ПОРЯДКОВЫЕ СВОЙСТВА ПРОСТРАНСТВА КОНЕЧНО-АДДИТИВНЫХ ПЕРЕХОДНЫХ ФУНКЦИЙ

А. Е. Гутман, А. И. Сотников

Аннотация: Изучаются основные порядковые (а также некоторые метрические и алгебраические) свойства множества конечно-аддитивных переходных функций (на произвольном измеримом пространстве), наделенного структурой упорядоченной нормированной алгебры, и исследуется его связь с классическими пространствами линейных операторов, векторных мер и измеримых вектор-функций. В частности, рассматривается вопрос о разложении пространства переходных функций в сумму подпространств счетно-аддитивных и чисто конечно-аддитивных переходных функций.

Ключевые слова: переходная функция, марковский оператор, чисто конечноаддитивная мера, векторная мера, измеримая вектор-функция, лифтинг пространства с мерой, упорядоченное векторное пространство, векторная решетка, К-пространство, банахова решетка, упорядоченная банахова алгебра.

§1. Введение

Пусть X — некоторое непустое множество, Σ — σ -алгебра его подмножеств. Пару (X,Σ) будем называть uзмеримым пространством, а элементы Σ —

Обозначим через $B(X,\Sigma)$ или, более коротко, B(X) банахово пространство всех ограниченных Σ -измеримых функций $f\colon X\to\mathbb{R}$ с нормой $\|f\|=\sup_{x\in X}|f(x)|$.

В данной статье термин *мера* означает конечно-аддитивную функцию, действующую из σ -алгебры в \mathbb{R} . Следуя [1], будем обозначать через $ba(X,\Sigma)$ или $ba(\Sigma)$ векторное пространство всех ограниченных мер из Σ в \mathbb{R} , а через $ca(X,\Sigma)$ или $ca(\Sigma)$ — подпространство $ba(\Sigma)$, состоящее из всех счетно-аддитивных ограниченных мер. (Как известно, в случае бесконечной σ -алгебры Σ включение $ca(\Sigma) \subset ba(\Sigma)$ является строгим.)

В теории вероятностей цепь Маркова однозначно определяется nepexodhoй вероятностью — произвольной функцией $p\colon X\times \Sigma\to \mathbb{R},$ удовлетворяющей следующим условиям:

- (a) $p(\cdot, E) \in B(X)$ для всех $E \in \Sigma$;
- (b) $p(x, \cdot) \in ca(\Sigma)$ для всех $x \in X$;
- (c) $p(x, E) \ge 0$ для всех $x \in X$ и $E \in \Sigma$;
- (d) p(x, X) = 1 для всех $x \in X$.

В работах А. И. Жданка [2–4] вводятся и исследуются конечно-аддитивные цепи Маркова, переходная вероятность которых удовлетворяет более слабому

измеримыми множествами.

аналогу условия (b): $p(x, \cdot) \in ba(\Sigma)$ для всех $x \in X$. Стремясь превратить множество рассматриваемых функций в векторное пространство, мы отказываемся от их положительности и нормированности и приходим к следующему определению переходной функции.

Определение 1.1. Пусть (X, Σ) — измеримое пространство. $\mathit{Переходной}$ $\mathit{функцией}$ на (X, Σ) назовем отображение $p \colon X \times \Sigma \to \mathbb{R}$, удовлетворяющее следующим условиям:

- (1) $p(\cdot, E) \in B(X)$ для всех $E \in \Sigma$;
- (2) $p(x, \cdot) \in ba(\Sigma)$ для всех $x \in X$.

Следует заметить, что термин «переходная функция» иногда используют как синоним «переходной вероятности». Мы же различаем эти два термина и употребляем последний лишь для функций, удовлетворяющих сформулированным выше условиям (a)–(d).

Совокупность всех переходных функций на измеримом пространстве (X, Σ) будем обозначать символом $\mathscr{P}(X, \Sigma)$.

В данной работе мы изучаем множество $\mathscr{P}(X,\Sigma)$, наделенное структурой упорядоченной нормированной алгебры, и исследуем его взаимосвязи с классическими пространствами линейных операторов, векторных мер и измеримых вектор-функций.

В теории вероятностей с каждой переходной вероятностью p на измеримом пространстве (X, Σ) связываются два так называемых марковских оператора $T_p \colon B(X) \to B(X)$ и $A_p \colon ca(\Sigma) \to ca(\Sigma)$, определяемых формулами

$$(T_pf)(x)=\int\limits_X f\,dp(x,m{\cdot}),\quad (A_p\mu)(E)=\int\limits_X p(m{\cdot},E)\,d\mu,$$

где $f \in B(X), x \in X, \mu \in ca(\Sigma), E \in \Sigma$. Как следует из результатов § 4, в случае произвольных переходных функций аналоги марковских операторов первого вида составляют пространство $\mathcal{L}(B(X))$ всех линейных ограниченных операторов на B(X), в то время как аналоги марковских операторов второго вида образуют определенное подпространство $\mathcal{L}(ba(\Sigma))$, а именно пространство $\mathcal{L}(ba(\Sigma))$ всех слабо* непрерывных линейных операторов на $ba(\Sigma)$. При этом, в частности, показано, что отображения $p \mapsto T_p$ и $p \mapsto A_p$ представляют собой изоморфизмы упорядоченной нормированной алгебры $\mathcal{P}(X,\Sigma)$ на $\mathcal{L}(B(X))$ и $\mathcal{L}_w(ba(\Sigma))$ соответственно.

Отметим, что рассмотрение марковских операторов для конечно-аддитивных переходных вероятностей было инициировано в работах [2–4]. Кроме того, один из исследуемых нами вопросов (в $\S 5$) — о разложении $\mathscr{P}(X,\Sigma)$ в сумму подпространств счетно-аддитивных и чисто конечно-аддитивных переходных функций — впервые был поднят в работе [2].

§ 2. Предварительные сведения из теории упорядоченных пространств

В данном параграфе мы приводим некоторые определения и факты из теории упорядоченных векторных пространств и положительных операторов, необходимые для дальнейшего изложения.

Мы предполагаем, что читатель знаком с такими понятиями, как упорядоченное векторное пространство, положительная и отрицательная части элемента (u^+, u^-) , векторная решетка, нормированная решетка, K-пространство, порядковый предел последовательности и сети $(o-\lim_{n\to\infty}u_n,\ o-\lim_{\alpha\in\mathcal{A}}u_\alpha,\ u_\alpha\stackrel{o}{\to}u),$ порядковая сумма семейства $(o-\sum_{\xi\in\Xi}u_\xi),$ дизъюнктность элементов и подмножеств

векторной решетки $(u \perp v, U \perp V, u \perp U)$, дизъюнктное дополнение и двойное дизъюнктное дополнение $(U^{\perp}, U^{\perp \perp})$, полоса (или компонента) векторной решетки, булева алгебра, полная булева алгебра, атом булевой алгебры, положительный линейный оператор. (Все необходимые сведения имеются в [5–14].)

Термин «оператор» всюду означает «линейный оператор». Все рассматриваемые в данной статье векторные пространства предполагаются заданными над полем \mathbb{R} вещественных чисел, а векторные решетки предполагаются архимедовыми.

Говорят, что множество *U наследственно вложено* в упорядоченное пространство V, если $U \subset V$ и для каждого подмножества $U_0 \subset U$ из существования $\sup_U U_0$ вытекают существование $\sup_V U_0$ и равенство $\sup_V U_0 = \sup_U U_0$.

Подмножество U векторной решетки V называют минорирующим (и говорят, что U минорирует V), если для каждого элемента $0 < v \in V$ существует элемент $u \in U$ такой, что $0 < u \le v$.

Отношение дизъюнктности \bot на векторной решетке обладает всеми свойствами «абстрактной» дизъюнктности, определяемой следующим образом.

Определение 2.1. Пусть V — векторное пространство и d — некоторое отношение на V, т. е. $d \subset V^2$. Для произвольного подмножества $U \subset V$ положим $U^{\mathrm{d}} = \{v \in V : u \ \mathrm{d} \ v \ \mathrm{для} \ \mathrm{всеx} \ u \in U\}$. Вместо $(U^{\mathrm{d}})^{\mathrm{d}}$ будем использовать более краткую запись U^{dd} . Будем говорить, что d является *отношением диз*ъwнжиности на V, если для всех $v, v_1, v_2 \in V$ и $\lambda \in \mathbb{R}$ выполнены следующие условия:

- (1) v d 0;
- (2) если $v \, d \, v$, то v = 0;
- (3) если v_1 d v_2 , то v_2 d v_1 ; (4) если $\{v_1\}^{\mathrm{dd}} \cap \{v_2\}^{\mathrm{dd}} = \{0\}$, то v_1 d v_2 ;
- (5) если v_1 d v, то λv_1 d v;
- (6) если v_1 d v и v_2 d v, то $(v_1 + v_2)$ d v.

Понятие дизъюнктности на векторном пространстве V является в некотором смысле частным случаем понятия дизъюнктности, введенного в [13] для произвольного множества V.

Пусть d — произвольное симметричное отношение на множестве V. Подмножество $W \subset V$ называется d-nonocoй, если $W^{\mathrm{dd}} = W$. Заметим, что Wявляется d-полосой тогда и только тогда, когда $W=U^{\mathrm{d}}$ для некоторого подмножества $U \subset V$. Если d — отношение дизъюнктности на векторном пространстве, то всякая d-полоса является векторным подпространством.

Теорема 2.2. Пусть \overline{V} — векторная решетка и V — минорирующее векторное подпространство \overline{V} . Введем на V отношение d, полагая v_1 d v_2 в том и только том случае, если $v_1 \perp v_2$ (т. е. $v_1, v_2 \in V$ дизъюнктны как элементы векторной решетки \overline{V}). Тогда имеют место следующие утверждения:

- (1) V наследственно вложено в \overline{V} ;
- (2) $\sup_{\overline{V}} \{v \in V : 0 \le v \le \overline{v}\} = \overline{v}$ для всех $0 \le \overline{v} \in \overline{V}$;
- (3) $U^{\mathrm{dd}} = U^{\perp \perp} \cap V$ для любого подмножества $U \subset V$;
- (4) отношение d является отношением дизъюнктности на V.

ДОКАЗАТЕЛЬСТВО. (1) Пусть $U \subset V$ и $v = \sup_V U$. Покажем, что $v = \sup_{\overline{V}} U$. Рассмотрим произвольную верхнюю грань $\overline{v} \in \overline{V}$ множества U и покажем неравенство $v \leq \overline{v}$. Обозначим $\overline{v} \wedge v$ через \overline{v}_0 и предположим вопреки доказываемому, что $\overline{v}_0 < v$. Поскольку V минорирует \overline{V} , существует элемент $w \in V$ такой, что $0 < w \leq v - \overline{v}_0$. Для любого элемента $u \in U$ имеем $u \leq \overline{v}_0 = \overline{v}_0 + w - w \leq \overline{v}_0 + (v - \overline{v}_0) - w = v - w$. Следовательно, $v = \sup_V U \leq v - w$, что противоречит неравенству w > 0.

- (2) Пусть $0 \leq \bar{v} \in \overline{V}$. Положим $U = \{v \in V : 0 \leq v \leq \bar{v}\}$ и покажем, что $\sup_{\overline{V}} U = \bar{v}$. Рассмотрим произвольную верхнюю грань $\bar{v}_1 \in \overline{V}$ множества U и установим неравенство $\bar{v} \leq \bar{v}_1$. Обозначим $\bar{v}_1 \wedge \bar{v}$ через \bar{v}_0 и предположим вопреки доказываемому, что $\bar{v}_0 < \bar{v}$. Поскольку V минорирует \overline{V} , существует элемент $v \in V$ такой, что $0 < v \leq \bar{v} \bar{v}_0$. Согласно принципу Архимеда неравенство $nv \leq \bar{v}$ не может быть выполнено для всех $n \in \mathbb{N}$. Пусть n наибольшее натуральное число, удовлетворяющее неравенству $nv \leq \bar{v}$. Тогда $nv \in U$, откуда $(n+1)v = nv + v \leq \bar{v}_0 + v \leq \bar{v}_0 + (\bar{v} \bar{v}_0) = \bar{v}$, что противоречит выбору n. (3) Включение $U^{\perp \perp} \cap V \subset U^{\mathrm{dd}}$ очевидно. Покажем обратное включение.
- (3) Включение $U^{\perp\perp} \cap V \subset U^{\mathrm{dd}}$ очевидно. Покажем обратное включение. Пусть $v \in U^{\mathrm{dd}}$. Тогда, как легко видеть, $v \perp U^{\perp} \cap V$. Для доказательства требуемого соотношения $v \perp U^{\perp}$ достаточно рассмотреть произвольный положительный элемент $\bar{v} \in U^{\perp}$ и показать, что $v \perp \bar{v}$. Положим $W = \{w \in V : 0 \leq w \leq \bar{v}\}$. Из соотношения $\bar{v} \perp U$ вытекает $W \perp U$, откуда $W \subset U^{\perp} \cap V$, а значит, $v \perp W$. Последнее с учетом утверждения (2) доказываемой теоремы дает $v \perp \sup_{\overline{V}} W = \bar{v}$.
- (4) В доказательстве нуждается лишь условие (4) определения 2.1. Пусть $u,v\in V,\ \{u\}^{\mathrm{dd}}\cap \{v\}^{\mathrm{dd}}=\{0\},\$ но тем не менее $\overline{w}=|u|\wedge |v|\neq 0.$ Поскольку V минорирует \overline{V} , имеется элемент $w\in V$ такой, что $0< w\leq \overline{w}.$ Учитывая утверждение (3) доказываемой теоремы, заключаем, что $w\in \{u\}^{\perp\perp}\cap \{v\}^{\perp\perp}\cap V=\{u\}^{\mathrm{dd}}\cap \{v\}^{\mathrm{dd}}.$ Полученное противоречие завершает доказательство. \square

Нормированное пространство, снабженное порядком, относительно которого оно является упорядоченным векторным пространством, условимся называть упорядоченным нормированным пространством (какое-либо согласование нормы и порядка не предполагается).

Замечания 2.3. Пусть (X, Σ) — произвольное измеримое пространство. Наделим нормированное пространство B(X) поточечным порядком, превратив его тем самым в банахову решетку.

- (1) В нормированной решетке B(X) ограниченность по норме эквивалентна порядковой ограниченности. Поэтому в дальнейшем мы будем употреблять термин «ограниченность» для каждого из этих эквивалентных свойств.
- (2) Последовательность $(f_n)_{n\in\mathbb{N}}$ элементов B(X) ограничена тогда и только тогда, когда в B(X) существуют $\sup_{n\in\mathbb{N}} f_n$ и $\inf_{n\in\mathbb{N}} f_n$. При этом для всех $x\in X$ справедливы равенства $(\sup_{n\in\mathbb{N}} f_n)(x) = \sup_{n\in\mathbb{N}} f_n(x)$ и $(\inf_{n\in\mathbb{N}} f_n)(x) = \inf_{n\in\mathbb{N}} f_n(x)$.
- (3) Последовательность элементов B(X) о-сходится к функции $f \in B(X)$ тогда и только тогда, когда эта последовательность ограничена и сходится поточечно к f.

Упорядоченной алгеброй называют алгебру V, являющуюся упорядоченным векторным пространством и обладающую следующим свойством: если $u,v\in V$ и $u,v\geq 0$, то $uv\geq 0$.

Нормированную алгебру, снабженную порядком, относительно которого она является упорядоченной алгеброй, условимся называть *упорядоченной нор*-

мированной алгеброй (какое-либо согласование нормы и порядка не предполагается). Примером упорядоченной нормированной алгебры является пространство $\mathcal{L}(V,V)$ всех ограниченных (по норме) операторов, действующих в нормированной решетке V.

Полную по норме упорядоченную нормированную алгебру будем называть упорядоченной банаховой алгеброй.

Если V — нормированное пространство, то символом V' будем обозначать сопряженное к V банахово пространство, т. е. пространство всех ограниченных линейных функционалов из V в \mathbb{R} . Подмножество V', всюду плотное в V' в смысле слабой* топологии, будем называть слабо* плотным. Символом T' обозначается оператор из $\mathcal{L}(W',V')$, сопряженный к оператору $T \in \mathcal{L}(V,W)$.

Для нормированных пространств V и W символом $\mathcal{L}_w(V',W')$ мы обозначаем множество слабо* непрерывных операторов из V' в W', т. е. операторов, непрерывных в смысле слабой* топологии. Заметим, что $\mathcal{L}_w(V',W') \subset \mathcal{L}(V',W')$ (это включение вытекает, например, из теоремы о замкнутом графике).

Оператор $T\colon V\to W$, действующий в упорядоченных векторных пространствах V и W, называют секвенциально о-непрерывным (или σ -о-непрерывным), если из $v_n\stackrel{o}{\to} v$ вытекает $Tv_n\stackrel{o}{\to} Tv$ для любой последовательности $(v_n)_{n\in\mathbb{N}}$ в V и любого элемента $v\in V$. Множество всех секвенциально о-непрерывных операторов из V в W обозначается символом $\mathscr{L}_o(V,W)$.

Если пространства V и W совпадают, то в записях $\mathcal{L}(V,W)$, $\mathcal{L}_w(V',W')$, $\mathcal{L}_o(V,W)$ мы будем, как это обычно принято, опускать символ второго пространства и писать, например, $\mathcal{L}(V)$ вместо $\mathcal{L}(V,V)$.

Следующее утверждение с легкостью выводится из того факта, что образ нормированного пространства V при естественном вложении V в V'' совпадает с множеством всех слабо* непрерывных функционалов на V' (см., например, [1, V.3.9]).

Предложение 2.4. Пусть V и W — нормированные пространства. Оператор из W' в V' является сопряженным к некоторому ограниченному оператору из V в W тогда и только тогда, когда он слабо* непрерывен.

§ 3. Вспомогательные факты из теории меры

В этом параграфе мы приводим основные сведения из теории меры (в том числе касающиеся конечно-аддитивных мер [15-19], векторных мер [1,20,21] и измеримых вектор-функций [12,21]), а также устанавливаем некоторые вспомогательные факты, затрагивающие пространства с мерой и лифтинги (см. [12,20,22,23]).

Определение 3.1. Под *пространством с мерой* в данной работе понимается тройка $(X, \Sigma, |\cdot|)$, где (X, Σ) — измеримое пространство, а $|\cdot|$ — положительная счетно-аддитивная функция из Σ в $\overline{\mathbb{R}}$ (традиционно называемая мерой), удовлетворяющая следующим условиям:

- (1) если $E \subset X$ и $E \cap F \in \Sigma$ для всех $F \in \Sigma$ конечной меры, то $E \in \Sigma$;
- (2) если $E \in \Sigma$ и $|E| = \infty$, то существует такой элемент $E_0 \in \Sigma$, что $E_0 \subset E$ и $0 < |E_0| < \infty$;
- (3) если $E \in \Sigma, \, |E| = 0$ и $E_0 \subset E$, то $E_0 \in \Sigma;$
- $(4) |X| \neq 0.$

(Заметим, что с точностью до условия (4) наше определение пространства с мерой совпадает, например, с определением, принятым в [9, I.6.2].)

Множества $E, F \in \Sigma$ называются эквивалентными, если $|E \vartriangle F| = 0$. Класс эквивалентности, содержащий множество $E \in \Sigma$, условимся обозначать символом E^{\sim} , а фактор-множество Σ по отношению эквивалентности — символом $\widetilde{\Sigma}$. Снабженное естественным порядком (индуцированным отношением включения) множество $\widetilde{\Sigma}$ является булевой алгеброй и называется фактор-алгеброй пространства с мерой $(X, \Sigma, |\cdot|)$.

Как обычно, мы будем говорить, что то или иное условие выполнено noumu ecody, если оно имеет место для всех элементов X, за исключением некоторого множества нулевой меры. Символом $\mathcal{L}^{\infty}(X)$ обозначается совокупность всех определенных почти всюду существенно ограниченных измеримых вещественных функций, а символом $L^{\infty}(X)$ — пространство (решеточно упорядоченная банахова алгебра) классов эквивалентности таких функций по отношению равенства почти всюду. Класс эквивалентности, содержащий функцию $f \in \mathcal{L}^{\infty}(X)$, условимся обозначать через f^{\sim} .

Отображение $\rho \colon L^\infty(X) \to \mathscr{L}^\infty(X)$ называется лифтингом пространства с мерой $(X, \Sigma, |\cdot|)$ или лифтингом пространства $L^\infty(X)$, если для любых $\alpha, \beta \in \mathbb{R}$ и $\mathbf{f}, \mathbf{g} \in L^\infty(X)$ имеют место следующие соотношения:

- (1) $\rho(\mathbf{f}) \in \mathbf{f}$ и dom $\rho(\mathbf{f}) = X$;
- (2) если $\mathbf{f} \leq \mathbf{g}$, то $\rho(\mathbf{f}) \leq \rho(\mathbf{g})$ всюду на X;
- (3) $\rho(\alpha \mathbf{f} + \beta \mathbf{g}) = \alpha \rho(\mathbf{f}) + \beta \rho(\mathbf{g}), \ \rho(\mathbf{f}\mathbf{g}) = \rho(\mathbf{f})\rho(\mathbf{g}), \ \rho(\mathbf{f} \vee \mathbf{g}) = \rho(\mathbf{f}) \vee \rho(\mathbf{g})$ $\mu \rho(\mathbf{f} \wedge \mathbf{g}) = \rho(\mathbf{f}) \wedge \rho(\mathbf{g});$
- (4) $\rho(0^{\sim}) = 0$ и $\rho(1^{\sim}) = 1$ всюду на X.

(Некоторые из перечисленных условий являются следствиями остальных.)

Если $f \in \mathcal{L}^{\infty}(X)$, то для функции $\rho(f^{\sim})$ принято более короткое обозначение: $\rho(f)$. Поскольку лифтинг является правым обратным к отображению $f \mapsto f^{\sim}$, мы будем иногда использовать запись f_{\sim} вместо $\rho(f)$.

Отображение $\rho \colon \widetilde{\Sigma} \to \Sigma$ называется лифтингом фактор-алгебры $\widetilde{\Sigma}$, если для любых классов $\mathbf{E}, \mathbf{F} \in \widetilde{\Sigma}$ имеют место следующие соотношения:

- (1) $\rho(\mathbf{E}) \in \mathbf{E}$;
- (2) если $\mathbf{E} \leq \mathbf{F}$, то $\rho(\mathbf{E}) \subset \rho(\mathbf{F})$;
- (3) $\rho(\mathbf{E} \vee \mathbf{F}) = \rho(\mathbf{E}) \cup \rho(\mathbf{F}), \ \rho(\mathbf{E} \wedge \mathbf{F}) = \rho(\mathbf{E}) \cap \rho(\mathbf{F});$
- (4) $\rho((X\backslash E)^{\sim}) = X\backslash \rho(E^{\sim})$ для всех $E\in\Sigma$;
- (5) $\rho(\varnothing^{\sim}) = \varnothing$ и $\rho(X^{\sim}) = X$.

По аналогии с лифтингом пространства $L^{\infty}(X)$ мы будем иногда писать $\rho(E)$ или E_{\sim} вместо $\rho(E^{\sim})$ и тем самым считать, что $\rho \colon \Sigma \to \Sigma$.

Следующее достаточно очевидное наблюдение зачастую позволяет упростить проверку того факта, обладает ли какое-либо конкретное отображение всеми свойствами лифтинга.

Предложение 3.2. Пусть $(X, \Sigma, |\cdot|)$ — пространство c мерой. Отображение $\rho \colon \widetilde{\Sigma} \to \Sigma$ является лифтингом фактор-алгебры $\widetilde{\Sigma}$ в том и только том случае, если оно удовлетворяет следующим двум условиям:

- (a) $\rho(\mathbf{E}) \in \mathbf{E}$ для всех $\mathbf{E} \in \widetilde{\Sigma}$;
- (b) для каждой точки $x\in X$ множество $\{\mathbf{E}\in\widetilde{\Sigma}:x\in\rho(\mathbf{E})\}$ является ультрафильтром булевой алгебры $\widetilde{\Sigma}.$

Если $\rho\colon L^\infty(X)\to \mathscr{L}^\infty(X)$ — лифтинг пространства $L^\infty(X)$, то отображение $\mathbf{E}\mapsto \{x\in X: \rho(1_{\mathbf{E}})(x)\neq 0\}$ является лифтингом фактор-алгебры $\widetilde{\Sigma}$ (здесь $1_{\mathbf{E}}\in L^\infty(X)$ — класс, содержащий характеристические функции 1_E множеств $E\in \mathbf{E}$). Обратно, для любого лифтинга фактор-алгебры $\widetilde{\Sigma}$ существует единственный лифтинг пространства $L^\infty(X)$, связанный с лифтингом $\widetilde{\Sigma}$ указанным выше образом (см. [20, § 11]).

Известно (см. [20,23]), что пространство с мерой $(X,\Sigma,|\cdot|)$ имеет лифтинг тогда и только тогда, когда оно обладает так называемым свойством прямой суммы: существует семейство $(E_\xi)_{\xi\in\Xi}$ попарно не пересекающихся измеримых множеств конечной меры такое, что в булевой алгебре $\widetilde{\Sigma}$ справедливо соотношение $\sup_{\xi\in\Xi} E_\xi^\sim = X^\sim$ (т. е. для любого измеримого множества E из |E|>0 вытекает $|E\cap E_\xi|>0$ при некотором $\xi\in\Xi$). В частности, лифтингом обладает всякое пространство с конечной или σ -конечной мерой (последний факт впервые установлен в [22]).

В дальнейшем нам пригодится следующий легко устанавливаемый результат.

Лемма 3.3. Пусть $(X, \Sigma, |\cdot|)$ — пространство с мерой, причем булева алгебра $\widetilde{\Sigma}$ не имеет атомов.

- (1) Если $x \in E \in \Sigma$ и $|E| < \infty$, то существует такое множество $F \in \Sigma$, что $x \in F \subset E$ и $|F| = \frac{1}{2}|E|$.
- (2) Если пространство $(X, \Sigma, |\cdot|)$ обладает лифтингом, $x \in E \in \Sigma$, $E_{\sim} = E$ и $|E| < \infty$, то существует такое множество $F \in \Sigma$, что $x \in F \subset E$, $F_{\sim} = F$ и $|F| = \frac{1}{2}|E|$.

Доказательство. Утверждение (1) непосредственно вытекает из классической теоремы П. Халмоша об образе меры (см. [24]), а (2) следует из (1) и элементарных свойств лифтинга. \square

Следствие 3.4. Если фактор-алгебра $\widetilde{\Sigma}$ пространства с мерой $(X, \Sigma, |\cdot|)$ безатомна, то все одноточечные подмножества X измеримы и имеют нулевую меру.

Доказательство. Достаточно заметить, что благодаря 3.1(1),(2) каждая точка принадлежит какому-либо измеримому множеству конечной меры, и воспользоваться утверждением (1) леммы 3.3. \square

Отметим, что утверждение, обратное следствию 3.4, не имеет места. Действительно, если множество X несчетно, σ -алгебра Σ состоит их всех счетных подмножеств X и их дополнений, а мера $|\cdot|$ равна нулю на счетных множествах и единице на их дополнениях, то все одноточечные подмножества X имеют нулевую меру, но тем не менее X^\sim является атомом фактор-алгебры $\widetilde{\Sigma}$ пространства с мерой $(X, \Sigma, |\cdot|)$.

Пусть (X, Σ) — произвольное измеримое пространство. Для любой точки $x \in X$ и множества $E \in \Sigma$ положим $\delta_x(E) = 1$, если $x \in E$, и $\delta_x(E) = 0$ в противном случае. Определенную таким образом меру δ_x принято называть дельтамерой или мерой Дирака (вырожденной в точке x). Очевидно, что $\delta_x \in ca(\Sigma)$ для всех $x \in X$.

Будем говорить, что множество $E\subset X$ разделяет точки $x,y\in X$ (или точки x и y разделяются множеством E), если либо $x\in E$ и $y\notin E$, либо $x\notin E$ и $y\in E$. Точки $x,y\in X$ будем называть Σ -разделимыми, если x и y

разделяются некоторым элементом Σ , и Σ -неразделимыми в противном случае. Очевидно, что точки x и y являются Σ -неразделимыми тогда и только тогда, когда $\delta_x = \delta_y$.

Как легко видеть, отношение Σ -неразделимости является отношением эквивалентности. Фактор-классы множества X по отношению Σ -неразделимости будем называть *комками* пространства (X, Σ) .

Очевидно, что измеримые комки пространства (X, Σ) — это в точности атомы булевой алгебры Σ .

Замечание 3.5. Отметим, что комок не обязан быть измеримым множеством. Действительно, пусть X=[0,1]. Рассмотрим неизмеримое по Лебегу множество $G\subset X$ и положим

$$\Sigma = \{ E \in \mathscr{L} : E \supset G \text{ или } E \cap G = \varnothing \},$$

где $\mathscr{L} - \sigma$ -алгебра измеримых по Лебегу подмножеств X. Очевидно, что (X,Σ) — измеримое пространство и G — его неизмеримый комок. (Все остальные комки измеримы и имеют вид $\{x\}$, где $x\in X\backslash G$.)

Подмножество $Y \subset X$ будем называть Σ -согласованным, если Y не разделяет Σ -неразделимые точки или, что то же самое, Y является объединением некоторого множества комков. Совокупность всех Σ -согласованных подмножеств X обозначим символом $\overline{\Sigma}$. Как легко видеть, $\overline{\Sigma}$ является σ -алгеброй и полной атомной булевой алгеброй, содержащей Σ (вопрос о совпадении Σ и $\overline{\Sigma}$ рассмотрен ниже в предложении 3.6).

Функцию $f\colon X\to\mathbb{R}$ назовем Σ -согласованной, если f(x)=f(y) для любых Σ -неразделимых точек $x,y\in X$, т. е. для любых $x,y\in X$ из равенства $\delta_x=\delta_y$ вытекает равенство f(x)=f(y). Очевидно, что функция является Σ -согласованной в том и только том случае, если она измерима относительно σ -алгебры $\overline{\Sigma}$. Отметим, что пространство $B(X,\overline{\Sigma})$ всех Σ -согласованных ограниченных функций является банаховым K-пространством.

Измеримое пространство (X, Σ) условимся называть *поточечно измеримым*, если $\{x\} \in \Sigma$ для всех $x \in X$.

Измеримое пространство (X, Σ) назовем *атомным*, если все его комки измеримы (т. е. являются атомами Σ) или, что то же самое, объединение всех атомов Σ совпадает с X.

Как легко видеть, если (X,Σ) — атомное измеримое пространство, то Σ — атомная булева алгебра. Обратное утверждение неверно. Например, измеримое пространство (X,Σ) , построенное в замечании 3.5, не является атомным, однако Σ — атомная булева алгебра.

Предложение 3.6. Следующие свойства измеримого пространства (X, Σ) равносильны:

- (1) (X, Σ) является атомным и Σ полная булева алгебра;
- (2) все Σ -согласованные подмножества X измеримы (т. е. $\Sigma = \overline{\Sigma}$);
- (3) $\Sigma = \{\bigcup_{j \in J} X_j : J \subset I\}$ для некоторого разбиения $(X_i)_{i \in I}$ множества X.

Доказательство. Импликации $(3)\Rightarrow(2)$ и $(3)\Rightarrow(1)$ очевидны. Для доказательства импликации $(2)\Rightarrow(3)$ достаточно взять в качестве $(X_i)_{i\in I}$ семейство всех комков пространства (X,Σ) .

Докажем, импликацию (1) \Rightarrow (3). Пусть $(X_i)_{i\in I}$ — семейство всех атомов Σ .

Рассмотрим $E \in \Sigma$ и положим $J = \{i \in I : X_i \subset E\}$. Допустим, что $E \neq \bigcup_{j \in J} X_j$, т. е. существует точка $x \in E \setminus \bigcup_{j \in J} X_j$. Поскольку $\bigcup_{i \in I} X_i = X$, точка x принадлежит X_i для некоторого $i \in I \setminus J$, а значит, X_i не содержится в E, но имеет с E общую точку, что противоречит Σ -согласованности множества E.

Пусть теперь J — произвольное подмножество I. В силу полноты булевой алгебры Σ существует $E=\sup_{j\in J}X_j\in \Sigma$. Воспользовавшись первой частью доказательства импликации $(1)\Rightarrow (3)$, легко установить, что $E=\bigcup_{j\in J}X_j$, а значит, $\bigcup_{j\in J}X_j\in \Sigma$. \square

Измеримое пространство, обладающее одним из свойств (1), (2) или (3), сформулированных в предложении 3.6, будем называть дискретным.

Заметим, что поточечно измеримые и дискретные измеримые пространства являются атомными. Примером недискретного поточечно измеримого пространства может служить числовая прямая $\mathbb R$ с борелевской σ -алгеброй $\mathcal B(\mathbb R)$. В качестве примера атомного измеримого пространства, которое не является ни поточечно измеримым, ни дискретным, можно рассмотреть пространство $(\mathbb R^2, \{A \times \mathbb R : A \in \mathcal B(\mathbb R)\})$.

Семейство множеств $(E_i)_{i\in I}$ называют измеримым разбиением множества $E\in \Sigma,$ если $E_i\cap E_j=\varnothing$ при $i\neq j,$ $\bigcup_{i\in I}E_i=E$ и $E_i\in \Sigma$ для всех $i\in I.$

Напомним, что вариацией меры $\mu \in ba(\Sigma)$ называется мера $|\mu| \in ba(\Sigma)$, определяемая формулой

$$|\mu|(E)=\sup\left\{\sum_{i=1}^n|\mu(E_i)|\,:\,(E_1,\ldots,E_n)$$
 — измеримое разбиение $E
ight\}.$

Заметим, что для всех $E \in \Sigma$ имеют место равенства (см. [18])

$$|\mu|(E) = \sup_{\substack{F,\,G \in \Sigma \\ F,\,G \subset E}} (\mu(F) - \mu(G)) = \sup_{\substack{F \in \Sigma \\ F \subset E}} (\mu(F) - \mu(X \backslash F)).$$

Известно, что векторные пространства $ba(\Sigma)$ и $ca(\Sigma)$, снабженные естественным порядком ($\mu_1 \leq \mu_2$, если $\mu_1(E) \leq \mu_2(E)$ для всех $E \in \Sigma$) и нормой $\|\mu\| = |\mu|(X)$, являются банаховыми решетками (и даже банаховыми К-пространствами, см. [18]). При этом вариация меры совпадает с ее модулем в соответствующей векторной решетке.

Положительная мера $\mu \in ba(\Sigma)$ называется чисто конечно-аддитивной, если для любой меры $\nu \in ca(\Sigma)$ из $0 \le \nu \le \mu$ вытекает $\nu = 0$. Произвольная мера $\mu \in ba(\Sigma)$ называется чисто конечно-аддитивной, если меры μ^+ и μ^- чисто конечно-аддитивны. Подпространство $ba(\Sigma)$, состоящее из всех чисто конечно-аддитивных ограниченных мер, мы будем обозначать символом $pfa(X,\Sigma)$ или $pfa(\Sigma)$.

ЗАМЕЧАНИЕ 3.7. Известно (см. [18]), что $pfa(\Sigma)$, как и $ca(\Sigma)$, является банаховым К-пространством, причем $ca(\Sigma)$ и $pfa(\Sigma)$ — взаимно дополнительные полосы в $ba(\Sigma)$, т. е. $ca(\Sigma)^{\perp} = pfa(\Sigma)$ и $pfa(\Sigma)^{\perp} = ca(\Sigma)$. В частности, $ba(\Sigma) = ca(\Sigma) \oplus pfa(\Sigma)$.

В дальнейшем нам понадобится следующий факт.

Теорема 3.8. Пусть $(X, \Sigma, |\cdot|)$ — пространство с мерой, обладающее лифтингом $\rho: \Sigma \to \Sigma$, и булева алгебра $\widetilde{\Sigma}$ не имеет атомов. Тогда существует множество $X_0 \in \Sigma$ такое, что $|X \setminus X_0| = 0$ и $\delta_x \circ \rho \in pfa(\Sigma)$ для всех $x \in X_0$. Если, кроме того, мера $|\cdot|$ является σ -конечной, то $\delta_x \circ \rho \in pfa(\Sigma)$ для всех $x \in X$.

Доказательство. Из свойств лифтинга с очевидностью вытекает включение $\delta_x \circ \rho \in ba(\Sigma)$ для всех $x \in X$.

Поскольку пространство с мерой $(X,\Sigma,|\cdot|)$ обладает свойством прямой суммы (см. выше), существует семейство $(E_\xi)_{\xi\in\Xi}$ попарно не пересекающихся измеримых множеств конечной ненулевой меры такое, что $\sup_{\xi\in\Xi}E_\xi^\sim=X^\sim$. Поло-

жим $X_0=\bigcup_{\xi\in\Xi}\rho(E_\xi)$. Согласно [12, 1.2.12; 23, гл. I] множество X_0 измеримо и $|X\backslash X_0|=0$. Каждой точке $x\in X_0$ сопоставим индекс $\xi_x\in\Xi$, для которого $x\in\rho(E_{\xi_x})$.

Покажем, что $\delta_x \circ \rho \in pfa(\Sigma)$ для всех $x \in X_0$. Для этого зафиксируем произвольную точку $x \in X_0$, рассмотрим меру $\mu \in ca(\Sigma)$, удовлетворяющую условиям $0 \le \mu \le \delta_x \circ \rho$, и установим равенство $\mu = 0$.

Заметим, что $\mu(E)=0$, как только $E\in\Sigma$ и |E|=0. Следовательно, мера μ абсолютно непрерывна относительно $|\cdot|$.

Положим, $F_0^x = \rho(E_{\xi_x})$. По индукции, применяя лемму 3.3, построим убывающую последовательность множеств $F_n^x \in \Sigma$ $(n \in \mathbb{N})$, удовлетворяющих следующим условиям: $x \in F_n^x$, $\rho(F_n^x) = F_n^x$, $|F_n^x| = \frac{1}{2^n}|F_0^x|$. Для всех $n \in \mathbb{N}$ имеем $0 \le \mu(X \backslash F_n^x) \le \delta_x(\rho(X \backslash F_n^x)) = \delta_x(X \backslash F_n^x) = 0$. С другой стороны, устремляя n к бесконечности и учитывая, что $|F_n^x| \to 0$, заключаем $\mu(X \backslash F_n^x) = \mu(X) - \mu(F_n^x) \to \mu(X)$ в силу абсолютной непрерывности μ относительно $|\cdot|$. Следовательно, $\mu = 0$.

Теперь дополнительно предположим, что мера $|\cdot|$ является σ -конечной, и покажем, что включение $\delta_x \circ \rho \in pfa(\Sigma)$ имеет место не только для рассмотренного выше случая $x \in X_0$, но и для $x \in X \setminus X_0$. Для этого зафиксируем произвольную точку $x \in X \setminus X_0$, рассмотрим меру $\mu \in ca(\Sigma)$, удовлетворяющую условиям $0 \le \mu \le \delta_x \circ \rho$, и установим равенство $\mu = 0$.

Поскольку множества E_{ξ} попарно не пересекаются и $|E_{\xi}| > 0$ для всех $\xi \in \Xi$, из σ -конечности меры $|\cdot|$ с очевидностью вытекает счетность множества Ξ (см., например, [9, X.1.6]). Следовательно, $\mu(X_0) = \mu(\bigcup_{\xi \in \Xi} \rho(E_{\xi})) = \sum_{\xi \in \Xi} \mu(\rho(E_{\xi})) \le \sum_{\xi \in \Xi} \delta_x(\rho(E_{\xi})) = 0$. Кроме того, $\mu(X \backslash X_0) \le \delta_x(\rho(X \backslash X_0)) = \delta_x(\varnothing) = 0$. Таким образом, $\mu = 0$. \square

Рассмотрение переходных функций на (X, Σ) и операторов в пространствах B(X) и $ba(\Sigma)$ тесно связано с теорией векторных мер. Ниже мы приводим основные определения и факты этой теории.

Пусть (X,Σ) — измеримое пространство и V — нормированное пространство. Функция $m\colon \Sigma\to V$ называется ограниченной векторной (V-значной) мерой, если

- (1) $m(E \cup F) = m(E) + m(F)$, для любых $E, F \in \Sigma$, $E \cap F = \emptyset$;
- (2) образ m ограничен по норме.

Символом $ba(X, \Sigma, V)$ или $ba(\Sigma, V)$ будем обозначать векторное пространство всех ограниченных V-значных мер на Σ . Легко заметить, что если V — нормированная решетка, то $ba(\Sigma, V)$ является упорядоченным векторным простран-

ством относительно следующего порядка: $m_1 \leq m_2$, как только $m_1(E) \leq m_2(E)$ для всех $E \in \Sigma$.

Заметим, что $\varphi \circ m \in ba(\Sigma)$ для любых $\varphi \in V'$ и $m \in ba(\Sigma, V)$ и $ba(\Sigma, V)$ является нормированным пространством относительно нормы

$$||m|| = \sup_{\substack{\varphi \in V' \\ ||\varphi|| \le 1}} ||\varphi \circ m|| = \sup_{\substack{\varphi \in V' \\ ||\varphi|| \le 1}} |\varphi \circ m|(X).$$

Замечание 3.9. В случае V=B(X) формулу для нормы векторной меры можно упростить. А именно, для любой векторной меры $m\in ba(\Sigma,B(X))$ справедливо равенство

$$\|m\| = \sup_{x \in X} \|m(\cdot)(x)\|,$$

т. е. $\|m\|=\sup_{x\in X}\|\varphi_x\circ m\|$, где функционал $\varphi_x\in B(X)'$ определяется формулой $\varphi_x(f)=f(x)$. Действительно,

$$\begin{split} \|m\| &= \sup_{\substack{\varphi \in B(X)' \\ \|\varphi\| \leq 1}} \|\varphi \circ m\| = \sup_{\substack{\varphi \in B(X)' \\ \|\varphi\| \leq 1}} \sup_{E,F \in \Sigma} (\varphi(m(E)) - \varphi(m(F))) \\ &= \sup_{E,F \in \Sigma} \sup_{\substack{\varphi \in B(X)' \\ \|\varphi\| \leq 1}} (\varphi(m(E) - m(F))) = \sup_{E,F \in \Sigma} \|m(E) - m(F)\| \\ &= \sup_{E,F \in \Sigma} \sup_{x \in X} |m(E)(x) - m(F)(x)| = \sup_{x \in X} \sup_{E,F \in \Sigma} |m(E)(x) - m(F)(x)| \\ &= \sup_{x \in X} \|m(\cdot)(x)\|. \end{split}$$

Пусть V — нормированная решетка. Векторную меру $m \in ba(\Sigma,V)$ будем называть nopядково непрерывной (или o-непрерывной), если для любой последовательности измеримых множеств $(E_n)_{n\in\mathbb{N}}$ из $E_n \downarrow \varnothing$ вытекает $m(E_n) \stackrel{o}{\to} 0$. Векторная мера $m \in ba(\Sigma,V)$ называется nopядково счетно-addumuвной (или o-счетно-addumuвной), если для любой последовательности $(E_n)_{n\in\mathbb{N}}$ попарно дизьюнктных измеримых множеств имеет место равенство

$$migg(igcup_{n=1}^{\infty}E_nigg)=o ext{-}\sum_{n=1}^{\infty}m(E_n).$$

Совершенно аналогично скалярному случаю (см., например, [7, IV.1]) доказывается, что векторная мера o-непрерывна тогда и только тогда, когда она o-счетно-аддитивна. Множество всех o-счетно-аддитивных векторных мер обозначим через o- $ca(X, \Sigma, V)$ или o- $ca(\Sigma, V)$.

Пусть V — банахово пространство и $m \in ba(\Sigma,V)$. Символом $St(X,\Sigma)$ или St(X) обозначим нормированное подпространство B(X), состоящее из всех ступенчатых функций (т. е. измеримых функций с конечным образом). Определим, оператор $I_m \colon St(X) \to V$, полагая $I_m s = \sum_{i=1}^n \alpha_i m(E_i)$ для любой ступенчатой функции $s = \sum_{i=1}^n \alpha_i 1_{E_i}$, где множества $E_i \in \Sigma$ попарно дизъюнктны (корректность такого определения достаточно очевидна). Несложно проверить, что оператор I_m ограничен по норме. Поскольку St(X) — всюду плотное подпространство B(X), а V — банахово пространство, существует единственное продолжение оператора I_m до ограниченного оператора из B(X) в V. Значение

этого продолжения на элементе $f \in B(X)$ называется интегралом функции f по векторной мере m и обозначается символом $\int\limits_X f\,dm$ или $\langle f,m\rangle$ (см. [20, гл. II.7]).

Из построения интеграла непосредственно следует, что $\|\langle f,m\rangle\| \leq \|f\| \|m\|$ для любых $f \in B(X)$ и $m \in ba(\Sigma, V)$.

Если $V = \mathbb{R}$ и $\mu \in ba(\Sigma)$, то, пользуясь приведенной выше конструкцией, мы приходим к понятию интеграла функции $f \in B(X)$ по конечно-аддитивной мере μ , который, как и выше, будем обозначать символом $\int\limits_X f \, d\mu$ или $\langle f, \mu \rangle$

(см. [25, гл. VII]). Заметим, что определенный таким образом интеграл совпадает на B(X) с так называемым обобщенным интегралом Радона (см. [26, XI.3; 1]).

Многие свойства интеграла по конечно-аддитивной мере совпадают с аналогичными свойствами интеграла Лебега и интеграла по счетно-аддитивной (знакопеременной) мере (см., например, [26, XI.3]). В частности, для любых $f \in B(X)$ и $\mu \in ba(\Sigma)$ справедливы неравенства $|\langle f, \mu \rangle| \leq \langle |f|, |\mu| \rangle \leq ||f|| \, ||\mu||$.

Замечание 3.10. Известно (см. [26, XI.4]), что любой линейный ограниченный функционал $\varphi \colon B(X) \to \mathbb{R}$ единственным образом представляется в виде интеграла по некоторой мере $\mu_{\varphi} \in ba(\Sigma)$. При этом соответствие $\varphi \mapsto \mu_{\varphi}$ является линейной изометрией B(X)' на $ba(\Sigma)$. С учетом этого факта пространство $ba(\Sigma)$ можно считать сопряженным к пространству B(X). Например, говоря о слабой * топологии на $ba(\Sigma)$, мы всегда рассматриваем $ba(\Sigma)$ как сопряженное пространство к B(X).

Обозначим символом $\Delta(\Sigma)$ векторное подпространство $ba(\Sigma)$, состоящее из всех мер вида $\sum\limits_{i=1}^n \alpha_i \delta_{x_i}$, где $\alpha_i \in \mathbb{R}$ и $x_i \in X$.

Замечание 3.11. Известно, что множество $\Delta(\Sigma)$ слабо* плотно в пространстве $ba(\Sigma)$ (см. [18, 4.9]), откуда с учетом включения $\Delta(\Sigma) \subset ca(\Sigma)$ следует, что $ca(\Sigma)$ также слабо* плотно в $ba(\Sigma)$.

В пространстве $ba(\Sigma, B(X))$ введем произведение, полагая

$$(m_1 * m_2)(E)(x) = \langle m_2(E), m_1(\cdot)(x) \rangle$$

для всех $x \in X$ и $E \in \Sigma$. Относительно введенного произведения $ba(\Sigma, B(X))$ является нормированной алгеброй. Ниже (см. следствие 4.9) будет показано, что $ba(\Sigma, B(X))$ представляет собой упорядоченную банахову алгебру.

Пусть V — банахово пространство. Будем говорить, что вектор-функция $w\colon X \to V$ ограничена, если $\sup \|w(x)\| < \infty.$

дого элемента $v \in V$ функция $\langle v, w(\cdot) \rangle \colon X \to \mathbb{R}$ измерима, т. е. $\{x \in X :$ $\langle v, w(x) \rangle < \alpha \} \in \Sigma$ для всех $v \in V$ и $\alpha \in \mathbb{R}$. Через $\ell_w^\infty(X, \Sigma, V')$ или $\ell_w^\infty(X, V')$ обозначим множество всех ограниченных слабо* измеримых вектор-функций из X в V'. Множество $\ell_w^\infty(X,V')$ является нормированным пространством относительно поточечных линейных операций и нормы $\|w\|=\sup_{x\in X}\|w(x)\|.$ В случае V=B(X) в пространстве $\ell^\infty_w(X,V')=\ell^\infty_w(X,ba(\Sigma))$ можно ввести

произведение, полагая

$$(w_1 * w_2)(x)(E) = \langle w_2(\cdot)(E), w_1(x) \rangle$$

для всех $x \in X$ и $E \in \Sigma$. Как показано ниже (см. следствие 4.9), относительно введенного произведения и поточечного порядка пространство $\ell_w^o(X,ba(\Sigma))$ является упорядоченной банаховой алгеброй.

Подпространство $\ell_w^\infty(X,ba(\Sigma))$, состоящее из функций, образ которых лежит в $ca(\Sigma)$, условимся обозначать символом $\ell_w^\infty(X,ca(\Sigma))$.

Предложение 3.12. Если (X, Σ) — измеримое пространство c бесконечной σ -алгеброй Σ , то включение $\mathscr{L}_w(ba(\Sigma)) \subset \mathscr{L}(ba(\Sigma))$ является строгим.

Доказательство. Поскольку $ca(\Sigma)$ является собственным замкнутым подпространством $ba(\Sigma)$, существует ненулевой ограниченный линейный функционал $\varphi \colon ba(\Sigma) \to \mathbb{R}$ такой, что $\varphi \equiv 0$ на $ca(\Sigma)$.

Пусть ν — произвольный ненулевой элемент $ba(\Sigma)$. Определим оператор $A\colon ba(\Sigma)\to ba(\Sigma)$, полагая $A\mu=\varphi(\mu)\nu$ для всех $\mu\in ba(\Sigma)$. Очевидно, что $A\in \mathcal{L}(ba(\Sigma)),\ A\neq 0$ и $A\equiv 0$ на $ca(\Sigma)$. Таким образом, ненулевой оператор A равен нулю на слабо* плотном подмножестве $ba(\Sigma)$ и, следовательно, не является слабо* непрерывным, т. е. $A\notin \mathcal{L}_w(ba(\Sigma))$. \square

Для произвольного оператора $A \in \mathcal{L}(ba(\Sigma))$ и множества $E \in \Sigma$ обозначим символом A_E функцию из X в \mathbb{R} , определенную формулой $A_E(x) = (A\delta_x)(E)$ для всех $x \in X$.

Замечание 3.13. Если $A \in \mathscr{L}_w(ba(\Sigma))$, то $A_E \in B(X)$ для всех $E \in \Sigma$. Действительно, для произвольного множества $E \in \Sigma$ рассмотрим функцию $\varphi_E \colon ba(\Sigma) \to \mathbb{R}$, определенную формулой $\varphi_E(\mu) = (A\mu)(E), \ \mu \in ba(\Sigma)$. Очевидно, что $\varphi_E -$ слабо* непрерывный линейный функционал. С учетом замечания 3.10 существует функция $f \in B(X)$ такая, что $\varphi_E(\mu) = \langle f, \mu \rangle$ для всех $\mu \in ba(\Sigma)$. Следовательно, $A_E(x) = (A\delta_x)(E) = \varphi_E(\delta_x) = \langle f, \delta_x \rangle = f(x)$ для всех $x \in X$.

Обратное, вообще говоря, неверно: оператор $A \in \mathcal{L}(ba(\Sigma))$, построенный в доказательстве предложения 3.12, не принадлежит $\mathcal{L}_w(ba(\Sigma))$, но тем не менее удовлетворяет соотношению $A_E \in B(X)$ для всех $E \in \Sigma$.

Заметим, что в силу предложения 2.4 и замечания 3.10 имеет место равенство $\mathscr{L}_w(ba(\Sigma))=\{T':T\in\mathscr{L}(B(X))\}$. Поэтому, учитывая соотношение $(T_1T_2)'=T_2'T_1'$, естественно снабдить пространство $\mathscr{L}_w(ba(\Sigma))$ произведением $A_1*A_2=A_2A_1$, относительно которого $\mathscr{L}_w(ba(\Sigma))$ является упорядоченной банаховой алгеброй.

Определение 3.14. Оператор $A \in \mathscr{L}_w(ba(\Sigma))$ назовем ca-инвариантным, если $A \, ca(\Sigma) \subset ca(\Sigma)$. Множество всех ca-инвариантных слабо* непрерывных операторов обозначим символом $\mathscr{L}_{wc}(ba(\Sigma))$.

Очевидно, что $\mathscr{L}_{wc}(ba(\Sigma))$ является упорядоченной банаховой подалгеброй $\mathscr{L}_{w}(ba(\Sigma))$.

§ 4. Изоморфизмы между пространством переходных функций и другими классическими пространствами

В данном параграфе мы наделим множество переходных функций $\mathscr{P}(X,\Sigma)$ структурой упорядоченной нормированной алгебры и исследуем его взаимосвязи с пространствами линейных операторов, векторных мер и измеримых векторфункций. Будет также установлено, что упорядоченное векторное пространство переходных функций в общем случае не является векторной решеткой.

В дальнейшем (а именно в $\S 5$) нам пригодится следующее обобщение понятия переходной функции.

Определение 4.1. Пусть Σ_1 и $\Sigma_2 - \sigma$ -алгебры подмножеств некоторого множества X. Обозначим символом $\mathscr{P}(X,\Sigma_1,\Sigma_2)$ множество всех функций $p\colon X\times \Sigma_1\to \mathbb{R},$ удовлетворяющих следующим условиям:

- (1) $p(\cdot, E) \in B(X, \Sigma_2)$ для всех $E \in \Sigma_1$;
- (2) $p(x, \cdot) \in ba(\Sigma_1)$ для всех $x \in X$.

Теорема 4.2. Если $p \in \mathscr{P}(X, \Sigma_1, \Sigma_2)$, то функция p равномерно ограничена u, более того, $\sup_{x \in X} \|p(x, \cdot)\| < \infty$.

Доказательство. Для каждой точки $x \in X$ положим $\mu_x = p(x, \cdot)$. Согласно 4.1 имеем $\mu_x \in ba(\Sigma_1)$ и $\sup_{x \in X} |\mu_x(E)| < \infty$ для всех $E \in \Sigma_1$. Из теоремы Никодима об ограниченности (см. [21, I.3.1]) следует, что $\sup_{x \in X} \|p(x, \cdot)\| = \sup_{x \in X} \|\mu_x\| = C < \infty$. В частности, $|p(x, E)| \leq \|p(x, \cdot)\| \leq C$ для всех $x \in X$ и $E \in \Sigma_1$. \square

Для любой функции $p \in \mathscr{P}(X, \Sigma_1, \Sigma_2)$ обозначим через T_p функцию из $B(X, \Sigma_1)$ в \mathbb{R}^X , определяемую равенством $(T_p f)(x) = \langle f, p(x, \cdot) \rangle$ для любых $f \in B(X, \Sigma_1)$ и $x \in X$.

Лемма 4.3. Если $p \in \mathscr{P}(X, \Sigma_1, \Sigma_2)$, то $T_p \in \mathscr{L}(B(X, \Sigma_1), B(X, \Sigma_2))$. При этом $\|T_p\| \leq \sup_{x \in X} \|p(x, \cdot)\|$.

Доказательство. Очевидно, что T_p — линейный оператор из $B(X, \Sigma_1)$ в \mathbb{R}^X . Покажем, что оператор T_p действует в $B(X, \Sigma_2)$. Для каждого элемента $E \in \Sigma_1$ имеем $T_p 1_E = p(\cdot, E) \in B(X, \Sigma_2)$. Из линейности T_p заключаем, что $T_p s \in B(X, \Sigma_2)$ для любой ступенчатой функции $s \in St(X, \Sigma_1)$. Пусть теперь f — произвольный элемент $B(X, \Sigma_1)$ и $s_n \in St(X, \Sigma_1)$ ($n \in \mathbb{N}$) — последовательность ступенчатых функций, равномерно сходящаяся к f. Заметим, что $(T_p(\cdot))(x) \in B(X, \Sigma_1)'$ для всех $x \in X$. Следовательно, $(T_p s_n)(x) \to (T_p f)(x)$ при $n \to \infty$ для всех $x \in X$, а значит, функция $T_p f$ является Σ_2 -измеримой, будучи поточечным пределом Σ_2 -измеримых функций. Кроме того, для всех $x \in X$ имеем

$$|(T_p f)(x)| = |\langle f, p(x, \cdot) \rangle| \le ||f|| \, ||p(x, \cdot)|| \le ||f|| \sup_{y \in X} ||p(y, \cdot)||.$$
 (*)

Учитывая 4.2, заключаем, что $T_p f \in B(X, \Sigma_2)$. Таким образом, T_p — линейный оператор из $B(X, \Sigma_1)$ в $B(X, \Sigma_2)$. Из (*) также вытекает оценка для нормы оператора T_p . \square

Пусть $\mathscr{P}(X,\Sigma)$ — множество всех переходных функций (см. § 1) на измеримом пространстве (X,Σ) . Из теоремы 4.2 непосредственно следует, что каждая функция $p\in\mathscr{P}(X,\Sigma)$ равномерно ограничена и $\sup_{x\in X}\|p(x,\cdot)\|<\infty$.

Наделим множество $\mathscr{P}(X,\Sigma)$ структурой векторного пространства с поточечными линейными операциями. В полученном векторном пространстве введем норму, полагая

$$||p|| = \sup_{x \in X} ||p(x, \cdot)|| = \sup_{x \in X} |p(x, \cdot)|(X).$$

Снабдим пространство $\mathscr{P}(X,\Sigma)$ поточечным порядком:

$$p_1 \le p_2$$
, если $p_1(x, E) \le p_2(x, E)$ для любых $x \in X$ и $E \in \Sigma$.

Определим операцию умножения переходных функций $p_1, p_2 \in \mathscr{P}(X, \Sigma)$ следующим образом:

$$(p_1*p_2)(x,E)=\langle p_2(\cdot,E),p_1(x,\cdot)\rangle$$
 для всех $x\in X$ и $E\in \Sigma$.

Несложно убедиться в том, что произведение переходных функций действительно является переходной функцией и относительно введенных операций $\mathscr{P}(X,\Sigma)$ является упорядоченной нормированной алгеброй.

Ниже мы покажем изоморфность упорядоченных нормированных алгебр $\mathscr{P}(X,\Sigma),\,\mathscr{L}(B(X)),\,\mathscr{L}_w(ba(\Sigma)),\,ba(\Sigma,B(X))$ и $\ell_w^\infty(X,ba(\Sigma)).$

ОПРЕДЕЛЕНИЕ 4.4. Для любых $p \in \mathscr{P}(X,\Sigma), T \in \mathscr{L}(B(X)), A \in \mathscr{L}_w(ba(\Sigma)),$ $m \in ba(\Sigma, B(X)), v \in \ell_w^{\infty}(X, ba(\Sigma))$ определим функции $p_T, p_A, p_m, p_v \colon X \times \Sigma \to \mathbb{R},$ $T_p, T_A, T_m, T_v \colon B(X) \to B(X), \ A_p, A_T, A_m, A_v \colon ba(\Sigma) \to ba(\Sigma), \ m_p, m_T, m_A, m_v \colon \Sigma \to B(X), \ v_p, v_T, v_A, v_m \colon X \to ba(\Sigma)$ следующими формулами:

$$\begin{split} p_T(x,E) &= (T1_E)(x), \quad (T_p f)(x) = \langle f, p(x, \cdot) \rangle, \quad (A_p \mu)(E) = \langle p(\cdot, E), \mu \rangle, \\ p_A(x,E) &= (A\delta_x)(E), \quad (T_A f)(x) = \langle f, A\delta_x \rangle, \quad (A_T \mu)(E) = \langle T1_E, \mu \rangle, \\ p_m(x,E) &= m(E)(x), \quad (T_m f)(x) = \langle f, m \rangle(x), \quad (A_m \mu)(E) = \langle m(E), \mu \rangle, \\ p_v(x,E) &= v(x)(E), \quad (T_v f)(x) = \langle f, v(x) \rangle, \quad (A_v \mu)(E) = \langle v(\cdot)(E), \mu \rangle, \\ m_p(E)(x) &= p(x,E), \quad v_p(x)(E) = p(x,E), \\ m_T(E)(x) &= (T1_E)(x), \quad v_T(x)(E) = (T1_E)(x), \\ m_A(E)(x) &= (A\delta_x)(E), \quad v_A(x)(E) = (A\delta_x)(E), \\ m_v(E)(x) &= v(x)(E), \quad v_m(x)(E) = m(E)(x), \end{split}$$

где $x \in X$, $E \in \Sigma$, $f \in B(X)$, $\mu \in ba(\Sigma)$.

Лемма 4.5. Для любых $T \in \mathcal{L}(B(X)), f \in B(X)$ и $\mu \in ba(\Sigma)$ имеет место равенство

$$\langle Tf, \mu \rangle = \langle f, A_T \mu \rangle.$$

Иными словами, при естественном отождествлении пространств B(X)' и $ba(\Sigma)$ (см. замечание 3.10) справедливо соотношение $A_T = T'$.

ДОКАЗАТЕЛЬСТВО. Положим $\varphi = \langle T(\cdot), \mu \rangle$. Очевидно, что $\varphi \in B(X)'$, а значит, $\varphi = \langle \cdot, \nu \rangle$ для некоторой меры $\nu \in ba(\Sigma)$ (см. замечание 3.10). Для всех $E \in \Sigma$ имеем $(A_T\mu)(E) = \langle T1_E, \mu \rangle = \varphi(1_E) = \langle 1_E, \nu \rangle = \nu(E)$. Следовательно, $\langle Tf, \mu \rangle = \varphi(f) = \langle f, \nu \rangle = \langle f, A_T\mu \rangle$. \square

Предложение 4.6. В условиях определения 4.4 имеют место включения $p_T, p_A, p_m, p_v \in \mathscr{P}(X, \Sigma), \ T_p, T_A, T_m, T_v \in \mathscr{L}(B(X)), \ A_p, A_T, A_m, A_v \in \mathscr{L}_w(ba(\Sigma)), m_p, m_T, m_A, m_v \in ba(\Sigma, B(X)), v_p, v_T, v_A, v_m \in \ell_w^\infty(X, ba(\Sigma)).$

Доказательство. Включение $T_p \in \mathscr{L}(B(X))$ вытекает из леммы 4.3.

Для всех $E \in \Sigma$ имеем $A_p\mu(E) = \langle p(\cdot, E), \mu \rangle = \langle T_p1_E, \mu \rangle = A_{T_p}\mu(E)$. Поскольку $A_{T_p} = T_p'$ (см. лемму 4.5), из предложения 2.4 вытекает включение $A_p \in \mathscr{L}_w(ba(\Sigma))$.

Покажем, что $v_p \in \ell_w^\infty(X,ba(\Sigma))$. Для любого множества $E \in \Sigma$ имеем $\langle 1_E, v_p(\cdot) \rangle = p(\cdot, E) = T_p 1_E$. Следовательно, $\langle s, v_p(\cdot) \rangle = T_p s$ для всех $s \in St(X, \Sigma)$. Если теперь $f \in B(X)$, то $\langle f, v_p(x) \rangle = \lim_{n \to \infty} \langle s_n, v_p(x) \rangle = \lim_{n \to \infty} (T_p s_n)(x) = (T_p f)(x)$ для всех $x \in X$, где $(s_n)_{n \in \mathbb{N}}$ — равномерно сходящаяся к f последовательность элементов $St(X, \Sigma)$. Остается заметить, что $\sup_{x \in X} \|v_p(x)\| = \sup_{x \in X} \|p(x, \cdot)\| = \|p\| < \infty$.

Остальные включения либо очевидны, либо с легкостью выводятся из установленных выше с помощью леммы 4.5, предложения 2.4, замечания 3.13 и равенства $p_A(\cdot, E) = A_E$ ($E \in \Sigma$). \square

Лемма 4.7. Пусть V_1, \ldots, V_n — упорядоченные нормированные пространства и $\alpha_1, \ldots, \alpha_n$ — отображения, удовлетворяющие следующим условиям для всех $i = 1, \ldots, n$:

- (a) α_i линейный оператор из V_i в V_{i+1} ;
- (b) $\|\alpha_i(v)\| \le \|v\|$ для всех $v \in V_i$;
- (c) для всех $v \in V_i$ из $v \ge 0$ вытекает $\alpha_i(v) \ge 0$;
- (d) $(\alpha_{i+n-1}\cdots\alpha_{i+1}\alpha_i)(v)=v$ для всех $v\in V_i$,

где $V_{n+1} = V_1$ и $\alpha_{n+k} = \alpha_k$ для $k = 1, \dots, n-1$. Тогда каждое из отображений α_i является линейной изометрией и порядковым изоморфизмом между V_i и V_{i+1} .

Доказательство. Зафиксируем $i \in \{1, \dots, n\}$. Оператор α_i сюръективен, поскольку $\alpha_i((\alpha_{i+n-1} \cdots \alpha_{i+2} \alpha_{i+1})(w)) = w$ для всех $w \in V_{i+1}$ согласно (d). Для $v \in V_i$ с учетом (d) и (b) имеем $\|v\| \leq \|\alpha_{i+n-1}\| \cdots \|\alpha_{i+1}\| \|\alpha_i\| \|v\| \leq \|v\|$. Следовательно, α_i является изометрией V_i на V_{i+1} . Осталось заметить, что согласно (d) и (c) для всех $v \in V_i$ из $\alpha_i(v) \geq 0$ вытекает $v = (\alpha_{i+n-1} \cdots \alpha_{i+1} \alpha_i)(v) = (\alpha_{i+n-1} \cdots \alpha_{i+1})(\alpha_i(v)) \geq 0$. \square

Теорема 4.8. Диаграмма, вершинами которой являются пять пространств $\mathcal{P}(X,\Sigma)$, $\mathcal{L}(B(X))$, $\mathcal{L}_w(ba(\Sigma))$, $ba(\Sigma,B(X))$ и $\ell_w^\infty(X,ba(\Sigma))$, а ребрами — двадцать отображений, определенных в 4.4, коммутативна. Кроме того, каждое из двадцати отображений является изоморфизмом между соответствующими пространствами, где под изоморфизмом понимается линейная изометрия, сохраняющая произведение и являющаяся порядковым изоморфизмом.

Доказательство. Положим $V_1 = V_6 = \mathscr{P}(X, \Sigma), \ V_2 = \mathscr{L}(B(X)), \ V_3 = \mathscr{L}_w(ba(\Sigma)), \ V_4 = ba(\Sigma, B(X)), \ V_5 = \ell_w^{\infty}(X, ba(\Sigma))$ и рассмотрим отображения $\alpha_i \colon V_i \to V_{i+1} \ (i=1,\ldots,5),$ определенные формулами $\alpha_1(p) = T_p, \ \alpha_2(T) = A_T, \ \alpha_3(A) = m_A, \ \alpha_4(m) = v_m, \ \alpha_5(v) = p_v.$

Покажем, что отображения α_i удовлетворяют условиям (a)–(d) леммы 4.7 и сохраняют произведение. Условие (b) легко проверить, используя, например, лемму 4.3 и замечание 3.9. Проверка остальных условий также не составляет труда. В качестве демонстрации мы поясним соотношения $A_{T_{p_{v_{m_A}}}} = A$ и $T_{p_1*p_2} = T_{p_1}T_{p_2}$ для всех $A \in \mathscr{L}_w(ba(\Sigma))$ и $p_1,p_2 \in \mathscr{P}(X,\Sigma)$. Поскольку, как легко видеть, $(A_{T_{p_{v_{m_A}}}}\delta_x)(E) = (A\delta_x)(E)$ для всех $x \in X$ и $E \in \Sigma$, операторы $A_{T_{p_{v_{m_A}}}}$ и A совпадают на слабо* плотном подмножестве $\Delta(\Sigma) \subset ba(\Sigma)$ (см. замечание 3.11), а значит, совпадают всюду на $ba(\Sigma)$ в силу слабой* непрерывности. Соотношение $T_{p_1*p_2} = T_{p_1}T_{p_2}$ вытекает из непрерывности рассматриваемых операторов и легко устанавливаемого равенства $(T_{p_1*p_2}1_E)(x) = (T_{p_1}T_{p_2}1_E)(x)$ для всех $x \in X$ и $E \in \Sigma$.

Итак, в силу леммы 4.7 отображения α_1,\ldots,α_5 являются изоморфизмами. Тот факт, что отображения $T\mapsto p_T,\ A\mapsto T_A,\ m\mapsto A_m,\ v\mapsto m_v$ и $p\mapsto v_p$ являются обратными к соответствующим изоморфизмам α_1,\ldots,α_5 , следует из очевидных равенств $p_{T_p}=p,\ m_{A_m}=m,\ v_{m_v}=v,\ p_{v_p}=p$ и соотношения $(A_{T_A}\mu)(E)=\langle T_A1_E,\mu\rangle=\langle 1_E,A\mu\rangle=(A\mu)(E),$ справедливого для всех $E\in \Sigma$ и $\mu\in ba(\Sigma)$ в силу леммы 4.5.

Утверждение теоремы теперь несложно получить с помощью установленных выше фактов, п. (d) леммы 4.7 для отображений $\alpha_1, \ldots, \alpha_5$, а также легко проверяемых равенств $(m \mapsto p_m) = \alpha_5 \alpha_4$, $(A \mapsto p_A) = \alpha_5 \alpha_4 \alpha_3$, $(m \mapsto T_m) = \alpha_1 \alpha_5 \alpha_4$, $(v \mapsto T_v) = \alpha_1 \alpha_5$, $(p \mapsto A_p) = \alpha_2 \alpha_1$, $(v \mapsto A_v) = \alpha_2 \alpha_1 \alpha_5$, $(p \mapsto m_p) = \alpha_3 \alpha_2 \alpha_1$, $(T \mapsto m_T) = \alpha_3 \alpha_2$, $(T \mapsto v_T) = \alpha_4 \alpha_3 \alpha_2$, $(A \mapsto v_A) = \alpha_4 \alpha_3$. \square

Следствие 4.9. Пространства $\mathscr{P}(X,\Sigma), \mathscr{L}(B(X)), \mathscr{L}_w(ba(\Sigma)), ba(\Sigma,B(X))$ и $\ell_w^\infty(X,ba(\Sigma))$ являются упорядоченными банаховыми алгебрами.

Доказательство. Достаточно заметить, что $\mathcal{L}(B(X))$ — упорядоченная банахова алгебра, и воспользоваться теоремой 4.8. \square

Из следующего утверждения вытекает, что упорядоченные векторные пространства $\mathscr{P}(X,\Sigma),\ \mathscr{L}(B(X)),\ \mathscr{L}_w(ba(\Sigma)),\ ba(\Sigma,B(X))$ и $\ell_w^\infty(X,ba(\Sigma)),\$ вообще говоря, не являются векторными решетками.

Теорема 4.10. Пусть $(X, \Sigma, |\cdot|)$ — пространство с мерой, имеющее лифтинг, причем $\{x\} \in \Sigma$ и $|\{x\}| = 0$ для всех $x \in X$ и существует неизмеримое подмножество $G \subset X$. (В качестве такого пространства с мерой можно взять, например, отрезок [0,1] с мерой Лебега.) Тогда упорядоченное векторное пространство $\mathcal{L}(B(X))$ не является векторной решеткой.

Доказательство. Определим $T \in \mathcal{L}(B(X))$, полагая $Tf = 1_G(f-f_\sim)$ для всех $f \in B(X)$, и убедимся в том, что определенный таким образом оператор не имеет положительной части. (Тот факт, что оператор T действует именно в B(X) и является ограниченным, вытекает из совпадения функций f и f_\sim почти всюду и соотношений $|1_G(f-f_\sim)| \leq |f| + |f_\sim| = |f| + |f|_\sim \leq 2\|f\|$, обеспечиваемых свойствами лифтинга.)

Допустим вопреки доказываемому, что оператор T имеет положительную часть T^+ . Тогда для всех $x \in G$ справедливы соотношения $T^+1_X \geq T^+1_{\{x\}} \geq T1_{\{x\}} = 1_{\{x\}}$, т. е. $T^+1_X \geq 1$ на G. Зафиксируем произвольную точку $x \in X \backslash G$ и определим положительный оператор $Z_x \in \mathcal{L}(B(X))$ формулой $Z_x f = 1_{X \backslash \{x\}} f$, $f \in B(X)$. Тогда для всех положительных $f \in B(X)$ имеем $Z_x f = 1_{X \backslash \{x\}} f \geq 1_G f \geq 1_G (f - f_\sim) = Tf$, т. е. $Z_x \geq T$. Следовательно, $Z_x \geq T^+$ и, в частности, $Z_x 1_X \geq T^+ 1_X$, откуда вытекает равенство $T^+ 1_X = 0$ на $X \backslash G$. С другой стороны, как было установлено выше, $T^+ 1_X \geq 1$ на G, а значит, функция $T^+ 1_X$ неизмерима. \square

§ 5. Счетно-аддитивные и чисто конечно-аддитивные переходные функции

В данном параграфе мы вводим и исследуем пространства $\mathscr{P}_{ca}(X,\Sigma)$ и $\mathscr{P}_{pfa}(X,\Sigma)$ счетно-аддитивных и чисто конечно-аддитивных переходных функций, показываем, что они являются взаимно дополнительными полосами относительно естественной дизъюнктности, и рассматриваем вопрос о разложении $\mathscr{P}(X,\Sigma)=\mathscr{P}_{ca}(X,\Sigma)\oplus\mathscr{P}_{pfa}(X,\Sigma)$.

Отметим, что аналоги пространств $\mathscr{P}(X,\Sigma), \mathscr{P}_{ca}(X,\Sigma)$ и $\mathscr{P}_{pfa}(X,\Sigma)$ для случая конечно-аддитивных переходных вероятностей были рассмотрены в работе А. И. Жданка [2] (в их связи с соответствующими цепями Маркова). В той же работе был впервые поднят вопрос о разложении конечно-аддитивных переходных вероятностей в сумму счетно-аддитивной и чисто конечно-аддитивной составляющих. Ниже мы исследуем этот вопрос (в более общей ситуации произвольных переходных функций) и, в частности, устанавливаем, что такое разложение, вообще говоря, не имеет места. Попутно мы плотным образом вкладываем $\mathscr{P}(X,\Sigma)$ в некоторое банахово К-пространство $\overline{\mathscr{P}}(X,\Sigma)$ и изучаем порядковые свойства этого вложения.

Пусть (X, Σ) — произвольное измеримое пространство.

Определение 5.1. Переходную функцию $p \in \mathscr{P}(X, \Sigma)$ будем называть счетно-аддитивной, если $p(x, \cdot) \in ca(\Sigma)$ для всех $x \in X$. Множество всех счетно-аддитивных переходных функций обозначим символом $\mathscr{P}_{ca}(X, \Sigma)$.

Теорема 5.2. Каждое из пространств $\mathcal{P}_{ca}(X,\Sigma)$, $\mathcal{L}_{o}(B(X))$, $\mathcal{L}_{wc}(ba(\Sigma))$, o-ca $(\Sigma,B(X))$ и $\ell_{w}^{\infty}(X,ca(\Sigma))$ является упорядоченной банаховой подалгеброй $\mathcal{P}(X,\Sigma)$, $\mathcal{L}(B(X))$, $\mathcal{L}_{w}(ba(\Sigma))$, $ba(\Sigma,B(X))$ и $\ell_{w}^{\infty}(X,ba(\Sigma))$ соответственно. Диаграмма, вершинами которой служат эти пять подалгебр, а ребрами — сужения двадцати отображений, определенных в 4.4, коммутативна. Каждое из двадцати сужений — изоморфизм между соответствующими пространствами, где под изоморфизмом понимается линейная изометрия, сохраняющая произведение и являющаяся порядковым изоморфизмом.

ДОКАЗАТЕЛЬСТВО. Принимая во внимание теорему 4.8, достаточно заметить, что $\mathscr{L}_o(B(X))$ является упорядоченной банаховой подалгеброй $\mathscr{L}(B(X))$, и установить включения $T_p \in \mathscr{L}_o(B(X)), A_T \in \mathscr{L}_{wc}(ba(\Sigma)), m_A \in o\text{-}ca(\Sigma, B(X)), v_m \in \ell_w^\infty(X, ca(\Sigma)), p_v \in \mathscr{P}_{ca}(X, \Sigma)$ для любых $p \in \mathscr{P}_{ca}(X, \Sigma), T \in \mathscr{L}_o(B(X)), A \in \mathscr{L}_{wc}(ba(\Sigma)), m \in o\text{-}ca(\Sigma, B(X)), v \in \ell_w^\infty(X, ca(\Sigma)).$

В приводимых ниже рассуждениях мы многократно используем замечания 2.3 без явных ссылок.

Докажем, что $T_p \in \mathscr{L}_o(B(X))$. Пусть последовательность $(f_n)_{n \in \mathbb{N}}$ элементов B(X) о-сходится к $f \in B(X)$. Так как $p(x, \cdot) \in ca(\Sigma)$ $(x \in X)$, в силу теоремы Лебега для всех $x \in X$ имеем $(T_p f_n)(x) = \langle f_n, p(x, \cdot) \rangle \to \langle f, p(x, \cdot) \rangle = (T_p f)(x)$. Кроме того, $\|T_p f_n\| \le \|T_p\| \sup_{m \in \mathbb{N}} \|f_m\|$ для всех $n \in \mathbb{N}$, а значит, $T_p f_n \overset{o}{\to} T_p f$.

Установим включение $A_T \in \mathscr{L}_{wc}(ba(\Sigma))$. Пусть $\mu \in ca(\Sigma)$, $E_n \in \Sigma$ $(n \in \mathbb{N})$ и $E_n \downarrow \varnothing$. Секвенциальная o-непрерывность оператора T влечет сходимость $T1_{E_n} \stackrel{o}{\to} 0$. Следовательно, в силу теоремы Лебега $(A_T\mu)(E_n) = \langle T1_{E_n}, \mu \rangle \to 0$ при $n \to \infty$, т. е. $A_T\mu \in ca(\Sigma)$.

Покажем, что $m_A \in o\text{-}ca(\Sigma, B(X))$. Пусть $E_n \in \Sigma$ $(n \in \mathbb{N}), E_n \downarrow \varnothing$. Для всех $x \in X$ с учетом включения $A\delta_x \in ca(\Sigma)$ имеем $m_A(E_n)(x) = (A\delta_x)(E_n) \to 0$ при $n \to \infty$. Кроме того, $\|m_A(E_n)\| \le \|m_A\|$ для всех $n \in \mathbb{N}$, а значит, $m_A(E_n) \stackrel{o}{\to} 0$. Включения $v_m \in \ell_w^\infty(X, ca(\Sigma))$ и $p_v \in \mathscr{P}_{ca}(X, \Sigma)$ очевидны. \square

Введем обозначение \sim для отношения Σ -неразделимости на X, т. е. запись $x\sim y$ означает, что точки $x,y\in X$ лежат в одном комке пространства (X,Σ) .

Обозначим символом $\overline{\mathscr{P}}(X,\Sigma)$ множество всех функций $p\colon X\times\Sigma\to\mathbb{R},$ удовлетворяющих следующим условиям для любых $x,y\in X$ и $E\in\Sigma$:

- (a) $p(x, \cdot) \in ba(\Sigma)$;
- (b) если $x \sim y$, то p(x, E) = p(y, E);
- (c) функция $p(\cdot, E)$ ограничена.

Превратим множество $\overline{\mathscr{P}}(X,\Sigma)$ в упорядоченное нормированное пространство, наделив его поточечными линейными операциями, поточечным порядком и нормой $\|p\|=\sup_{x\in X}\|p(x,\cdot)\|=\sup_{x\in X}|p(x,\cdot)|(X)$, конечность которой обеспечивает-

ся теоремой 4.2 в силу очевидного равенства $\overline{\mathscr{P}}(X,\Sigma)=\mathscr{P}(X,\Sigma,\overline{\Sigma}),$ где $\overline{\Sigma}-\sigma$ -алгебра Σ -согласованных подмножеств X.

Упорядоченное нормированное пространство $\overline{\mathscr{P}}(X,\Sigma)$ с очевидностью изоморфно банаховому К-пространству $\ell_{\Sigma}^{\infty}(X,ba(\Sigma))$ всех ограниченных Σ -согласованных $ba(\Sigma)$ -значных функций, т. е. ограниченных функций $v\colon X\to ba(\Sigma)$,

удовлетворяющих условию v(x)=v(y) при $x\sim y$. Тем самым $\overline{\mathscr{P}}(X,\Sigma)$ также является банаховым К-пространством. Кроме того, совершенно аналогично доказательству теоремы 4.8 устанавливается изоморфность $\overline{\mathscr{P}}(X,\Sigma)$ банаховым К-пространствам $\mathscr{L}(B(X,\Sigma),B(X,\overline{\Sigma})),\,\mathscr{L}_w(ba(\overline{\Sigma}),ba(\Sigma))$ и $ba(\Sigma,B(X,\overline{\Sigma}))$. Конкретные изоморфизмы между всеми упомянутыми пространствами определяются формулами, приведенными в определении 4.4.

Определение 5.3. Переходные функции $p_1, p_2 \in \mathscr{P}(X, \Sigma)$ будем называть дизъюнктными и писать $p_1 \perp p_2$, если меры $p_1(x, \cdot)$ и $p_2(x, \cdot)$ дизъюнктны для каждой точки $x \in X$.

Заметим, что $\mathscr{P}(X,\Sigma) \subset \overline{\mathscr{P}}(X,\Sigma)$ и переходные функции $p_1,p_2 \in \mathscr{P}(X,\Sigma)$ дизъюнктны в смысле приведенного выше определения тогда и только тогда, когда p_1 и p_2 дизъюнктны в K-пространстве $\overline{\mathscr{P}}(X,\Sigma)$.

Теорема 5.4. Пусть (X, Σ) — атомное измеримое пространство.

- (1) Множество $\mathscr{P}(X,\Sigma)$ минорирует $\overline{\mathscr{P}}(X,\Sigma)$.
- (2) Множество $\mathscr{P}(X,\Sigma)$ наследственно вложено в $\overline{\mathscr{P}}(X,\Sigma)$.
- (3) Если семейство переходных функций $(p_{\xi})_{\xi\in\Xi}$ имеет в $\mathscr{P}(X,\Sigma)$ супремум или инфимум, то соответственно

$$(\sup_{\xi \in \Xi} p_{\xi})(x, \cdot) = \sup_{\xi \in \Xi} p_{\xi}(x, \cdot), \quad (\inf_{\xi \in \Xi} p_{\xi})(x, \cdot) = \inf_{\xi \in \Xi} p_{\xi}(x, \cdot)$$

для всех $x \in X$, где точные границы в правых частях равенств вычисляются в K-пространстве $ba(\Sigma)$.

- (4) Введенное в 5.3 отношение \bot является отношением дизъюнктности на векторном пространстве $\mathscr{P}(X,\Sigma)$ в смысле определения 2.1.
- (5) Каждый элемент $ar p\in\overline{\mathscr P}(X,\Sigma)$ представим в виде $ar p=o\text{-}\sum_{\xi\in\Xi}p_\xi$ для некото-

рого семейства $(p_{\xi})_{\xi\in\Xi}\subset\mathscr{P}(X,\Sigma)$ попарно дизъюнктных переходных функций.

Доказательство. Докажем (1). Пусть $0 < \bar{p} \in \overline{\mathscr{P}}(X, \Sigma)$. Выберем произвольную точку $x_0 \in X$, для которой $\bar{p}(x_0, \cdot) > 0$, обозначим через A атом Σ , содержащий x_0 , и положим $p(x, E) = 1_A(x)\bar{p}(x, E)$ для всех $x \in X$ и $E \in \Sigma$. Очевидно, что $p \in \mathscr{P}(X, \Sigma)$ и 0 .

Утверждения (2)–(4) следуют из (1), теоремы 2.2 и того факта, что точные границы в $\overline{\mathscr{P}}(X,\Sigma)$ определяются формулами, фигурирующими в утверждении (3) (последнее вытекает, например, из изоморфности $\overline{\mathscr{P}}(X,\Sigma)$ К-пространству $\ell_{\Sigma}^{\infty}(X,ba(\Sigma))$, в котором точные границы вычисляются поточечно).

Упомянутое в утверждении (5) семейство $(p_{\xi})_{\xi \in \Xi}$ можно определить формулами $p_{\xi}(x,E) = 1_{\xi}(x)\bar{p}(x,E)$ для всех $\xi \in \Xi$, $x \in X$ и $E \in \Sigma$, где Ξ — множество всех атомов Σ . \square

ПРИМЕР 5.5. Покажем, что требование атомности измеримого пространства (X,Σ) является существенным для справедливости каждого из утверждений теоремы 5.4.

Пусть X=[0,1]. Рассмотрим неизмеримое по Лебегу множество $G\subset X$ и положим

$$\Sigma = \{ E \in \mathcal{L} : E \supset G$$
или $E \cap G = \emptyset \},$

где $\mathscr{L}-\sigma$ -алгебра измеримых по Лебегу подмножеств X. Как уже было отмечено в 3.5, множество G представляет собой неизмеримый комок (X,Σ) и, стало быть, измеримое пространство (X,Σ) не является атомным.

Пусть $|\cdot|$ — сужение меры Лебега на Σ . Несложно убедиться в том, что тройка $(X, \Sigma, |\cdot|)$ — пространство с мерой в смысле определения 3.1. Рассмотрим лифтинг λ фактор-алгебры $\widetilde{\mathscr{L}}$ (относительно меры Лебега на X) и для каждого множества $E \in \Sigma$ положим

$$ho(E^\sim) = \left\{ egin{array}{ll} \lambda(E^\sim) \cup G, & ext{если } E \supset G, \ \lambda(E^\sim) ackslash G, & ext{если } E \cap G = \varnothing. \end{array}
ight.$$

Простая проверка показывает, что отображение ρ определено корректно и является лифтингом фактор-алгебры $\widetilde{\Sigma}$ пространства с мерой $(X, \Sigma, |\cdot|)$ (для этой проверки можно привлечь, например, предложение 3.2).

Контример для (1), (5). Пусть $\mu \in ba(\Sigma), \ \mu > 0$. Рассмотрим элемент $0 < \bar{p} \in \overline{\mathscr{P}}(X, \Sigma)$, определенный формулой

$$\bar{p}(x, E) = 1_G(x)\mu(E), \quad x \in X, E \in \Sigma,$$

и покажем, что он не минорируется положительными переходными функциями (тем самым будет получен контрпример для утверждений (1) и (5) теоремы 5.4). Для этого предположим, что $p \in \mathscr{P}(X,\Sigma), \ 0 \leq p \leq \bar{p},$ и установим равенство p=0. Для $E \in \Sigma$ положим $Z_E=\{x\in X: p(x,E)=0\}\in \Sigma$. Из определения \bar{p} непосредственно вытекает включение $X\backslash G\subset Z_E$. Неизмеримость G и измеримость Z_E влечет $Z_E\cap G\neq\varnothing$, откуда $Z_E\supset G$ по определению Σ и, следовательно, $Z_E=X$.

Контрпример для (2),(3). Покажем, что переходная функция $p\in \mathscr{P}(X,\Sigma),$ определенная формулой

$$p(x, E) = 1_E(x) - 1_{\rho(E^{\sim})}(x), \quad x \in X, E \in \Sigma,$$

имеет положительную часть p^+ в упорядоченном пространстве $\mathscr{P}(X,\Sigma)$, но $p^+(x,\cdot)\neq p(x,\cdot)^+$ при $x\in G$ (тем самым будет установлено, что для (X,Σ) не справедливы утверждения (2) и (3) теоремы 5.4).

Докажем, что $p^+=\operatorname{id}$, где $\operatorname{id}(x,E)=1_E(x)=\delta_x(E)$ для всех $x\in X$ и $E\in \Sigma$. Очевидно, что $\operatorname{id}\geq p$. Рассмотрим произвольную положительную переходную функцию $\bar p\in \mathscr P(X,\Sigma)$, удовлетворяющую неравенству $\bar p\geq p$, и покажем, что $\bar p\geq \operatorname{id}$, т. е. $\bar p(\cdot,E)\geq 1_E$ для всех $E\in \Sigma$. Зафиксируем произвольный элемент $E\in \Sigma$. Предположим сначала, что $E\cap G=\varnothing$. Тогда для всех $x\in E$ имеем $\bar p(\cdot,E)\geq p(\cdot,\{x\})=1_{\{x\}}$, т. е. $\bar p(\cdot,E)\geq 1_E$. Пусть теперь $E\supset G$. Тогда $\bar p(\cdot,E)\geq p(\cdot,\{x\})=1_{\{x\}}$ для всех $x\in E\setminus G$, т. е. $\bar p(\cdot,E)\geq 1_{E\setminus G}$. Положим $F=\{x\in X:\bar p(x,E)\geq 1\}\in \Sigma$. Ясно, что $F\supset E\setminus G$. Если $F\cap G=\varnothing$, то $F\cap E=E\setminus G$, что противоречит измеримости множества $F\cap E$. Следовательно, $F\supset G$, а значит, $F\supset E$ и тем самым $\bar p(\cdot,E)\geq 1_E$.

Зафиксируем произвольную точку $x \in G$. Из определений функции p и лифтинга ρ видно, что $p(x, \cdot) = 0$, а значит, $p(x, \cdot)^+ = 0$. С другой стороны, $p^+(x, \cdot) = \operatorname{id}(x, \cdot) = \delta_x \neq 0$.

Контрпример для (4). Заметим сначала, что $\delta_x \perp \delta_x \circ \rho$ для всех $x \in X \backslash G$. Действительно, если $x \in X \backslash G$ и $\mu = \delta_x \wedge \delta_x \circ \rho$, то $\mu(X \backslash \{x\}) \leq \delta_x(X \backslash \{x\}) = 0$ и $\mu(\{x\}) \leq (\delta_x \circ \rho)(\{x\}) = \delta_x(\varnothing) = 0$, откуда $\mu = 0$.

Теперь установим, что для любых $p_1, p_2 \in \mathscr{P}(X, \Sigma)$ из $p_1 \in \{p_2\}^{\perp \perp}$ вытекает $p_1(x, \cdot) \in \{p_2(x, \cdot)\}^{\perp \perp}$ при $x \in X \backslash G$. Действительно, пусть $p_1 \in \{p_2\}^{\perp \perp}$ и $x \in X \backslash G$. Для произвольных $\mu \in \{p_2(x, \cdot)\}^{\perp}, y \in X$ и $E \in \Sigma$ положим

$$\delta^{\mu}_{x}(y,E) = \left\{egin{array}{ll} \mu(E), & ext{если } y=x, \\ 0, & ext{если } y
eq x. \end{array}
ight.$$

Очевидно, что $\delta_x^{\mu} \in \mathscr{P}(X, \Sigma)$ (благодаря включению $\{x\} \in \Sigma$) и $\delta_x^{\mu} \perp p_2$. Следовательно, $\delta_x^{\mu} \perp p_1$ и, в частности, $\mu = \delta_x^{\mu}(x, \cdot) \perp p_1(x, \cdot)$. Произвольность выбора $\mu \in \{p_2(x, \cdot)\}^{\perp}$ позволяет заключить, что $p_1(x, \cdot) \in \{p_2(x, \cdot)\}^{\perp \perp}$.

Наконец, для всех $x \in X$ и $E \in \Sigma$ положим

$$p_1(x,E)=\delta_x(E),$$
 $p_2(x,E)=\left\{egin{array}{ll} \delta_x(E),& ext{ecjif }x\in G,\ \delta_x(
ho(E^\sim)),& ext{ecjif }x\in Xackslash G. \end{array}
ight.$

Включение $p_1 \in \mathscr{P}(X,\Sigma)$ очевидно. Покажем, что $p_2 \in \mathscr{P}(X,\Sigma)$. Свойства лифтинга позволяют заключить, что $p_2(x,\cdot) \in ba(\Sigma)$ для всех $x \in X$. Остается для каждого элемента $E \in \Sigma$ установить Σ -измеримость функции $p_2(\cdot,E)$, т. е. Принадлежность множества $F = \{x \in X : p_2(x,E) = 1\}$ σ -алгебре Σ . Из определения p_2 непосредственно вытекает равенство $F = (E \cap G) \cup (\rho(E^{\sim}) \setminus G)$. Если $E \supset G$, то по определению ρ имеет место включение $\rho(E^{\sim}) \supset G$, а значит, $F = G \cup (\rho(E^{\sim}) \setminus G) = \rho(E^{\sim}) \in \Sigma$. Если же $E \cap G = \emptyset$, то $\rho(E^{\sim}) \cap G = \emptyset$ и $F = \rho(E^{\sim}) \setminus G = \rho(E^{\sim}) \in \Sigma$.

Итак, $p_1, p_2 \in \mathscr{P}(X, \Sigma)$. Ясно, что переходные функции p_1 и p_2 не дизъюнктны. Покажем, что тем не менее $\{p_1\}^{\perp\perp} \cap \{p_2\}^{\perp\perp} = \{0\}$ (в результате мы установим, что отношение \perp не удовлетворяет условию $2.1\,(4)$, и получим контрпример для утверждения (4) теоремы 5.4).

Пусть $p \in \{p_1\}^{\perp\perp} \cap \{p_2\}^{\perp\perp}$. Зафиксируем произвольную точку $x \in X \backslash G$. По доказанному выше имеют место включения $p(x, \cdot) \in \{p_1(x, \cdot)\}^{\perp\perp}$ и $p(x, \cdot) \in \{p_2(x, \cdot)\}^{\perp\perp}$. С другой стороны, $p_1(x, \cdot) = \delta_x \perp \delta_x \circ \rho = p_2(x, \cdot)$. Таким образом, $p(x, \cdot) = 0$ при $x \in X \backslash G$. Тогда для всех $E \in \Sigma$ множество $\{x \in X : p(x, E) \neq 0\}$, принадлежащее Σ , содержится в G, а следовательно, является пустым. Последнее означает, что p = 0.

Определение 5.6. Переходную функцию $p \in \mathscr{P}(X,\Sigma)$ назовем *чисто* конечно-аддитивной, если $p(x,\cdot) \in pfa(\Sigma)$ для всех $x \in X$. Множество всех чисто конечно-аддитивных переходных функций обозначим через $\mathscr{P}_{pfa}(X,\Sigma)$.

Как легко видеть, $\mathscr{P}_{pfa}(X,\Sigma)$ — упорядоченное банахово подпространство $\mathscr{P}(X,\Sigma).$

Теорема 5.7. Пусть (X, Σ) — измеримое пространство.

(1) Множества $\mathscr{P}_{ca}(X,\Sigma)$ и $\mathscr{P}_{pfa}(X,\Sigma)$ являются взаимно дополнительными \bot -полосами в $\mathscr{P}(X,\Sigma)$, т. е.

$$\mathscr{P}_{ca}(X,\Sigma)^{\perp}=\mathscr{P}_{pfa}(X,\Sigma),\quad \mathscr{P}_{pfa}(X,\Sigma)^{\perp}=\mathscr{P}_{ca}(X,\Sigma).$$

(2) Если (X,Σ) дискретно, то

$$\mathscr{P}(X,\Sigma) = \mathscr{P}_{ca}(X,\Sigma) \oplus \mathscr{P}_{pfa}(X,\Sigma).$$

(3) Пусть $(X, \Sigma, |\cdot|)$ — пространство с мерой, имеющее лифтинг, существует неизмеримое подмножество $G \subset X$ и булева алгебра $\widetilde{\Sigma}$ не имеет атомов. (В качестве такого пространства с мерой можно взять, например, отрезок [0,1] с мерой Лебега.) Тогда

$$\mathscr{P}(X,\Sigma) \neq \mathscr{P}_{ca}(X,\Sigma) + \mathscr{P}_{nfa}(X,\Sigma).$$

ДОКАЗАТЕЛЬСТВО. (1) Пусть $p \in \mathscr{P}_{ca}(X,\Sigma)^{\perp}$. Для любой меры $\mu \in ca(\Sigma)$ определим $\mathrm{id}_{\mu} \in \mathscr{P}_{ca}(X,\Sigma)$, полагая $\mathrm{id}_{\mu}(x,E) = \mu(E)$ для всех $x \in X$ и $E \in \Sigma$. Из соотношения $p \perp \mathrm{id}_{\mu}$ следует, что для всех $x \in X$ мера $p(x,\cdot)$ дизъюнктна $\mathrm{id}_{\mu}(x,\cdot) = \mu$. Произвольность выбора $\mu \in ca(\Sigma)$ позволяет заключить, что $p(x,\cdot) \in pfa(\Sigma)$ для всех $x \in X$, т. е. $p \in \mathscr{P}_{pfa}(X,\Sigma)$. Таким образом, $\mathscr{P}_{ca}(X,\Sigma)^{\perp} \subset \mathscr{P}_{pfa}(X,\Sigma)$. Включение $\mathscr{P}_{pfa}(X,\Sigma)^{\perp} \subset \mathscr{P}_{ca}(X,\Sigma)$ устанавливается совершенно аналогично, а обратные включения очевидны.

Утверждение (2) является прямым следствием 3.7.

(3) Пусть ρ — лифтинг фактор-алгебры Σ пространства с мерой $(X, \Sigma, |\cdot|)$. Согласно теореме 3.8 существует такое множество $X_0 \in \Sigma$, что $|X \setminus X_0| = 0$ и $\delta_x \circ \rho \in pfa(\Sigma)$ для всех $x \in X_0$. Обозначим (неизмеримое) пересечение $G \cap X_0$ через G_0 и положим

$$p(x, E) = 1_{G_0}(x)(1_E(x) - 1_{\rho(E)}(x)), \quad x \in X, E \in \Sigma.$$

Как легко видеть, $p \in \mathscr{P}(X,\Sigma)$ (заметим, что для всех $E \in \Sigma$ функция $p(\cdot,E) = 1_{G_0}(1_E - 1_{\rho(E)})$ почти всюду равна нулю, а следовательно, измерима). Мы покажем, что функция p не представима в виде суммы счетно-аддитивной и чисто конечно-аддитивной переходных функций.

Согласно 3.7 каждая мера $\mu \in ba(\Sigma)$ имеет единственное разложение в сумму элементов $ca(\Sigma)$ и $pfa(\Sigma)$. Условимся обозначать эти элементы символами μ_{ca} и μ_{pfa} соответственно.

Предположим вопреки доказываемому, что $p = p_{ca} + p_{pfa}$, где $p_{ca} \in \mathscr{P}_{ca}(X,\Sigma)$ и $p_{pfa} \in \mathscr{P}_{pfa}(X,\Sigma)$. С учетом предыдущего замечания $p_{ca}(x,\cdot) = p(x,\cdot)_{ca}$ для всех $x \in X$. С другой стороны, как легко видеть,

$$p(x,m{\cdot}) = \left\{egin{array}{ll} \delta_x - \delta_x \circ
ho, & ext{если } x \in G_0, \ 0, & ext{если } x
otin G_0, \end{array}
ight.$$

причем $\delta_x \in ca(\Sigma)$ и $\delta_x \circ \rho \in pfa(\Sigma)$ при $x \in G_0$. Следовательно,

$$p_{ca}(x,m{\cdot})=p(x,m{\cdot})_{ca}=\left\{egin{array}{ll} \delta_x, & ext{если } x\in G_0,\ 0, & ext{если } x
otin G_0, \end{array}
ight.$$

а значит, функция $p_{ca}(\cdot,X)=1_{G_0}$ неизмерима. Полученное противоречие завершает доказательство. \square

Таким образом, несмотря на то, что $\mathscr{P}_{ca}(X,\Sigma)$ и $\mathscr{P}_{pfa}(X,\Sigma)$ являются взаимно дополнительными \bot -полосами, их сумма не всегда совпадает со всем пространством $\mathscr{P}(X,\Sigma)$. Говоря о представительности этой суммы в $\mathscr{P}(X,\Sigma)$, можно упомянуть очевидное равенство $(\mathscr{P}_{ca}(X,\Sigma)+\mathscr{P}_{pfa}(X,\Sigma))^{\bot\bot}=\mathscr{P}(X,\Sigma)$.

Авторы выражают благодарность А. И. Жданку за ценные замечания.

ЛИТЕРАТУРА

- 1. Данфорд Н., Шварц Дж. Линейные операторы. Общая теория. М.: Изд-во иностр. лит., 1962.
- **2.** Жданок А. И. Конечно-аддитивные меры в эргодической теории цепей Маркова. I // Мат. тр. 2001. Т. 4, № 2. С. 53–95.
- Жданок А. И. Конечно-аддитивные меры в эргодической теории цепей Маркова. II // Мат. тр. 2002. Т. 5, № 1. С. 46–66.
- Жданок А. И. Гамма-компактификация измеримых пространств // Сиб. мат. журн. 2003. Т. 44, № 3. С. 587–605.

- Крейн М. Г., Рутман М. А. Линейные операторы, оставляющие инвариантным конус в пространстве Банаха // Успехи мат. наук. 1948. Т. 3, № 1. С. 3–95.
- Канторович Л. В., Вулих Б. З., Пинскер А. Г. Функциональный анализ в полуупорядоченных пространствах. М.; Л.: Гостехиздат, 1950.
- 7. Вулих Б. З. Введение в теорию полуупорядоченных пространств. М.: Физматгиз, 1961.
- 8. Биркгоф Г. Теория решеток. М.: Наука, 1984.
- 9. Канторович Л. В., Акилов Г. П. Функциональный анализ. М.: Наука, 1984.
- 10. Aliprantis C. D., Burkinshaw O. Positive operators. New York: Acad. Press, 1985.
- Кусраев А. Г. Линейные операторы в решеточно нормированных пространствах // Исследования по геометрии «в целом» и математическому анализу. Новосибирск: Наука, 1987. С. 84–123.
- Гутман А. Е. Банаховы расслоения в теории решеточно нормированных пространств // Линейные операторы, согласованные с порядком. Новосибирск: Изд-во Ин-та математики, 1995. С. 63–211.
- **13.** *Кусраев А. Г., Кутателадзе С. С.* Булевозначный анализ. Новосибирск: Изд-во Ин-та математики, 1999.
- **14.** *Кусраев А. Г.* Мажорируемые операторы. М.: Наука, 2003.
- Alexandroff A. D. Additive set-functions in abstract spaces. I // Mar. c6. 1940. T. 8, № 2.
 C. 307–348.
- **16.** Alexandroff A. D. Additive set-functions in abstract spaces. II // Mar. c6. 1941. T. 9, \mathbb{N}^2 3. C. 563–628.
- Alexandroff A. D. Additive set-functions in abstract spaces. III // Mat. c6. 1943. T. 13, № 2.
 C. 169–293.
- Yosida K., Hewitt E. Finitely additive measures // Trans. Amer. Math. Soc. 1952. V. 72, N 1. P. 46–66.
- **19.** *Халмош П.* Теория меры. М.: Изд-во иностр. лит., 1953.
- Dinculeanu N. Vector measures. Berlin: VEB Deutscher Verlag der Wissenschaften, 1966. (Hochschulbücher für Mathematik; Bd 64).
- 21. Diestel J., Uhl J. J. Jr. Vector measures. Providence: Amer. Math. Soc., 1977.
- 22. Maharam D. On a theorem of von Neumann // Proc. Amer. Math. Soc. 1958. V. 9. P. 987–994.
- Ionescu Tulcea A., Ionescu Tulcea C. Topics in the theory of lifting. Berlin, etc.: Springer, 1969.
- 24. Halmos P. R. On the set of values of a finite measure // Bull. Amer. Math. Soc. 1947. V. 53, N 2. P. 138–141.
- 25. Diestel J. Sequences and series in Banach spaces. New York, etc.: Springer-Verl., 1984.
- 26. Вулих Б. З. Краткий курс теории функций вещественной переменной. М.: Наука, 1973.

Cтатья поступила 15 октября 2003 г.

Гутман Александр Ефимович

Институт математики им. С. Л. Соболева СО РАН,

пр. Академика Коптюга, 4, Новосибирск 630090

gutman@math.nsc.ru

Сотников Алексей Игоревич

Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090

sotnikov@math.nsc.ru