИКАХ, РОДСТВЕННЫХ S4.2

В. В. Рыбаков, В. В. Римацкий

Аннотация: Показано, что любая финитно аппроксимируемая логика, расширяющая S4.2~(Grz.2,~KC), сохраняет все допустимые правила вывода логики S4.2~(Grz.2,KC) соответственно) тогда и только тогда, когда данная логика имеет так называемое семантическое свойство конакрытий. Библиогр. 3.

Введение

В настоящее время модальные логики имеют многочисленные приложения в информатике и представлении знаний. Изучение правил вывода в модальной логике образует специальную активную область, так как именно эти правила вовлечены в формальные акты процесса вывода. Среди всех правил вывода может быть выделен особый класс «хороших», «подходящих» правил — так называемых допустимых правил вывода, которые можно применять в доказательствах, сохраняя при этом множество доказуемых теорем логики.

Однако определить, допустимо ли данное правило вывода в заданной логике, сложно. Поэтому полезно знать, какие логики сохраняют допустимые правила некоторых важных индивидуальных систем. В работе [1] были предложены критерии, гарантирующие сохранение допустимости правил вывода модальной системы S4. В настоящей работе мы расширяем сферу применения этой техники на более сильные модальные логики — логики, расширяющие S4.2. Наша статья посвящена описанию S4.2-логик, сохраняющих допустимые в S4.2 и родственных ей логиках правила вывода. А именно, с использованием техники из [2, пп. 6.2, 6.3] показано, что любая финитно аппроксимируемая логика, расширяющая S4.2(Grz.2, KC), сохраняет все допустимые правила вывода логики S4.2(Grz.2, KC) соответственно) тогда и только тогда, когда данная логика имеет так называемое семантическое свойство конакрытий.

1. Предварительные факты, обозначения

Вначале напомним необходимые определения и результаты (для детального знакомства с предметом рекомендуем обратиться к [2,3]). Правило вывода $\alpha_1(x_1,\ldots,x_n),\ldots,\alpha_k(x_1,\ldots,x_n)/\beta(x_1,\ldots,x_n)$ называется допустимым в логике λ , если для любых формул δ_1,\ldots,δ_n из $(\forall j\alpha_j(\delta_1,\ldots,\delta_n)\in\lambda)$ следует $(\beta(\delta_1,\ldots,\delta_n)\in\lambda)$. Фрейм $\mathscr{F}:=\langle F,R\rangle$ — это пара, где F— непустое множество и R— бинарное отношение на F. Базисное множество и сам фрейм далее будем обозначать одной и той же буквой. Ниже рассматриваются только логики, расширяющие S4, поэтому все фреймы рефлексивны и транзитивны.

Напомним, что если $\langle W, R \rangle$ — некоторый фрейм, то множество $C \subseteq W$ называется *сгустком*, если 1) для любых x, y из C выполняется xRy; 2) для

любых $x \in C$ и $y \in W$ $(xRy\&yRx) \Longrightarrow y \in C$. Сгусток называется собственным, если |C| > 1, и одноэлементным в противном случае. Для элемента $a \in F$ через C(a) обозначим сгусток, порожденный элементом a.

Любое множество попарно несравнимых по отношению R сгустков фрейма F называется антицелью. Антицепь $\mathscr A$ называется нетривиальной, если $\mathscr A$ состоит по крайней мере из двух различных сгустков. Для любого $a \in F$ $c^R = \{x \mid cRx\}$. Сгусток C(a) из F представляет собой конакрытие для множества $X \subseteq F$, если $a^R \setminus C(a) = X^R := \cup \{x^R \mid x \in X\}$. Будем говорить, что элемент a — конакрытие для $X \subseteq F$, если $X \subseteq F$, если

Глубиной элемента x модели (фрейма) F называется максимальное число сгустков в цепях сгустков, начинающихся со сгустка, содержащего x. Множество всех элементов фрейма F глубины не более чем n будем обозначать через $S_n(F)$, а множество элементов глубины n — через $S_n(F)$.

Логика λ_2 сохраняет допустимые в λ_1 ($\lambda_1 \subseteq \lambda_2$) правила вывода, если любое правило вывода, допустимое в λ_1 , допустимо также в λ_2 .

Будем говорить, что фрейм F корневой, если $\exists a \in F : a^R = F$. Пусть F — конечный корневой λ -фрейм над S4.2.

Фрейм M называется конакрытийным последователем фрейма F, если M получен за конечное число шагов следующим образом. Пусть $F_0:=F$. На каждом шаге построения i добавляем к фрейму F_i единственный рефлексивный элемент, как описано ниже. Выбираем некоторую нетривиальную антицепь сгустков F_i , не имеющую в F_i конакрытия (если такая существует), и добавляем к F_i новый рефлексивный элемент как конакрытие выбранной антицепи. Через конечное число шагов процесс построения обрываем, и полученный фрейм F_n есть конакрытийный последователь M для F.

Логика λ над S4.2 имеет свойство конакрытий, если для любого конечного корневого λ -фрейма F любой его конакрытийный последователь есть λ -фрейм.

Напомним, что любой S4.2-фрейм удовлетворяет следующему условию: $\forall x,y,z((xRy\wedge xRz)\Longrightarrow\exists w(yRw\wedge zRw)).$ Если фрейм (модель) \mathfrak{M} представлен как прямое объединение фреймов (моделей) $\mathfrak{M}_j:\mathfrak{M}=\bigsqcup_{j\in J}\mathfrak{M}_j,$ то фреймы (модели) \mathfrak{M}_j называем компонентами \mathfrak{M} .

Для любой финитно аппроксимируемой S4.2-логики можем построить n-характеристическую модель $Ch_n(\lambda)$ по алгоритму, описанному в [2, п. 3.3]. Нам важны следующие свойства модели $Ch_n(\lambda)$: для любой S4.2-логики n-характеристическая модель $Ch_n(\lambda)$ имеет структуру $Ch_n(\lambda) := \mathfrak{M}_1 \sqcup \mathfrak{M}_2 \sqcup \cdots \sqcup \mathfrak{M}_{2^{2^n}}$, где любая компонента обладает R-наибольшим сгустком и

- (i) любой сгусток из \mathfrak{M}_i не содержит различных элементов с одинаковым означиванием переменных;
- (ii) для любого элемента $a \in \mathfrak{M}_i$ фрейм a^R , порожденный в \mathfrak{M}_i данным элементом, является рефлексивным транзитивным конечным λ -фреймом,
- (iii) любые два R-максимальных сгустка различных $\mathfrak{M}_i, \mathfrak{M}_j$ не изоморфны как модели Крипке.

2. Критерий сохранения допустимости правил

Лемма 1. Любая финитно аппроксимируемая логика λ над S4.2 со свойством конакрытий сохраняет все допустимые правила логики S4.2.

Доказательство. Пусть правило вывода $r := \alpha/\beta$ допустимо в S4.2, но не допустимо в логике λ . Тогда существуют формулы δ_i такие, что $\alpha(\delta_i) \in \lambda$, $\beta(\delta_i) \notin \lambda$. Пусть формулы δ_i содержат n пропозициональных переменных. Поскольку λ финитно аппроксимируемая, существует n-характеристическая для логики λ модель $Ch_n(\lambda)$. Тогда справедливо $Ch_n(\lambda) \models \alpha(\delta_i)$, $Ch_n(\lambda) \not\models \beta(\delta_i)$. Таким образом, означивание $S(x_i) = V(\delta_i) := \{x \in Ch_n(\lambda) : x \models \delta_i\}$ опровергает правило вывода r на $Ch_n(\lambda)$.

Пусть $a \in Ch_n(\lambda)$ — какой-либо R-максимальный элемент, на котором при означивании S опровергается формула $\beta(\delta_i)$. Определим последовательность фреймов F_m , $m \in N$:

- (i) $F_0 := a^R$;
- (ii) фрейм F_{m+1} для любого m получен из F_m следующим образом: рассмотрим каждую нетривиальную антицепь $\mathscr A$ сгустков F_m , не имеющую конакрытия в F_m , и добавим к F_m единственный рефлексивный элемент как конакрытие для антицепи $\mathscr A$, т. е. F_{m+1} конакрытийный последователь фрейма F_m .

В силу того, что логика λ имеет свойство конакрытий, для любого m F_m есть λ -фрейм, являющийся открытым подфреймом фрейма $Ch_n(\lambda)$. Таким образом, $F_{\infty} := \bigcup_{m \in N} F_m$ — открытый (порожденный) подфрейм фрейма $Ch_n(\lambda)$, опровергающий правило вывода r при означивании S.

В силу того, что $Ch_n(\lambda)$ — открытая подмодель модели $Ch_n(S4.2)$ (см. [2]) и любая нетривиальная антицепь фрейма F_{∞} имеет конакрытие, можно определить p-морфизм из $Ch_n(S4.2)$ на $F_{\infty} \sqcup e$, где e — одноэлементный рефлексивный сгусток, следующим образом.

- 1. Пусть F_{∞} открытый подфрейм компоненты \mathfrak{M}_{j} в представлении модели $Ch_{n}(S4.2)$ как $\sqcup \mathfrak{M}_{i}, i \leq 2^{2^{n}}$. Тогда определяем $\forall i, i \neq j \ f(\mathfrak{M}_{i}) := e$.
 - 2. На F_{∞} f определяется как тождественное отображение.
- 3. Для любого $x \in \mathfrak{M}_j \setminus F_{\infty}$ послойно определяем p-морфизм. Для $C(b) \in S_2(\mathfrak{M}_j) \setminus F_{\infty}$ положим f(C(b)) := a, где a фиксированный элемент R-максимального сгустка \mathfrak{M}_j . Если f уже определен на $S_k(\mathfrak{M}_j) \setminus F_{\infty}$ и $C(b) \in Sl_{k+1}(\mathfrak{M}_j) \setminus F_{\infty}$, то рассмотрим $X := \{f(x) | x \in b^R \setminus C(b)\}$. Пусть $C(b_1), \ldots, C(b_m)$ все R-минимальные сгустки из X. Все множества $f(C(b_1)), \ldots, f(C(b_m))$ являются множествами фрейма F_{∞} . Если хотя бы два из них различны, по построению F_{∞} существует конакрытие C для $f(C(b_1)), \ldots, f(C(b_m))$. Полагаем f(C(b)) := C. В противном случае (если $f(C(b_1)) = \cdots = f(C(b_m))$) определим f(C(b)) := a, где a фиксированный элемент $f(C(b_1))$.

Используя данный p-морфизм f, можем с помощью f^{-1} из $F_{\infty} \sqcup e$ перенести (трансформировать) означивание S на $Ch_n(S4.2)$. Вследствие того, что p-морфизм сохраняет истинность формул, при означивании S на модели $Ch_n(S4.2)$ опровергается правило вывода r. Но тогда по теореме 3.5.1 из [2] данное правило вывода не является допустимым в логике S4.2. Получаем противоречие с нашим исходным предположением. Лемма доказана.

Для сравнения с допустимыми правилами S4 заметим, что верно

Утверждение 1. Логика S4.2 не сохраняет допустимые в S4 правила вывода.

Доказательство. Рассмотрим правило вывода

$$r := \frac{\neg \{ \Diamond \square [(\Diamond x \wedge \Diamond \neg x) \wedge \Diamond \square x] \vee \Diamond \square [(\Diamond x \wedge \Diamond \neg x) \wedge \Diamond \square \neg x] \}}{\neg \Diamond \square (\Diamond x \wedge \Diamond \neg x)}$$

и покажем, что r не допустимо в S4.2.

Определим означивание V на n-характеристической модели $Ch_n(S4.2)$ для произвольного n следующим образом. На вырожденных сгустках первого слоя истинно x, и для каждого собственного сгустка полагаем x истинным на некотором фиксированном элементе сгустка и ложным на остальных элементах. Несложно проверить, что посылка правила r истинна на любом $y \in Ch_n(S4.2)$ при V, однако заключение r ложно при V на любом собственном сгустке первого слоя. Следовательно, по теореме 3.5.1 из [2] правило r не допустимо в S4.2.

Предположим, что правило r не допустимо в S4, т. е. существует формульное означивание W на некоторой $Ch_n(S4)$ такое, что для любого $y \in Ch_n(S4)$ на y истинна посылка r, но существует $a \in Ch_n(S4)$: $a \not\models_W \neg \Diamond \Box (\Diamond x \land \Diamond \neg x)$.

Понятно, что $a \not\models_W \neg \Diamond \Box(\Diamond x \wedge \Diamond \neg x) \iff a \models_W \Diamond \Box(\Diamond x \wedge \Diamond \neg x)$. Следовательно, из данного элемента a R-достижим некоторый фиксированный собственный сгусток C из первого слоя модели $Ch_n(S4)$ такой, что x является истинным и ложным при W на некоторых различных элементах сгустка C. По построению модели $Ch_n(S4)$ антицепь $\{C,e\}$, где e — некоторый одноэлементный сгусток первого слоя, C — зафиксированный ранее собственный сгусток, имеет конакрытие b. Легко проверить, что при любом означивании переменной x на e выполняется $b \models_W \{\Diamond \Box(\Diamond x \wedge \Diamond \neg x) \wedge \Diamond \Box x\}$ либо $b \models_W \{\Diamond \Box(\Diamond x \wedge \Diamond \neg x) \wedge \Diamond \Box \neg x\}$. Следовательно, при W посылка правила r опровергается на элементе b. Итак, правило r допустимо в S4. Утверждение доказано.

Лемма 2. Пусть финитно аппроксимируемая логика λ , расширяющая $Grz2 \equiv S4.2 + Grz$, имеет свойство конакрытий. Тогда λ сохраняет все допустимые правила логик S4, S4.1, S4.2 и Grz.2.

Доказательство проводится аналогично доказательству леммы 1 с той лишь разницей, что все сгустки во фреймах этой логики одноэлементные. Поэтому можно p-морфно отобразить $S_1(Ch_n(S4))$ [$S_1(Ch_n(S4.1))$, $S_1(Ch_n(S4.2))$] на R-максимальный сгусток F_{∞} и далее продолжить доказательство, как в лемме 1.

Непосредственно из леммы 2 вытекает

Следствие 1. Пусть финитно аппроксимируемая суперинтуиционистская логика λ , расширяющая KC, имеет свойство конакрытий. Тогда λ сохраняет допустимые правила логик KC и Int.

Доказательство. Если правило r допустимо в KC, то T(r) допустимо в $\sigma(KC) = Grz^2$ (см., например, теорему 3.2.2 из [2]). Так как логика λ расширяет KC, логика $\sigma(\lambda)$ расширяет $\sigma(KC)$ и по лемме 2 T(r) допустимо в $\sigma(\lambda)$, что по [1; 2, теорема 3.2.2] влечет допустимость r в λ . Следствие доказано.

Говорят, что логика $\lambda \supseteq S4(Int)$ имеет свойство полноты по конакрытиям (полна по конакрытиям), если для любого n любая нетривиальная антицепь сгустков любой компоненты модели $Ch_n(\lambda)$ имеет конакрытие.

Легко заметить, что логики S4, Grz, S4.1, S4.2, Grz.2, а также логики Int, KC полны по конакрытиям.

Лемма 3. Если финитно аппроксимируемая логика λ , расширяющая финитно аппроксимируемую полную по конакрытиям логику λ_1 , сохраняет все допустимые правила логики λ_1 , то логика λ имеет свойство конакрытий.

Доказательство. Пусть логика λ не имеет свойства конакрытий, т. е. для некоторого конечного корневого λ -фрейма F некоторый его конакрытийный

последователь не является λ -фреймом. Следовательно, существуют корневой подфрейм $F=a^R$ модели $Ch_n(\lambda)$, порожденный некоторым сгустком C(a), и последовательность F_0,\ldots,F_k открытых подфреймов фрейма $Ch_n(\lambda)$ таких, что

- 1) $F_0 := F = a^R$;
- 2) все нетривиальные антицепи фрейма F_i глубины не больше i имеют в F_i конакрытие при i < k;
- 3) существует нетривиальная антицепь $\delta \in F_k$, содержащая сгусток глубины k, не имеющая конакрытия в $Ch_n(\lambda)$.

Таким образом, любая нетривиальная антицепь фрейма F_k глубины не более k-1 имеет в F_k и в $Ch_n(\lambda)$ конакрытия. Более того, мы можем выбрать последовательность фреймов F_0,\ldots,F_k с минимальным числом элементов со свойствами 1–3.

Пусть $M:=S_k(Ch_n(\lambda))\cup F_k;\ M_1:=S_{k+1}(Ch_n(\lambda))\cup M.$ Заметим, что любой сгусток $i\in Ch_n(\lambda)$ либо является подмножеством M_1 или M, либо имеет пустое пересечение с M_1 и M. Если i,j—сгустки, то $iRj\Longleftrightarrow \forall x\in i\ \forall y\in j\ (xRy).$

Для любого сгустка $i \in M_1$ введем новую пропозициональную переменную p_i , не принадлежащую области $\mathrm{Dom}(V)$ означивания V на модели $Ch_n(\lambda)$. Индукцией по глубине сгустка $i \in M_1$ определим формулу f(i) следующим образом.

- 1) Если $i \in S_1(M_1)$, то $f(i) := \Box p_i$.
- 2) Пусть для любого $i \in S_l(M_1)$ формула f(i) уже определена. Возьмем сгусток $j \in Sl_{l+1}(M_1)$. Тогда

$$f(j) := \Box p_j \wedge \bigwedge \{ \neg \Box p_i \mid i \neq j, i \in S_{l+1}(M_1) \} \wedge \bigwedge_{jRi, \neg (iRj)} \Diamond f(i) \wedge$$
$$\bigwedge \{ \neg \Diamond f(i) \mid \neg (jRi), i \in S_{\leq l}(M_1) \} \wedge \bigwedge_{\neg (iRj)} \neg \Box p_i \wedge u(j),$$

где

$$u(j) := \Box([\Box p_j \land \bigwedge \{\neg \Box p_i \mid i \neq j, i \in S_{l+1}(M_1)\} \land \bigwedge_{jRi, \neg(iRj)} \Diamond f(i) \land$$

$$\bigwedge_{jRi, \neg(iRj)} \neg f(i)] \lor \bigvee_{jRi, \neg(iRj)} f(i))$$

$$g := \bigwedge_{i \in M_1} \neg f(i) \land \bigvee_{i \in S_{k+1}(M_1)} \Diamond f(i), \quad r := \frac{\bigvee \{f(i) | i \in M_1\} \lor g}{\neg f(a)},$$

a — корень фрейма F_0 .

Введем на модели $Ch_n(\lambda)$ означивание W переменных p_i из правила вывода r следующим образом: $W(p_i):=\{j\mid iRj\}$. Тогда непосредственно проверяется,

- 1) $a \models_W f(i)$ для любого сгустка $i \in M_1$ и любого $a \in i$;
- 2) $a \models_W g$ для любого сгустка $i \in Ch_n(\lambda) \setminus M_1$ и любого $a \in i$.

Таким образом, посылка правила r истинна на $Ch_n(\lambda)$ при означивании W, но так как на корне a фрейма F_0 верно $a \models_W f(a)$, правило вывода r опровергается на модели $Ch_n(\lambda)$ при означивании W. В силу теоремы 3.3.7 из [2] любой элемент модели $Ch_n(\lambda)$ является формульным, следовательно, означивание W

для любого i сопоставляет пропозициональной переменной p_i некоторое определимое подмножество в $Ch_n(\lambda)$. Значит, по теореме 3.5.1 из [2] правило вывода r не допустимо в логике λ .

Покажем, что правило r допустимо в логике λ_1 . Предположим, что это не так. Тогда по теореме 3.5.1 из [2] существует элемент $b_a \in Ch_n(\lambda_1)$ такой, что $b_a \models_W f(a)$ для некоторого формульного означивания W на n-характеристической модели $Ch_n(\lambda_1)$ для некоторого n, причем посылка r истинна при W на $Ch_n(\lambda_1)$.

Непосредственно из определения f(i) следует

$$\forall b_i \in Ch_n(S4.2)(b_i \models_W f(i) \land j \in M_1 \land (iRj) \land \neg(jRi) \Longrightarrow \exists b_j(b_iRb_j \land b_j \models_W f(j)). \tag{1}$$

Действительно, поскольку $b_i \models_W f(i)$, выполняется $b_i \models_W \bigwedge_{iRj,\neg(jRi),j\in M_1} \Diamond f(j)$,

T. e.
$$\exists j \in M_1 : iRj \wedge b_j \in j \wedge b_j \models_W f(j)$$
.

Пусть $b_i \models_W f(i)$, $b_j \models_W f(j)$ и $b_i R b_j$. Предположим, что $\neg (iRj)$. Тогда $b_j \models_W \neg \Box p_i$ по определению истинности оператора \Box . Но по условию выполняется $b_i \models_W f(i)$, значит, по определению f(i) имеем $b_i \models_W \Box p_i$ ($\Box p_i -$ конъюнктивный член формулы f(i)). Из $b_i \models_W \Box p_i$ и $b_i R b_j$ следует $b_j \models_W \Box p_i$ по определению означивания W и транзитивности модели, что противоречит $\neg (iRj)$. Следовательно,

$$\forall b_i, b_j \in Ch_n(S4.2)(b_i \models_W f(i) \land b_j \models_W f(j) \land \neg(iRj) \Longrightarrow \neg(b_iRb_j). \tag{2}$$

Из (1) и (2) непосредственно заключаем, что

$$b_i \models_W f(i) \land (iRj) \land \neg (jRi) \Longrightarrow \exists b_j [(b_iRb_j) \land \neg (b_jRb_i) \land b_j \models_W f(j)]. \tag{3}$$

Отсюда

$$b_i \models_W f(i) \land b_j \models_W f(j) \land (b_i R b_j) \Longrightarrow i R j.$$
 (4)

Снова используя (2), получаем

$$[b_i \models_W f(i) \land b_i \models_W f(j) \land \neg(iRj) \land \neg(jRi)] \Longrightarrow [\neg(b_iRb_i) \land \neg(b_iRb_i)]. \tag{5}$$

Из определения f(i) следует (как прежде (1))

$$[b_i \models_W f(i) \land (b_i R d)] \Longrightarrow \exists j (iRj \land d \models_W f(j)).$$
 (6)

Отсюда по (1) вытекает, что

$$(\forall j)(aRj) \Longrightarrow \exists b_i(b_aRb_i \land b_i \models_W f(j)). \tag{7}$$

Пусть X — любая нетривиальная антицепь сгустков из M глубины не более k. В силу $M \sqsubseteq Ch_n(\lambda) \sqsubseteq Ch_n(\lambda_1)$ антицепь X принадлежит некоторой компоненте \mathfrak{M}_j n-характеристической модели $Ch_n(\lambda_1)$. Пусть $b_j \in Ch_n(\lambda_1)$ такие, что $b_j \models_W f(j)$ для всех $j \in X$ (они существуют, ибо $\forall i \in M_1 \forall a \in ia \models_W f(i)$)). Тогда по свойству полноты по конакрытиям логики λ_1 в модели $Ch_n(\lambda_1)$ существует конакрытие v антицепи сгустков $C_j := C(b_j)$. Из того, что посылка правила r истинна на всей модели $Ch_n(\lambda_1)$, следует, что $v \models_W f(j)$ для некоторого сгустка $j \in M_1$ либо $v \models_W g$.

Предположим $v \models_W g$. Тогда $v \models_W \Diamond f(x)$, где $x \in S_{k+1}(M_1)$, и $v \models_W \neg f(j)$ для любого $j \in M_1$. Следовательно, существует b_x такой, что $vRb_x \land \neg (b_xRv) \land b_x \models_W f(x)$. Поэтому

$$\exists i \in X : b_i R b_x. \tag{8}$$

Соотношения (8) и (4) влекут $iRx(b_i \models_W f(i) \land b_x \models_W f(x) \land (b_iRb_x) \Longrightarrow iRj);$ противоречие с тем, что $x \in S_{k+1}(M_1)$ и что сгусток i глубины не более k. Итак,

$$\exists j \in M_1 : v \models_W f(j), \tag{9}$$

$$\forall j, j \in M_1 \land v \models_W f(j) \Longrightarrow j$$
 — конакрытие для X в модели M_1 . (10)

Действительно, по предположению имеем $b_i \models_W f(x)$ и (vRb_i) и $\neg(b_iRv)$. Это совместно с $v \models_W f(j)$ и (4) влечет $\forall i \in X \ jRi$. Предположим, что сгусток l — непосредственный R-последователь для $j \in M_1$ (т. е. jRl). Тогда по (3) существует $b_l \in Ch_n(\lambda_1)$ такой, что $b_l \models_W f(l)$ и vRb_l и $\neg(b_lRv)$. Отсюда согласно (8) имеем b_iRb_l , что ввиду (4) влечет iRl. Итак, j — конакрытие для X, и (10) доказано.

Применяя доказанное выше, получаем, что для любого сгустка x

$$x \in S_k(F_k) \Longrightarrow \exists b_x \in Ch_n(\lambda_1)(b_x \models_W f(x)).$$
 (11)

Пусть δ — антицепь сгустков фрейма F_k (содержащая сгусток глубины k), не имеющая конакрытия в $Ch_n(\lambda)$. Пусть $\mathcal{D}:=\{b_x\mid x\in\delta:b_x\models_W f(x)\}$ (существование b_x следует из (11)). Понятно, что сгустки $C(b_x),b_x\in\mathcal{D}$, образуют нетривиальную антицепь. Вследствие полноты по конакрытиям логики λ_1 любая нетривиальная антицепь сгустков любой компоненты \mathfrak{M}_j л-характеристической модели $Ch_n(\lambda_1)$ имеет в данной модели конакрытие. Пусть w — конакрытие антицепи сгустков $C(b_x)$, порожденных элементами $b_x\in\mathcal{D}$. Согласно (10) существует сгусток j, являющийся конакрытием для δ в модели M_1 и $Ch_n(\lambda)$; противоречие с исходным предположением о том, что δ не имеет такого конакрытия. Следовательно, правило вывода r является допустимым в λ_1 , но, как мы показали, r не допустимо в λ ; противоречие. Итак, логика λ имеет свойство конакрытий. Лемма доказана.

Непосредственным следствием лемм 1 и 3 является следующий критерий.

Теорема 1. Финитно аппроксимируемая логика λ , расширяющая S4.2, сохраняет все допустимые в S4.2 правила вывода, если и только если λ имеет свойство конакрытий.

Аналогично из лемм 2 и 3 вытекает

Теорема 2. Финитно аппроксимируемая логика λ , расширяющая логику Grz.2, сохраняет все допустимые в S4, S4.1, S4.2 или Grz.2 правила вывода, если и только если λ имеет свойство конакрытий.

Лемма 4. Если финитно аппроксимируемая логика λ , расширяющая KC, сохраняет все допустимые в KC правила вывода, то λ имеет свойство конакрытий.

Доказательство. Пусть λ не имеет свойства конакрытий. Тогда логика $\sigma(\lambda) \supseteq Grz.2 = \sigma(KC)$ (следствие 2.7.21 из [2]) также не имеет данного свойства. Но логика $\sigma(\lambda)$ финитно аппроксимируема (следствие 2.7.21 из [2]) поскольку λ финитно аппроксимируема. Тогда по теореме 2 существует некоторое правило $\Box \alpha/\Box \beta$, допустимое в логике Grz.2, но не допустимое в $\sigma(\lambda)$. Тем самым для некоторых δ_i выполняется $\Box \alpha(\delta_i(q_j)) \in \sigma(\lambda)$, но $\Box \beta(\delta_i(q_j)) \not\in \sigma(\lambda)$. В силу финитной аппроксимируемости $\sigma(\lambda)$ существует конечное частично упорядоченное множество T, опровергающее $\Box \beta(\delta_i(q_j))$ при некотором означивании S. Так как T — конечное частично упорядоченное множество, то $S(q_j) = t_j(\Box X_1, \ldots, \Box X_n)$,

 $X_i \subseteq T$, для некоторых X_j . Но по лемме 2.7.14 из [2] существуют пропозициональные формулы ϕ_1 и ϕ_2 такие, что $\Box \alpha(\delta_i(t_j(\Box X_1,\ldots,\Box X_n))) \equiv T(\phi_1) \in S4$ и $\Box \beta(\delta_i(t_j(\Box X_1,\ldots,\Box X_n))) \equiv T(\phi_2) \in S4$. Поэтому $T(\phi_1) \in \sigma(\lambda)$, но $T(\phi_2) \not\in \sigma(\lambda)$. Правило $T(\phi_1/\phi_2)$ допустимо в $G(x_1,x_2)$ но не допустимо в $G(x_2,x_3)$ из [2] правило $G(x_1,x_2)$ допустимо в $G(x_2,x_3)$ но не допустимо в $G(x_3,x_3)$ допустимо в $G(x_3,x_3)$ допустимо в $G(x_3,x_3)$ но не допустимо в $G(x_3,x_3)$ противоречие. Значит, $G(x_1,x_2)$ допустимо в $G(x_2,x_3)$ но не допустимо в $G(x_3,x_3)$ противоречие. Лемма доказана.

Непосредственным следствием леммы 4 и следствия 1 является

Теорема 3. Финитно аппроксимируемая логика λ , расширяющая KC, сохраняет все допустимые в KC правила вывода, если и только если λ имеет свойство конакрытий.

Отметим, что резонным открытым вопросом является описание условий для сохранения допустимости правил вывода не для индивидуальных логик, а для содержательных классов логик. Например, как выглядят финитно аппроксимируемые логики, сохраняющие правила вывода, допустимые во всех логиках фиксированной конечной ширины?

ЛИТЕРАТУРА

- Rybakov V. V. Preserving of admissible inference rules // Logical Found. Computer Sci. Berlin: Springer-Verl., 1994. P. 304–316. (Lectures Notes in Computer Sci.; 813).
- Rybakov V. V. Admissibility of logical inference rules. New York; Amsterdam: Elsevier Sci. Publ., 1997. (Stud. Logic Found. Math.; 136).
- 3. Chagrov A., Zakharyaschev M. Modal logic. London: Cambridge Press, 1997.

Статья поступила 30 июня 1998 г., окончательный вариант — 14 апреля 1999 г.

Рыбаков Владимир Владимирович, Римацкий Виталий Валентинович Красноярский гос. университет, математический факультет, кафедра алгебры и математической логики, пр. Свободный, 79, Красноярск 660041