СПЕКТРАЛЬНЫЕ СВОЙСТВА ОДНОЙ ЗАДАЧИ ТИПА ШТУРМА — ЛИУВИЛЛЯ С РАЗРЫВНЫМ ВЕСОМ О. Ш. Мухтаров, М. Кадакал

Аннотация: Рассматривается уравнение Штурма — Лиувилля с разрывным весом и с граничными условиями, зависящими от собственного параметра и двух дополнительных условий сопряжения в точке разрыва. Модифицируя технику из [1–3], мы распространяем и обобщаем некоторые подходы и результаты классической регулярной задачи Штурма — Лиувилля на разрывный случай. В частности, вводим специальное гильбертово пространство такое, что рассматриваемая задача может интерпретироваться как задача на собственные значения подходящего самосопряженного оператора, строим функцию Грина и резольвенту, выводим асимптотические формулы для собственных значений и нормированных собственных функций.

Ключевые слова: разрывная задача Штурма — Лиувилля, условие сопряжения, собственное значение, собственная функция, функция Грина, резольвента.

1. Введение

Теория Штурма оказывает существенную помощь при решении многих задач математической физики. Как правило, собственное значение как параметр появляется линейно только в дифференциальном уравнении классической задачи Штурма — Лиувилля. Однако в математической физике встречаются такие задачи, в которых собственное значение участвует не только в дифференциальном уравнении, но и в граничных условиях (различные физические приложения можно найти в [1]). Есть обширная литература по такого типа задачам (см., например, [1, 3, 4–7] и недавние [8–10], а также соответствующие ссылки в этих источниках). В этих работах исследуются только непрерывные задачи. Цель настоящей статьи — распространить некоторые классические результаты теории Штурма на случай, когда два дополнительных условия сопряжения добавляются к граничным условиям, зависящим от собственных значений. В действительности мы будем исследовать как непрерывный, так и разрывный случаи (ниже случаи $\omega_1(x) = \omega_2(x) = 1$, $\gamma_1 = \delta_1$, $\gamma_2 = \delta_2$ и $\omega_1(x) = \omega_2(x) = 1$, $\gamma_1 \neq \delta_1$, $\gamma_2 \neq \delta_2$ соответственно).

Рассмотрим уравнение Штурма — Лиувилля

$$\tau u := -u'' + q(x)u = \lambda \omega(x)u$$
 для $x \in [-1, 0) \cup (0, 1]$ (1.1)

(т. е. на [-1,1], кроме одной внутренней точки x=0), где q(x) — вещественнозначная и непрерывная на каждом из промежутков [-1,0) и (0,1] функция, имеющая конечный предел $q(\pm 0)=\lim_{x\to\pm 0}q(x);$ $\omega(x)$ — разрывная весовая функция, для которой $\omega(x)=\omega_1^2$ для $x\in[-1,0)$ и $\omega(x)=\omega_2^2$ для $x\in(0,1],$ $\omega>0$, и выполняются стандартное граничное условие в точке x=-1:

$$L_1 u := \cos \alpha u(-1) + \sin \alpha u'(-1) = 0, \quad x \in [0, \pi),$$
 (1.2)

и зависящее от параметра собственного значения условие в точке x=1:

$$L_2(\lambda)u := \lambda(\beta_1'u(1) - \beta_2'u'(1)) + (\beta_1u(1) - \beta_2u'(1)) = 0, \tag{1.3}$$

а также условия сопряжения в точке разрывности x = 0:

$$L_3 u := \gamma_1 u(-0) - \delta_1 u(+0) = 0, \tag{1.4}$$

$$L_4 u := \gamma_2 u'(-0) - \delta_2 u'(+0) = 0 \tag{1.5}$$

в гильбертовом пространстве $L_2(-1,0)\oplus L_2(0,1)$, где $\lambda\in\mathbb{C}$ — комплексный спектральный параметр и все коэффициенты граничного условия и условия сопряжения вещественны и постоянны. Естественно, мы считаем, что $|\alpha_1|+|\alpha_2|\neq 0, |\beta_1'|+|\beta_2'|\neq 0$ и $|\beta_1|+|\beta_2|\neq 0$. Кроме того, будем предполагать, что $\rho:=\beta_1'\beta_2-\beta_1\beta_2'>0$.

Некоторые специальные случаи этой задачи возникают после применения метода разделения переменных к различным задачам физики таким, как задачи тепло- и массопереноса (см., например, [11]), задача колебания струны, когда струна нагружена дополнительными точечными массами (см., например, [11]), задачи теплопроводности для тонкой пластинки (см., например, [12]).

Отметим, что такие свойства, как изоморфность, коэрцитивность относительно спектрального параметра, полнота корневых функций, распределения собственных значений некоторых разрывных граничных задач с условием сопряжения и их приложения к соответствующим начально-краевым задачам для параболических уравнений исследованы в [12–15].

2. Теоретико-операторная формулировка в подходящем гильбертовом пространстве

В данном разделе введем специальное скалярное произведение в гильбертовом пространстве $(L_2(-1,0)\oplus L_2(0,1))\oplus \mathbb{C}$ и определим линейный оператор A в нем таким образом, что задача (1.1)–(1.5) может быть рассмотрена как задача на собственные значения оператора A. Для этого определим новое гильбертово пространство, задав на $H:=(L_2(-1,0)\oplus L_2(0,1))\oplus \mathbb{C}$ скалярное произведение по формуле

$$\langle F,G
angle_{H}=\omega_{1}^{2}\gamma_{1}\gamma_{2}\int\limits_{-1}^{0}f(x)\overline{g(x)}\,dx+\omega_{2}^{2}\delta_{1}\delta_{2}\int\limits_{0}^{1}f(x)\overline{g(x)}\,dx+rac{\delta_{1}\delta_{2}}{
ho}f_{1}\overline{g_{1}}$$

для $F=inom{f(x)}{f_1},\,G=inom{g(x)}{g_1}\in H.$ Для удобства будем использовать обозначения

$$R_1(u) := \beta_1 u(1) - \beta_2 u'(1), \quad R'_1(u) := \beta'_1 u(1) - \beta'_2 u'(1).$$

В этом гильбертовом пространстве определим оператор $A: H \to H$ на

$$D(A) = \left\{ F = \begin{pmatrix} f(x) \\ f_1 \end{pmatrix} \mid f(x), f'(x) \text{ абсолютно непрерывны на } [-1,0) \cup (0,1] \right\}$$

и имеют конечные односторонние пределы $f(\pm 0)$, $f'(\pm 0)$ соответственно;

$$\tau f \in L_2(-1,0) \oplus L_2(0,1); \quad L_1 f = L_3 f = L_4 f = 0; \quad f_1 = R_1'(f) \bigg\}, \quad (2.1)$$

полагая

$$AF = \begin{pmatrix} \frac{1}{\omega(x)} [-f'' + q(x)f] \\ -R_1(f) \end{pmatrix} \quad c \quad F = \begin{pmatrix} f(x) \\ R'_1(f) \end{pmatrix} \in D(A). \tag{2.2}$$

Тогда мы можем поставить граничную задачу сопряжения (1.1)–(1.5) так:

$$AU = \lambda U, \quad U := \begin{pmatrix} u(x) \\ R'_1(u) \end{pmatrix} \in D(A)$$
 (2.3)

в гильбертовом пространстве H.

Легко проверить, что собственные значения оператора A совпадают с таковыми для задачи (1.1)–(1.5).

Теорема 2.1. Оператор А симметричен.

Доказательство. Пусть

$$F = \left(egin{array}{c} f(x) \ R_1'(f) \end{array}
ight)$$
 и $G = \left(egin{array}{c} g(x) \ R_1'(g) \end{array}
ight)$

суть произвольные элементы из D(A). Интегрируя два раза по частям, получим

$$\langle AF, G \rangle_{H} - \langle F, AG \rangle_{H} = \gamma_{1}\gamma_{2}W(f, \bar{g}; -0) - \gamma_{1}\gamma_{2}W(f, \bar{g}; -1) + \delta_{1}\delta_{2}W(f, \bar{g}; 1) - \delta_{1}\delta_{2}W(f, \bar{g}; +0) + \frac{\delta_{1}\delta_{2}}{\rho}(R'_{1}(f)R_{1}(\bar{g}) - R_{1}(f)R'_{1}(\bar{g})), \quad (2.4)$$

где, как обычно, W(f, g; x) — вронскиан функций f и g, т. е.

$$W(f, g; x) := f(x)g'(x) - f'(x)g(x).$$

Так как $F,G\in D(A)$, первые компоненты этих элементов, т. е. f и g, удовлетворяют граничному условию (1.2). Отсюда легко получаем, что

$$W(f, \bar{g}; -1) = 0, \tag{2.5}$$

поскольку $\cos \alpha$ и $\sin \alpha$ вещественны. Далее, ввиду того, что f и g удовлетворяют также обоим условиям сопряжения, имеем

$$W(f, \bar{g}; -0) = \frac{\delta_1 \delta_2}{\gamma_1 \gamma_2} W(f, \bar{g}; +0).$$
 (2.6)

Более того, непосредственное вычисление дает

$$R_1'(f)R_1(\bar{q}) - R_1(f)R_1'(\bar{q}) = -\rho \delta_1 \delta_2 W(f, \bar{q}; 1). \tag{2.7}$$

Подстановка (2.5)–(2.7) в (2.4) приводит к равенству

$$\langle AF, G \rangle_H = \langle F, AG \rangle_H \quad (F, G \in D(A)),$$

так что A симметричен.

Учитывая, что собственные значения задачи (1.1)–(1.5) совпадают с собственными значениями A, получаем

Следствие 2.1. Все собственные значения задачи (1.1)–(1.5) вещественны.

Раз все собственные значения вещественны, достаточно исследовать только вещественнозначные собственные функции. Учитывая это, можем считать, что все собственные функции задачи (1.1)–(1.5) вещественнозначны.

3. Асимптотические представления фундаментальных решений

Определим два «фундаментальных» решения

$$\phi(x,\lambda) = \left\{ \begin{array}{ll} \phi_1(x,\lambda), & x \in [-1,0), \\ \phi_2(x,\lambda), & x \in (0,1], \end{array} \right. \quad \text{if} \quad \chi(x,\lambda) = \left\{ \begin{array}{ll} \chi_1(x,\lambda), & x \in [-1,0), \\ \chi_2(x,\lambda), & x \in (0,1], \end{array} \right.$$

уравнения (1.1) следующим путем.

Во-первых, рассмотрим задачу Коши

$$-u'' + q(x)u = \lambda \omega_1^2 u, \quad x \in [-1, 0], \tag{3.1}$$

$$u(-1) = \sin \alpha, \tag{3.2}$$

$$u'(-1) = -\cos\alpha. \tag{3.3}$$

Ввиду [2, теорема 1.5] эта задача имеет единственное решение $u=\phi_1(x,\lambda)$, являющееся целой функцией от $\lambda\in\mathbb{C}$ при каждом фиксированном $x\in[-1,0]$. Слегка модифицируя метод из [2, теорема 1.5], можно доказать, что задача Коши

$$-u'' + q(x)u = \lambda \omega_2^2 u, \quad x \in [0, 1], \tag{3.4}$$

$$u(1) = \beta_2' \lambda + \beta_2, \tag{3.5}$$

$$u'(1) = \beta_1' \lambda + \beta_1 \tag{3.6}$$

имеет единственное решение $u=\chi_2(x,\lambda)$, являющееся целой функцией параметра λ для каждого фиксированного $x\in[0,1]$. Другие функции $\phi_2(x,\lambda)$ и $\chi_1(x,\lambda)$ определим в терминах $\phi_1(x,\lambda)$ и $\chi_2(x,\lambda)$ соответственно. Применяя метод доказательства из [16, теорема 2], можно доказать, что задача Коши

$$-u'' + q(x)u = \lambda \omega_2^2 u, \quad x \in [0, 1], \tag{3.7}$$

$$u(0) = \frac{\gamma_1}{\delta_1} \phi_1(0, \lambda), \tag{3.8}$$

$$u'(0) = \frac{\gamma_2}{\delta_2} \phi_1'(0, \lambda)$$
 (3.9)

имеет единственное решение $u=\phi_2(x,\lambda),$ являющееся целой функцией от λ при каждом фиксированном $x\in[0,1].$ Аналогично задача Коши

$$-u'' + q(x)u = \lambda \omega_1^2 u, \quad x \in [-1, 0], \tag{3.10}$$

$$u(0) = \frac{\delta_1}{\gamma_1} \chi_2(0, \lambda), \tag{3.11}$$

$$u'(0) = \frac{\delta_2}{\gamma_2} \chi_2'(0, \lambda) \tag{3.12}$$

также имеет единственное решение $u = \chi_1(x, \lambda)$, являющееся целой функцией от λ при каждом фиксированном $x \in [-1, 0]$.

В силу (3.2) и (3.3) решение $\phi(x,\lambda)$ удовлетворяет первому краевому условию (1.2). Кроме того, ввиду (3.8) и (3.9) $\phi(x,\lambda)$ удовлетворяет обоим условиям сопряжения (1.4) и (1.5). Аналогично согласно (3.5), (3.6), (3.11) и (3.12) другое решение $\chi(x,\lambda)$ удовлетворяет второму краевому условию (1.3) и обоим условиям сопряжения (1.4) и (1.5).

Из теории обыкновенных дифференциальных уравнений известно, что каждый из вронскианов $\Delta_1(\lambda)=W(\phi_1(x,\lambda),\chi_1(x,\lambda)),\ \Delta_2(\lambda)=W(\phi_2(x,\lambda),\chi_2(x,\lambda))$ не зависит от x в [-1,0] и [0,1] соответственно.

Лемма 3.1. Для каждого $\lambda \in \mathbb{C}$ выполнено равенство $\Delta_1(\lambda) = \frac{\delta_1 \delta_2}{\gamma_1 \gamma_2} \Delta_2(\lambda)$.

Доказательство. Поскольку упомянутые вронскианы не зависят от x, используя (3.8), (3.9), (3.11) и (3.12), имеем

$$\Delta_{1}(\lambda) = \phi_{1}(0,\lambda)\chi'_{1}(0,\lambda) - \phi'_{1}(0,\lambda)\chi_{1}(0,\lambda)$$

$$= \left(\frac{\delta_{1}}{\gamma_{1}}\phi_{2}(0,\lambda)\right) \cdot \left(\frac{\delta_{2}}{\gamma_{2}}\chi'_{2}(0,\lambda)\right) - \left(\frac{\delta_{2}}{\gamma_{2}}\phi'_{2}(0,\lambda)\right) \cdot \left(\frac{\delta_{1}}{\gamma_{1}}\chi_{2}(0,\lambda)\right) = \frac{\delta_{1}\delta_{2}}{\gamma_{1}\gamma_{2}}\Delta_{2}(\lambda).$$
(3.13)

Следствие 3.1. Множества нулей $\Delta_1(\lambda)$ и $\Delta_2(\lambda)$ совпадают.

Учитывая лемму 3.1, обозначим как $\Delta_1(\lambda)$, так и $\frac{\delta_1\delta_2}{\gamma_1\gamma_2}\Delta_2(\lambda)$ через $\Delta(\lambda)$. Используя определения $\phi_i(x,\lambda)$ и $\chi_i(x,\lambda)$, получаем

Следствие 3.2. Функция $\Delta(\lambda)$ является целой.

Теорема 3.1. Собственные значения задачи (1.1)–(1.5) совпадают с нулями функции $\Delta(\lambda)$.

Доказательство. Пусть $\Delta(\lambda_0)=0$. Тогда $W(\phi_1(x,\lambda_0),\chi_1(x,\lambda_0))=0$ для всех $x \in [-1,0]$. Следовательно, функции $\phi_1(x,\lambda_0)$, $\chi_1(x,\lambda)_0$ линейно зависимы,

$$\chi_1(x,\lambda_0) = k_1 \phi_1(x,\lambda_0), \quad x \in [-1,0],$$

для некоторого $k_1 \neq 0$. Используя (3.2) и (3.3), из этого равенства получаем

$$\cos \alpha \chi(-1, \lambda_0) + \sin \alpha \chi'(-1, \lambda_0) = \cos \alpha \chi_1(-1, \lambda_0) + \sin \alpha \chi'_1(-1, \lambda_0)$$
$$= k_1(\cos \alpha \phi_1(-1, \lambda_0) + \sin \alpha \phi'_1(-1, \lambda_0)) = k_1(\cos \alpha \sin \alpha + \sin \alpha(-\cos \alpha)) = 0,$$

так что $\chi(x,\lambda_0)$ удовлетворяет первому краевому условию (1.2). Поскольку решение $\chi(x,\lambda_0)$ удовлетворяет также второму краевому условию (1.3) и обоим условиям сопряжения (1.4) и (1.5), заключаем, что $\chi(x,\lambda_0)$ — собственная функция задачи (1.1)–(1.5), т. е. λ_0 — собственное значение. Итак, каждый нуль $\Delta(\lambda)$ является собственным значением.

Пусть теперь λ_0 — собственное значение и $u_0(x)$ — какая-либо собственная функция, соответствующая этому собственному значению. Предположим, что $\Delta(\lambda_0) \neq 0$. Тогда $W(\phi_1(x,\lambda_0),\chi_1(x,\lambda_0)) \neq 0$ и $W(\phi_2(x,\lambda_0),\chi_2(x,\lambda_0)) \neq 0$. Отсюда ввиду известных свойств вронскиана следует, что каждая из пар $\phi_1(x,\lambda_0)$, $\chi_1(x,\lambda_0)$ и $\phi_2(x,\lambda_0), \chi_2(x,\lambda_0)$ линейно независима. Поэтому решение $u_0(x)$ уравнения (1.1) может быть представлено в виде

$$u_0(x) = \left\{ \begin{array}{ll} c_1\phi_1(x,\lambda_0) + c_2\chi_1(x,\lambda_0), & x \in [-1,0), \\ c_3\phi_2(x,\lambda_0) + c_4\chi_2(x,\lambda_0), & x \in (0,1], \end{array} \right.$$

где по крайней мере одна из констант c_1, c_2, c_3, c_4 ненулевая. Рассматривая верные равенства

$$L_{\nu}(u_0(x)) = 0, \quad \nu = 1, 2, 3, 4,$$
 (3.14)

как однородную систему линейных уравнений относительно c_1, c_2, c_3, c_4 и принимая во внимание (3.8), (3.9) и (3.11), (3.12), приходим к выводу, что опреде-

$$\begin{vmatrix} 0 & \Delta_1(\lambda_0) & 0 & 0 \\ 0 & 0 & \Delta_2(\lambda_0) & 0 \\ \gamma_1 \phi_1(0, \lambda_0) & \gamma_1 \chi_1(0, \lambda_0) & -\delta_1 \phi_2(0, \lambda_0) & -\delta_1 \chi_2(0, \lambda_0) \\ \gamma_2 \phi_1'(0, \lambda_0) & \gamma_2 \chi_1'(0, \lambda_0) & -\delta_2 \phi_2'(0, \lambda_0) & -\delta_2 \chi_2'(0, \lambda_0) \end{vmatrix} = -\frac{(\delta_1 \delta_2)^2}{\gamma_1 \gamma_2} \Delta^3(\lambda_0) \neq 0$$

и тем самым по предположению не обращается в нуль. Следовательно, эта однородная система линейных уравнений имеет только тривиальное решение $(c_1, c_2, c_3, c_4) = (0, 0, 0, 0)$. Мы пришли к противоречию, завершающему доказательство теоремы.

Всюду ниже будем считать, что выполнено условие $\omega_2 \delta_2 \gamma_1 = \omega_1 \delta_1 \gamma_2$.

Теорема 3.2. Пусть $\lambda = s^2$, ${\rm Im}\, s = t$. Тогда при $|\lambda| \to \infty$ имеют место следующие асимптотические равенства:

1) в случае $\alpha \neq 0$

$$\phi_1^{(k)}(x,\lambda) = \sin \alpha \frac{d^k}{dx^k} \cos[s\omega_1(x+1)] + O\left(\frac{1}{|s|^{1-k}} e^{|t|\omega_1(x+1)}\right), \tag{3.15}$$

$$\phi_2^{(k)}(x,\lambda) = \frac{\gamma_1}{\delta_1} \sin \alpha \frac{d^k}{dx^k} \cos[s(\omega_2 x + \omega_1)] + O\left(\frac{1}{|s|^{1-k}} e^{|t|(\omega_2 x + \omega_1)}\right) \tag{3.16}$$

для k = 0 и k = 1;

2) в случае $\alpha=0$

$$\phi_1^{(k)}(x,\lambda) = -\frac{1}{\omega_1 s} \cos \alpha \frac{d^k}{dx^k} \sin[s\omega_1(x+1)] + O\left(\frac{1}{|s|^{2-k}} e^{|t|\omega_1(x+1)}\right), \quad (3.17)$$

$$\phi_2^{(k)}(x,\lambda) = -\frac{1}{s} \frac{\gamma_1}{\delta_1} \cos \alpha \frac{d^k}{dx^k} \sin[s(\omega_2 x + \omega_1)] + O\left(\frac{1}{|s|^{2-k}} e^{|t|(\omega_2 x + \omega_1)}\right)$$
(3.18)

для k = 0 и k = 1.

Более того, каждое из этих асимптотических равенств выполняется равномерно по x.

Доказательство. Асимптотические формулы для $\phi_1(x,\lambda)$ можно найти в [2, лемма 1.7] и [1, лемма 1] соответственно. Однако аналогичные формулы для решения $\phi_2(x,\lambda)$ требуют внимательного рассмотрения, так как это решение определяется начальными условиями, имеющими специальный нестандартный вид.

Задача Коши (3.7)–(3.9) может быть преобразована в равносильное интегральное уравнение

$$u(x) = \frac{\gamma_1}{\delta_1} \phi_1(0, \lambda) \cos \sqrt{\lambda} \omega_2 x + \frac{1}{\omega_2 \sqrt{\lambda}} \frac{\gamma_2}{\delta_2} \phi_1'(0, \lambda) \sin \sqrt{\lambda} \omega_2 x + \frac{\omega_2}{\sqrt{\lambda}} \int_0^x \sin[\sqrt{\lambda} \omega_2(x - y)] q(y) u(y) dy. \quad (3.19)$$

Пусть $\alpha \neq 0$. Подставляя (3.15) в (3.19), имеем

$$\phi_2(x,\lambda) = \frac{\gamma_1}{\delta_1} \sin \alpha \cos \sqrt{\lambda} (\omega_2 x + \omega_1) + \frac{\omega_2}{\sqrt{\lambda}} \int_0^x \sin[\sqrt{\lambda} \omega_2(x-y)] q(y) \phi_2(y,\lambda) \, dy + O\left(\frac{1}{\sqrt{\lambda}} e^{|t|(\omega_2 x + \omega_1)}\right). \quad (3.20)$$

Умножая на $e^{-|t|(\omega_2 x + \omega_1)}$ и вводя обозначение $F(x,\lambda) = e^{-|t|(\omega_2 x + \omega_1)} \phi_2(x,\lambda)$, получаем следующее «асимптотическое интегральное уравнение»:

$$F(x,\lambda) = \frac{\gamma_1}{\delta_1} \sin \alpha e^{-|t|(\omega_2 x + \omega_1)} \cos \sqrt{\lambda} (\omega_2 x + \omega_1)$$

$$+ \frac{\omega_2}{\sqrt{\lambda}} \int_0^x \sin[\sqrt{\lambda} \omega_2 (x - y)] q(y) e^{-|t|\omega_2 (x - y)} F(y,\lambda) \, dy + O\left(\frac{1}{\sqrt{\lambda}}\right).$$

Полагая $M(\lambda) = \max_{x \in [0,1]} |F(x,\lambda)|$, из последнего уравнения выводим, что

$$M(\lambda) \leq M_0 \left(\left| rac{\gamma_1}{\delta_1}
ight| + rac{1}{\sqrt{|\lambda|}}
ight)$$

для некоторого $M_0>0$. Следовательно, $M(\lambda)=O(1)$ при $|\lambda|\to\infty$, так что

$$\phi_2(x,\lambda) = O(e^{|t|(\omega_2 x + \omega_1)})$$
 при $|\lambda| \to \infty$.

Подставляя последнее соотношение в интегральный член в (3.20), приходим к (3.16) для случая k=0. Случай k=1 в (3.16) немедленно следует из дифференцирования (3.19) и выполнения той же процедуры, что и в случае k=0. Доказательство (3.18) аналогично доказательству (3.16) и поэтому опускается.

Теорема 3.3. Пусть $\lambda = s^2$, $s = \sigma + it$. Тогда для собственных значений граничной задачи с сопряжением (1.1)–(1.5) справедливы следующие асимптотические равенства.

Случай 1. Если $\beta_2' \neq 0, \, \alpha \neq 0, \, \text{то}$

$$s_n = \frac{1}{\omega_1 + \omega_2} \pi(n-1) + O\left(\frac{1}{n}\right). \tag{3.21}$$

Случай 2. Если $\beta_2' \neq 0$, $\alpha = 0$, то

$$s_n = \frac{1}{\omega_1 + \omega_2} \pi \left(n - \frac{1}{2} \right) + O\left(\frac{1}{n}\right). \tag{3.22}$$

Cлучай 3. Если $eta_2'=0,\, lpha
eq 0,$ то

$$s_n = \frac{1}{\omega_1 + \omega_2} \pi \left(n - \frac{1}{2} \right) + O\left(\frac{1}{n}\right). \tag{3.23}$$

Случай 4. Если $\beta_2' = 0, \, \alpha = 0, \, \text{то}$

$$s_n = \frac{1}{\omega_1 + \omega_2} \pi n + O\left(\frac{1}{n}\right). \tag{3.24}$$

Доказательство. Рассмотрим только случай 1. Полагая x=1 в

$$\Delta_2(\lambda) = \phi_2(x,\lambda)\chi_2'(x,\lambda) - \phi_2'(x,\lambda)\chi_2(x,\lambda)$$

и затем подставляя $\chi_2(1,\lambda)=\beta_2'\lambda+\beta_2,\ \chi_2'(1,\lambda)=\beta_1'\lambda+\beta_1,$ приходим к следующему представлению для $\Delta_2(\lambda)$:

$$\Delta_2(\lambda) = (\beta_1'\lambda + \beta_1)\phi_2(1,\lambda) - (\beta_2'\lambda + \beta_2)\phi_2'(1,\lambda). \tag{3.25}$$

Полагая теперь x=1 в (3.16) и затем подставляя результат в (3.25), выводим, что

$$\Delta_2(\lambda) = \frac{\delta_2}{\gamma_2} \omega_2 \beta_2' \sin \alpha s^3 \sin[\sqrt{\lambda}(\omega_1 + \omega_2)] + O(|s|^2 e^{2|t|(\omega_1 + \omega_2)}). \tag{3.26}$$

Применяя известную теорему Руше, согласно которой если f(z) и g(z) суть аналитические внутри области и на контуре Γ и |g(z)|<|f(z)| на Γ , то f(z) и f(z)+g(z) имеют одинаковое число нулей внутри контура Γ при условии, что каждый корень считается с учетом его кратности на достаточно большом контуре, получаем, что $\Delta_2(\lambda)$ имеет то же число нулей внутри контура, что и

главный член в (3.26). Отсюда если $\lambda_0 < \lambda_1 < \lambda_2 \dots$ — нули $\Delta_2(\lambda)$ и $s_n^2 = \lambda_n$, то

$$s_n = \frac{1}{\omega_1 + \omega_2} \pi(n-1) + \delta_n \tag{3.27}$$

для достаточно большого n, где $|\delta_n|<\frac{1}{\omega_1+\omega_2}\frac{\pi}{4}$ для достаточно большого n. Подставляя это в (3.26), получаем

$$\delta_n = O\left(\frac{1}{n}\right),$$

что завершает доказательство в случае 1. Доказательство для остальных случаев проводится аналогично.

Теорема 3.4. Для собственных функций

$$\phi_{\lambda_n}(x) = \begin{cases} \phi_1(x, \lambda_n), & x \in [-1, 0), \\ \phi_2(x, \lambda_n), & x \in (0, 1], \end{cases}$$

задачи (1.1)-(1.5) выполнены следующие асимптотические формулы.

Случай 1. Если $\beta_2' \neq 0$, $\alpha \neq 0$, то

$$\phi_{\lambda_n}(x) = \begin{cases} \sin \alpha \cos\left(\frac{\omega_1}{\omega_1 + \omega_2} \pi(n - 1)(x + 1)\right) + O\left(\frac{1}{n}\right), & x \in [-1, 0), \\ \sin \alpha \frac{\gamma_1}{\delta_1} \cos\left(\frac{1}{\omega_1 + \omega_2} \pi(n - 1)(\omega_2 x + \omega_1)\right) + O\left(\frac{1}{n}\right), & x \in (0, 1]. \end{cases}$$
(3.28)

Случай 2. Если $\beta_2' \neq 0$, $\alpha = 0$, то

$$\phi_{\lambda_n}(x) = \begin{cases} -\frac{\omega_1 + \omega_2}{\omega_1} \frac{\cos \alpha}{\pi (n - \frac{1}{2})} \sin\left(\frac{\omega_1}{\omega_1 + \omega_2} \pi (n - \frac{1}{2})(x + 1)\right) + O\left(\frac{1}{n^2}\right), & x \in [-1, 0), \\ -\frac{\gamma_1}{\delta_1} \frac{\omega_1 + \omega_2}{\omega_1} \frac{\cos \alpha}{\pi (n - \frac{1}{2})} \sin\left(\frac{1}{\omega_1 + \omega_2} \pi (n - \frac{1}{2})(\omega_2 x + \omega_1)\right) + O\left(\frac{1}{n^2}\right), & x \in (0, 1]. \end{cases}$$
(3.29)

Случай 3. Если $\beta_2' = 0, \, \alpha \neq 0, \, \text{то}$

$$\phi_{\lambda_n}(x) = \begin{cases} \sin \alpha \cos\left(\frac{\omega_1}{\omega_1 + \omega_2} \pi \left(n - \frac{1}{2}\right)(x+1)\right) + O\left(\frac{1}{n}\right), & x \in [-1, 0), \\ \sin \alpha \frac{\gamma_1}{\delta_1} \cos\left(\frac{1}{\omega_1 + \omega_2} \pi \left(n - \frac{1}{2}\right)(\omega_2 x + \omega_1)\right) + O\left(\frac{1}{n}\right), & x \in [0, 1]. \end{cases}$$
(3.30)

Случай 4. Если, $\beta_2' = 0$, $\alpha = 0$, то

$$\phi_{\lambda_n}(x) = \begin{cases} -\frac{\omega_1 + \omega_2}{\omega_1} \frac{\cos \alpha}{\pi n} \sin\left(\frac{\omega_1}{\omega_1 + \omega_2} \pi n(x+1)\right) + O\left(\frac{1}{n^2}\right), & x \in [-1, 0), \\ -\frac{\gamma_1}{\delta_1} \frac{\omega_1 + \omega_2}{\omega_1} \frac{\cos \alpha}{\pi n} \sin\left(\frac{1}{\omega_1 + \omega_2} \pi n(\omega_2 x + \omega_1)\right) + O\left(\frac{1}{n^2}\right), & x \in (0, 1]. \end{cases}$$

$$(3.31)$$

Все указанные асимптотические формулы выполнены равномерно по x.

Доказательство. Рассмотрим только случай 1. Подставляя (3.16) в интегральный член в (3.20), легко получить, что

$$\int_{0}^{x} \sin[\sqrt{\lambda}\omega_{2}(x-y)]q(y)\phi_{2}(y,\lambda) dy = O(e^{|t|(\omega_{2}x+\omega_{1})}). \tag{3.32}$$

Подставляя это в (3.20), имеем

$$\phi_2(x,\lambda) = \frac{\gamma_1}{\delta_1} \sin \alpha \cos \sqrt{\lambda} (\omega_2 x + \omega_1) + O\left(\frac{1}{\sqrt{\lambda}} e^{|t|(\omega_2 x + \omega_1)}\right). \tag{3.33}$$

Известно, что все собственные значения вещественны. Далее, полагая $\lambda=-R,\ R>0$ в (3.26), получаем, что $\omega(-R)\to\infty$ при $R\to+\infty$, так что $\omega(-R)\ne$

0 для достаточно большого R>0. Следовательно, множество собственных значений ограничено снизу. Беря $\sqrt{\lambda}=s_n$ в (3.33), приходим к равенству

$$\phi_2(x,\lambda_n) = rac{\gamma_1}{\delta_1} \sinlpha \cos[s_n(\omega_2 x + \omega_1)] + Oigg(rac{1}{s_n}igg),$$

так как $t_n = \operatorname{Im} s_n = 0$ для достаточно большого n. Простые вычисления приводят к соотношению

$$\cos[s_n(\omega_2 x + \omega_1)] = \cosigg(rac{1}{\omega_1 + \omega_2}\pi(n-1)(\omega_2 x + \omega_1)igg) + Oigg(rac{1}{n}igg).$$

Следовательно,

$$\phi_2(x,\lambda_n) = rac{\gamma_1}{\delta_1} \sin lpha \cos igg(rac{1}{\omega_1 + \omega_2} \pi (n-1) (\omega_2 x + \omega_1)igg) + Oigg(rac{1}{n}igg).$$

Аналогично находим, что

$$\phi_1(x,\lambda_n) = \sin lpha \cos \left(rac{\omega_1}{\omega_1 + \omega_2} \pi (n-1) (x+1)
ight) + O \left(rac{1}{n}
ight).$$

Поскольку

$$\phi_{\lambda_n}(x) = \left\{ \begin{array}{ll} \phi_1(x,\lambda_n), & x \in [-1,0), \\ \phi_2(x,\lambda_n), & x \in (0,1], \end{array} \right.$$

доказательство теоремы для случая 1 завершено. Доказательство оставшихся случаев проводится аналогично.

4. Асимптотические формулы для нормированных собственных функций

В первую очередь запишем выражение для нормы собственных элементов

$$\Phi_n := \begin{pmatrix} \phi_{\lambda_n}(x) \\ R'_1(\phi_{\lambda_n}) \end{pmatrix}. \tag{4.1}$$

Очевидно, что двухкомпонентные векторы

$$\Phi_n := \begin{pmatrix} \phi_{\lambda_n}(x) \\ R'_1(\phi_{\lambda_n}) \end{pmatrix}, \quad n = 0, 1, 2, \dots,$$

$$(4.2)$$

являются собственными элементами оператора A, соответствующими собственным значениям λ_n . Для $n \neq m$ будет

$$\langle \Phi_n, \Phi_m \rangle_H = 0, \quad n, m = 0, 1, 2, \dots,$$

ввиду симметричности A. Вводя обозначение

$$\psi_n := \frac{\phi_{\lambda_n}(x)}{\|\Phi_n\|_H},\tag{4.3}$$

легко установить, что собственные элементы

$$\Psi_n := \begin{pmatrix} \psi_{\lambda_n}(x) \\ R'_1(\psi_{\lambda_n}) \end{pmatrix}, \quad n, m = 0, 1, 2, \dots, \tag{4.4}$$

ортонормальны. Тем самым $A\Psi_n=\lambda_n\Psi_n$ и $\langle\Psi_n,\Psi_m\rangle_H=\delta_{nm},$ где $\delta_{nm}-$ символ Кронекера.

Лемма 4.1. Справедливы следующие асимптотические равенства:

1) в случае $\alpha \neq 0$

$$R_1'(\phi_{\lambda_n}) = O\left(\frac{1}{n}\right),\tag{4.5}$$

2) в случае $\alpha = 0$

$$R_1'(\phi_{\lambda_n}) = O\left(\frac{1}{n^2}\right). \tag{4.6}$$

Доказательство. Из равенства $\Delta_2(\lambda_n)=0$ вытекает, что

$$\lambda_n R_1'(\phi_{2\lambda_n}) + R_1(\phi_{2\lambda_n}) = 0. \tag{4.7}$$

1. Пусть $\alpha \neq 0$. Тогда из (3.16) получаем

$$R_1(\phi_{2\lambda_n}) = \beta_1 \phi_{2\lambda_n}(1) - \beta_2 \phi'_{2\lambda_n}(1) = \beta_1 O(1) - \beta_2 O(|s_n|).$$

Применяя теорему 3.3, имеем

$$R_1(\phi_{2\lambda_n}) = O(n). \tag{4.8}$$

Подставляя (4.8) в (4.7) и принимая во внимание теорему 3.3, получаем

$$R'_1(\phi_{2\lambda_n}) = -\frac{1}{\lambda_n} R_1(\phi_{2\lambda_n}) = O\left(\frac{1}{n}\right).$$

2. Пусть теперь $\alpha = 0$. Используя теорему 3.3, выводим, что

$$R_1(\phi_{2\lambda_n}) = \beta_1 \phi_{2\lambda_n}(1) - \beta_2 \phi'_{2\lambda_n}(1)$$
$$= \beta_1 O(|s_n|^{-1}) - \beta_2 O(1) = \beta_1 O\left(\frac{1}{n}\right) - \beta_2 O(1) = O(1).$$

Учитывая, что $\lambda_n \sim \left(\frac{\pi}{2}n\right)^2$, и применяя (4.7), имеем

$$R_1'(\phi_{2\lambda_n}) = -\frac{1}{\lambda_n} R_1(\phi_{2\lambda_n}) = O\left(\frac{1}{n^2}\right).$$

Доказательство закончено.

Теорема 4.1. Пусть Φ_n , как в (4.1). Тогда для норм $\|\Phi_n\|_H$ собственных элементов Φ_n выполнены следующие асимптотические формулы.

Случай 1. Если $\beta_2' \neq 0$ и $\alpha \neq 0$, то

$$\|\Phi_n\|_H = \frac{|\sin \alpha|}{|\delta_1|} \sqrt{\frac{(\omega_1 \delta_1)^2 \gamma_1 \gamma_2 + (\omega_2 \gamma_1)^2 \delta_1 \delta_2}{2}} + O\left(\frac{1}{n}\right). \tag{4.9}$$

Cлучай 2. Eсли $\beta_2' \neq 0$ и $\alpha = 0$, то

$$\|\Phi_n\|_H = \frac{|-\cos\alpha|}{|\delta_1|} \frac{\omega_1 + \omega_2}{\omega_1} \frac{1}{\pi(n-1/2)} \sqrt{\frac{(\omega_1\delta_1)^2 \gamma_1 \gamma_2 + (\omega_2 \gamma_1)^2 \delta_1 \delta_2}{2}} + O\left(\frac{1}{n^2}\right). \tag{4.10}$$

Случай 3. Если $\beta_2' = 0$ и $\alpha \neq 0$, то

$$\|\Phi_n\|_H = \frac{|\sin \alpha|}{|\delta_1|} \sqrt{\frac{(\omega_1 \delta_1)^2 \gamma_1 \gamma_2 + (\omega_2 \gamma_1)^2 \delta_1 \delta_2}{2}} + O\left(\frac{1}{n}\right). \tag{4.11}$$

Случай 4. Если $\beta_2' = 0$ и $\alpha = 0$, то

$$\|\Phi_n\|_H = \frac{|-\cos\alpha|}{|\delta_1|} \frac{\omega_1 + \omega_2}{\omega_1} \frac{1}{\pi n} \sqrt{\frac{(\omega_1 \delta_1)^2 \gamma_1 \gamma_2 + (\omega_2 \gamma_1)^2 \delta_1 \delta_2}{2}} + O\left(\frac{1}{n^2}\right). \tag{4.12}$$

Доказательство. Пусть $\beta_2' \neq 0$ и $\alpha \neq 0$. В таком случае, используя (3.28), имеем

$$\int_{-1}^{0} (\phi_{\lambda_n}(x))^2 dx = \sin^2 \alpha \int_{-1}^{0} \left[\cos \left(\frac{\omega_1}{\omega_1 + \omega_2} \pi (n - 1)(x + 1) \right) + O\left(\frac{1}{n}\right) \right]^2 dx$$

$$= \sin^2 \alpha \int_{-1}^{0} \cos^2 \left(\frac{\omega_1}{\omega_1 + \omega_2} \pi (n - 1)(x + 1) \right) dx + O\left(\frac{1}{n^2}\right) e$$

$$= \frac{\sin^2 \alpha}{2} \int_{-1}^{0} \left[1 + \cos \left(\frac{2\omega_1}{\omega_1 + \omega_2} \pi (n - 1)(x + 1) \right) \right] dx + O\left(\frac{1}{n^2}\right) = \frac{\sin^2 \alpha}{2} + O\left(\frac{1}{n}\right).$$
(4.13)

Аналогично

$$\int_{0}^{1} (\phi_{\lambda_n}(x))^2 dx = \frac{\sin^2 \alpha}{2} \frac{\gamma_1^2}{\delta_1^2} + O\left(\frac{1}{n}\right). \tag{4.14}$$

Применение (4.5), (4.13) и (4.14) дает

$$\begin{split} \|\Phi_{n}\|_{H}^{2} &= \omega_{1}^{2} \gamma_{1} \gamma_{2} \int_{-1}^{0} (\phi_{\lambda_{n}}(x))^{2} dx + \omega_{2}^{2} \delta_{1} \delta_{2} \int_{0}^{1} (\phi_{\lambda_{n}}(x))^{2} dx + \frac{\delta_{1} \delta_{2}}{\rho} (R'_{1}(\phi_{\lambda_{n}}))^{2} \\ &= \omega_{1}^{2} \gamma_{1} \gamma_{2} \left[\frac{\sin^{2} \alpha}{2} + O\left(\frac{1}{n}\right) \right] + \omega_{2}^{2} \delta_{1} \delta_{2} \left[\frac{\sin^{2} \alpha}{2} \frac{\gamma_{1}^{2}}{\delta_{1}^{2}} + O\left(\frac{1}{n}\right) \right] + \frac{\delta_{1} \delta_{2}}{\rho} O\left(\frac{1}{n^{2}}\right) \\ &= \frac{\sin^{2} \alpha}{\delta_{1}^{2}} \frac{(\omega_{1} \delta_{1})^{2} \gamma_{1} \gamma_{2} + (\omega_{2} \gamma_{1})^{2} \delta_{1} \delta_{2}}{2} + O\left(\frac{1}{n}\right). \quad (4.15) \end{split}$$

Следовательно,

$$egin{align} \|\Phi_n\|_H &= \sqrt{rac{\sin^2lpha}{\delta_1^2}rac{(\omega_1\delta_1)^2\gamma_1\gamma_2 + (\omega_2\gamma_1)^2\delta_1\delta_2}{2}} + Oigg(rac{1}{n}igg) \ &= rac{|\sinlpha|}{|\delta_1|}\sqrt{rac{(\omega_1\delta_1)^2\gamma_1\gamma_2 + (\omega_2\gamma_1)^2\delta_1\delta_2}{2}} + Oigg(rac{1}{n}igg), \end{split}$$

и формула (4.9) доказана.

Пусть теперь $\beta_2' \neq 0$ и $\alpha = 0$. В этом случае из (3.29) получаем

$$\begin{split} \|\Phi_n\|_H^2 &= \omega_1^2 \gamma_1 \gamma_2 \int\limits_{-1}^0 (\phi_{\lambda_n}(x))^2 \, dx + \omega_2^2 \delta_1 \delta_2 \int\limits_{0}^1 (\phi_{\lambda_n}(x))^2 \, dx + \frac{\delta_1 \delta_2}{\rho} (R_1'(\phi_{\lambda_n}))^2 \\ &= \omega_1^2 \gamma_1 \gamma_2 \bigg\{ \frac{1}{2} \bigg((-\cos \alpha) \bigg(\frac{\omega_1 + \omega_2}{\omega_1} \bigg) \bigg(\frac{1}{\pi (n - 1/2)} \bigg) \bigg)^2 + O\bigg(\frac{1}{n^3} \bigg) \bigg\} \end{split}$$

$$+ \omega_2^2 \delta_1 \delta_2 \left\{ \frac{1}{2} \left((-\cos\alpha) \left(\frac{\gamma_1}{\delta_1} \right) \left(\frac{\omega_1 + \omega_2}{\omega_1} \right) \frac{1}{\pi (n - 1/2)} \right)^2 + O\left(\frac{1}{n^3} \right) \right\} + O\left(\frac{1}{n^4} \right)$$

$$= \left(\frac{-\cos\alpha}{\delta_1} \right)^2 \left(\frac{\omega_1 + \omega_2}{\omega_1} \right)^2 \left(\frac{1}{\pi (n - 1/2)} \right)^2 \left[\frac{(\omega_1 \delta_1)^2 \gamma_1 \gamma_2 + (\omega_2 \gamma_1)^2 \delta_1 \delta_2}{2} \right] + O\left(\frac{1}{n^3} \right).$$

$$(4.16)$$

Отсюда вытекает, что

$$\|\Phi_n\|_H = rac{|-\coslpha|}{|\delta_1|}rac{\omega_1+\omega_2}{\omega_1}rac{1}{\pi(n-1/2)}\sqrt{rac{(\omega_1\delta_1)^2\gamma_1\gamma_2+(\omega_2\gamma_1)^2\delta_1\delta_2}{2}} + Oigg(rac{1}{n^2}igg),$$

и доказана формула (4.10).

Доказательства в остальных случаях аналогичны.

Теорема 4.2. Первые компоненты нормированных собственных элементов (4.4) имеют при $n \to \infty$ следующие асимптотические представления.

Случай 1. Если
$$\beta'_2 \neq 0$$
 и $\alpha \neq 0$, то
$$\psi_n(x) = \begin{cases} |\delta_1| \frac{\sin \alpha}{|\sin \alpha|} \sqrt{\frac{2}{(\omega_1 \delta_1)^2 \gamma_1 \gamma_2 + (\omega_2 \gamma_1)^2 \delta_1 \delta_2}} \cos\left(\frac{\omega_1 \pi (n-1)}{\omega_1 + \omega_2} (x+1)\right) \\ + O\left(\frac{1}{n}\right), \quad x \in [-1, 0), \\ \frac{\gamma_1 |\delta_1|}{\delta_1} \frac{\sin \alpha}{|\sin \alpha|} \sqrt{\frac{2}{(\omega_1 \delta_1)^2 \gamma_1 \gamma_2 + (\omega_2 \gamma_1)^2 \delta_1 \delta_2}} \cos\left(\frac{\pi (n-1)}{\omega_1 + \omega_2} (\omega_2 x + \omega_1)\right) \\ + O\left(\frac{1}{n}\right), \quad x \in (0, 1]. \end{cases}$$

$$(4.17)$$

$$\psi_{n}(x) = \begin{cases} -|\delta_{1}| \frac{\cos \alpha}{|-\cos \alpha|} \sqrt{\frac{2}{(\omega_{1}\delta_{1})^{2}\gamma_{1}\gamma_{2} + (\omega_{2}\gamma_{1})^{2}\delta_{1}\delta_{2}}} \sin\left(\frac{\omega_{1}\pi(n-1/2)}{\omega_{1} + \omega_{2}}(x+1)\right) \\ +O\left(\frac{1}{n}\right), \quad x \in [-1,0), \\ -\frac{\gamma_{1}|\delta_{1}|}{\delta_{1}} \frac{\cos \alpha}{|-\cos \alpha|} \sqrt{\frac{2}{(\omega_{1}\delta_{1})^{2}\gamma_{1}\gamma_{2} + (\omega_{2}\gamma_{1})^{2}\delta_{1}\delta_{2}}} \sin\left(\frac{\pi(n-1/2)}{\omega_{1} + \omega_{2}}(\omega_{2}x + \omega_{1})\right) \\ +O\left(\frac{1}{n}\right), \quad x \in (0,1]. \end{cases}$$

$$(4.18)$$

Случай 3. Если
$$\beta' = 0$$
 и $\alpha_2 \neq 0$, то
$$\psi_n(x) = \begin{cases} |\delta_1| \frac{\sin \alpha}{|\sin \alpha|} \sqrt{\frac{2}{(\omega_1 \delta_1)^2 \gamma_1 \gamma_2 + (\omega_2 \gamma_1)^2 \delta_1 \delta_2}} \cos\left(\frac{\omega_1 \pi (n-1/2)}{\omega_1 + \omega_2}(x+1)\right) \\ + O\left(\frac{1}{n}\right), \quad x \in [-1, 0), \\ \frac{\gamma_1 |\delta_1|}{\delta_1} \frac{\sin \alpha}{|\sin \alpha|} \sqrt{\frac{2}{(\omega_1 \delta_1)^2 \gamma_1 \gamma_2 + (\omega_2 \gamma_1)^2 \delta_1 \delta_2}} \cos\left(\frac{\pi (n-1/2)}{\omega_1 + \omega_2}(\omega_2 x + \omega_1)\right) \\ + O\left(\frac{1}{n}\right), \quad x \in (0, 1]. \end{cases}$$
(4.19)

Случай 4. Если
$$\beta_2' = 0$$
 и $\alpha \neq 0$, то
$$\psi_n(x) = \begin{cases}
-|\delta_1| \frac{\cos \alpha}{|\cos \alpha|} \sqrt{\frac{2}{(\omega_1 \delta_1)^2 \gamma_1 \gamma_2 + (\omega_2 \gamma_1)^2 \delta_1 \delta_2}} \sin(\frac{\omega_1 \pi n}{\omega_1 + \omega_2} (x+1)) \\
+O(\frac{1}{n}), \quad x \in [-1,0), \\
-\frac{\gamma_1 |\delta_1|}{\delta_1} \frac{\cos \alpha}{|-\cos \alpha|} \sqrt{\frac{2}{(\omega_1 \delta_1)^2 \gamma_1 \gamma_2 + (\omega_2 \gamma_1)^2 \delta_1 \delta_2}} \sin(\frac{\pi n}{\omega_1 + \omega_2} (\omega_2 x + \omega_1)) \\
+O(\frac{1}{n}), \quad x \in (0,1].
\end{cases}$$
(4.20)

Каждое из выписанных асимптотических равенств выполняется равномерно по x.

Доказательство. Пусть $\beta_2' \neq 0$ и $\alpha \neq 0$. В таком случае из (4.9) следует, что

$$\frac{1}{\|\Phi_n\|_H} = \frac{|\delta_1|}{|\sin\alpha|} \sqrt{\frac{2}{(\omega_1\delta_1)^2 \gamma_1 \gamma_2 + (\omega_2 \gamma_1) \delta_1 \delta_2}} + O\left(\frac{1}{n}\right). \tag{4.21}$$

Подставляя (3.28) и (4.21) в (4.3), находим требуемую асимптотическую формулу (4.17). Аналогично можно проверить остальные из формул (4.18)–(4.20).

5. Функция Грина, резольвента оператора и самосопряженность

Пусть $A: H \to H$ определены равенствами (2.1), (2.2), и пусть λ — не собственное значение A. Для нахождения резольвенты оператора $R(\lambda, A) = (\lambda I - A)^{-1}$ рассмотрим операторное уравнение

$$(\lambda I - A)U = F \tag{5.1}$$

для $F = \begin{pmatrix} f(x) \\ f_1 \end{pmatrix} \in H.$ Оно эквивалентно неоднородному дифференциальному уравнению

$$u'' + (\lambda \omega(x) - q(x))u = f(x)$$
 для $x \in [-1, 0) \cup (0, 1]$ (5.2)

с неоднородными граничными условиями

$$\cos \alpha u(-1) + \sin \alpha u'(-1) = 0, \tag{5.3}$$

$$\lambda(\beta_1'u(1) - \beta_2'u'(1)) + (\beta_1u(1) - \beta_2u'(1)) = f_1 \tag{5.4}$$

и однородными условиями сопряжения

$$\gamma_1 u(-0) - \delta_1 u(+0) = 0, \tag{5.5}$$

$$\gamma_2 u'(-0) - \delta_2 u'(+0) = 0. (5.6)$$

Пользуясь техникой из нашей работы [17], можно доказать, что задача (5.2)–(5.6) имеет единственное решение $u(x,\lambda)$, представимое в виде

$$u(x,\lambda) = \begin{cases} \frac{\chi_{1}(x,\lambda)}{\Delta_{1}(\lambda)} \omega_{1}^{2} \int_{-1}^{x} \phi_{1}(y,\lambda) f(y) \, dy + \frac{\phi_{1}(x,\lambda)}{\Delta_{1}(\lambda)} \left(\omega_{1}^{2} \int_{x}^{0} \chi_{1}(y,\lambda) f(y) \, dy + \frac{\delta_{1}\delta_{2}}{\lambda_{1}\gamma_{2}} \omega_{2}^{2} \int_{0}^{1} \chi_{2}(y,\lambda) f(y) \, dy + \frac{\delta_{1}\delta_{2}}{\gamma_{1}\gamma_{2}} f_{1} \right) \text{ для } x \in [-1,0), \\ \frac{\chi_{2}(x,\lambda)}{\Delta_{2}(\lambda)} \left(\frac{\gamma_{1}\gamma_{2}}{\delta_{1}\delta_{2}} \omega_{1}^{2} \int_{-1}^{0} \phi_{1}(y,\lambda) f(y) \, dy + \omega_{2}^{2} \int_{0}^{x} \phi_{2}(y,\lambda) f(y) \, dy \right) \\ + \frac{\phi_{2}(x,\lambda)}{\Delta_{2}(\lambda)} \left(\omega_{2}^{2} \int_{x}^{1} \chi_{2}(y,\lambda) f(y) \, dy + f_{1} \right) \text{ для } x \in (0,1]. \end{cases}$$

$$(5.7)$$

Полагая

$$G(x,y,\lambda) = \begin{cases} \frac{1}{\gamma_1 \gamma_2} \frac{\chi(x,\lambda)\phi(y,\lambda)}{\omega(\lambda)} & \text{для} \quad -1 \le y \le x \le 1, \\ \frac{1}{\gamma_1 \gamma_2} \frac{\phi(x,\lambda)\chi(y,\lambda)}{\omega(\lambda)} & \text{для} \quad -1 \le x \le y \le 1, \end{cases}$$
 (5.8)

где $x \neq 0$ и $y \neq 0$, приведем формулу (5.7) к виду

$$u(x,\lambda) = \omega_1^2 \gamma_1 \gamma_2 \int\limits_{-1}^0 G(x,y,\lambda) f(y) \, dy + \omega_2^2 \delta_1 \delta_2 \int\limits_{0}^{1} G(x,y,\lambda) f(y) \, dy + f_1 rac{\phi(x,\lambda)}{\omega(\lambda)}.$$
 (5.9)

С другой стороны, применяя функционал R'_1 к функции Грина по переменной y и учитывая, что $\chi(x,\lambda)$ удовлетворяет начальным условиям (3.5) и (3.6), получаем

$$R'_{1}(G(x,\cdot;\lambda)) = \beta'_{1}G(x,1;\lambda) - \beta'_{2}\frac{\partial G(x,1;\lambda)}{\partial y} = \frac{1}{\delta_{1}\delta_{2}}\frac{\phi(x,\lambda)}{\omega(\lambda)}(\beta'_{1}\chi(1,\lambda) - \beta'_{2}\chi'(1,\lambda))$$
$$= \frac{1}{\delta_{1}\delta_{2}}\frac{\phi(x,\lambda)}{\omega(\lambda)}(\beta'_{1}(\beta'_{2}\lambda + \beta_{2}) - \beta'_{2}(\beta'_{1}\lambda + \beta_{1})) = \frac{1}{\delta_{1}\delta_{2}}\rho\frac{\phi(x,\lambda)}{\omega(\lambda)}. \quad (5.10)$$

Подстановка этого в (5.9) дает

$$\begin{split} u(x,\lambda) &= \omega_1^2 \gamma_1 \gamma_2 \int\limits_{-1}^0 G(x,y,\lambda) f(y) \, dy + \omega_2^2 \delta_1 \delta_2 \int\limits_{0}^{1} G(x,y,\lambda) f(y) \, dy \\ &\qquad \qquad + \frac{\delta_1 \delta_2}{\rho} R_1'(G(x,\cdot,\lambda)) f_1. \quad (5.11) \end{split}$$

С использованием элемента Грина задачи (5.2)–(5.6)

$$G_{x,\lambda} = \begin{pmatrix} G(x,\cdot,\lambda) \\ R'_1(G(x,\cdot,\lambda)) \end{pmatrix}$$
 (5.12)

формулы (5.11) можно записать в виде

$$u(x,\lambda) = \langle G_{x,\lambda}, \overline{F} \rangle,$$
 (5.13)

где под \overline{F} понимается

$$\overline{F} = \left(rac{\overline{f(x)}}{f_1}
ight).$$

Найдем резольвенту A в терминах элемента Грина $G_{x,\lambda}$.

Поскольку функция $u(x,\lambda)$, определенная равенством (5.11), является решением неоднородной граничной с сопряжением задачи (5.2)–(5.6), эквивалентной операторному уравнению (5.1), имеем

$$R(\lambda, A)F = \begin{pmatrix} u(x, \lambda) \\ R'_1(u(\cdot, \lambda)) \end{pmatrix} = \begin{pmatrix} \langle G_{x,\lambda}, \overline{F} \rangle \\ R'_1\langle G_{\cdot,\lambda}, \overline{F} \rangle \end{pmatrix}$$
 (5.14)

для любого $F \in H$.

Теорема 5.1. Оператор A самосопряженный в гильбертовом пространстве H.

Доказательство. Докажем сначала, что A плотно определен в H. Предположим, что

$$G = \begin{pmatrix} g(x) \\ g_1 \end{pmatrix} \in H$$

ортогональна к D(A), т. е.

$$\omega_1^2 \gamma_1 \gamma_2 \int_{-1}^0 f(x) \overline{g(x)} \, dy + \omega_2^2 \delta_1 \delta_2 \int_0^1 f(x) \overline{g(x)} \, dy + \frac{\delta_1 \delta_2}{\rho} R_1'(f) \overline{g_1} = 0$$
 (5.15)

при всех $F\in \binom{f(x)}{R_1'(f)}\in D(A)$. Пусть $C_0^\infty([-1,0)\cup(0,1])$ — множество бесконечно дифференцируемых функций на $[-1,0)\cup(0,1]$, обращающихся в нуль в некоторой окрестности точек $x=-1,\ x=0$ и x=1. Из определения D(A) ясно, что $C_0^\infty([-1,0)\cup(0,1])\oplus\{0\}\subset D(A)$. Из выражения (5.15) для всех $F\in C_0^\infty([-1,0)\cup(0,1])$ можно заметить, что g(x) ортогональна к $C_0^\infty([-1,0)\cup(0,1])$ в $L_2(-1,1)$ относительно следующего скалярного произведения:

$$\omega_1^2\gamma_1\gamma_2\int\limits_{-1}^0f(x)\overline{g(x)}\,dy+\omega_2^2\delta_1\delta_2\int\limits_0^1f(x)\overline{g(x)}\,dy=0$$
 для $f\in C_0^\infty([-1,0)\cup(0,1]).$

Следовательно, g(x) обращается в нуль, так как $L_2(-1,1)$ полное относительно указанного скалярного произведения. Полагая теперь g(x)=0 в (5.15), получаем

$$R_1'(f)g_1 = 0 (5.16)$$

для всех $f \in L_2(-1,1)$, значит, $\binom{f(x)}{R_1'(f)} \in D(A)$. Беря $F_0 = \binom{f_0(x)}{R_1'(f_0)} \in D(A)$ такое, что $R_1'(f_0) = 1$, из (5.16) выводим, что $g_1 = 0$. Следовательно, G = 0 и тем самым D(A) плотно в H. Далее, так как A симметричен, достаточно доказать, что $D(A^*) = D(A)$, где A^* сопряженный к A. Пусть $F \in D(A^*)$. Покажем, что $F \in D(A)$. По определению A^* имеем

$$\langle AG, F \rangle_H = \langle G, A^*F \rangle_H$$
 для всех $G \in D(A)$. (5.17)

Отсюда следует, что

$$\langle (iI - A)G, F \rangle = \langle G, (-iI - A^*)F \rangle. \tag{5.18}$$

Известно (см. (5.14)), что $\lambda = -i$ — регулярная точка A и тем самым можно положить

$$U = R(-i, A)(-iF - A^*F), (5.19)$$

$$(-iI - A)U = -iF - A^*F. (5.20)$$

Подставляя это в (5.18) и принимая во внимание симметричность A и то, что $U \in D(A)$, имеем

$$\langle (iI - A)G, F \rangle_H = \langle G, (-iI - A)U \rangle_H$$

= $\langle G, -iU \rangle_H - \langle G, AU \rangle_H = \langle iG, U \rangle_H - \langle AG, U \rangle_H = \langle (iI - A)G, U \rangle_H.$

Следовательно,

$$\langle (iI-A)G, F-U \rangle_H = 0$$
 для всех $G \in H$.

Поскольку $\lambda = i$ — регулярная точка A, можно взять

$$G = R(i, A)(F - U).$$

Подставив это в предыдущее уравнение, получим

$$||F - U||_H = 0,$$

так что F=U и тем самым $F\in D(A)$. Теорема доказана.

ЛИТЕРАТУРА

- Fulton C. T. Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions // Proc. Roy. Soc. Edinburgh Sect. A. 1977. V. 77. P. 293–308.
- Titchmarsh E. C. Eigenfunctions expansion associated with second order differential equations. I. London: Oxford Univ. Press, 1962.
- 3. Walter J. Regular eigenvalue problems with eigenvalue parameter in the boundary conditions // Math. Z. 1973. Bd 133. S. 301–312.
- Birkhoff G. D. On the asymptotic character of the solution of the certain linear differential equations containing parameter // Trans. Amer. Soc. 1908. V. 9. P. 219–231.
- Hinton D. B. An expansion theorem for an eigenvalue problem with eigenvalue parameter in the boundary condition // Quart. J. Math. Oxford. 1979. V. 30. P. 33–42.
- Schneider A. A note on eigenvalue problems with eigenvalue parameter in the boundary conditions // Math. Z. 1974. Bd 136. S. 163–167.
- Шкаликов А. А. Краевые задачи для обыкновенных дифференциальных уравнений с параметром в граничных условиях // Тр. семинара им. И. Г. Петровского. М.: Изд-во Моск. ун-та, 1983. Т. 9. С. 190–229.
- Yakubov S. Completeness of root functions of regular differential operators. New York: Longman, Scientific Technical, 1994.
- Yakubov S., Yakubov Y. Abel basis of root functions of regular boundary value problems // Math. Nachr. 1999. V. 197. P. 157–187.
- Yakubov S., Yakubov Y. Differential-operator equations. Ordinary and partial differential equations. Boca Raton: Chapman and Hall/CRC, 2000.
- Tikhonov A. N., Samarskii A. A. Equations of mathematical physics. Oxford; New York: Pergamon, 1963.
- Titeux I., Yakubov Ya. S. Application of abstract differential equations to some mechanical problems. Dordrecht; Boston; London: Kluwer Acad. Publ., 2003.
- Mukhtarov O. Sh., Demir H. Coerciveness of the discontinuous initial-boundary value problem for parabolic equations // Israel J. Math. 1999. V. 114. P. 239–252.
- Mukhtarov O. Sh., Kandemir M., Kuruoglu N. Distribution of eigenvalues for the discontinuous boundary value problem with functional manypoint conditions // Israel J. Math. 2002.
 V. 129. P. 143–156.
- Mukhtarov O. Sh., Yakubov S. Problems for ordinary differential equations with transmission conditions // Appl. Anal. 2002. V. 81. P. 1033–1064.
- Tunc E., Mukhtarov O. Sh. Fundamental solutions and eigenvalues of one boundary-value problem with transmission conditions // Appl. Math. Comput. 2004. V. 157. P. 347–355.
- Kadakal M., Muhtarov F. S., Mukhtarov O. Sh. Green function of one discontinuous boundary value problem with transmission conditions // Bull. Pure Appl. Sci. Ser. E. 2002. V. 21, N 2. P. 357–369.

Статья поступила 29 июля 2004 г.

Oktay Mukhtarov (Мухтаров Октай Шахгусейн оглы) Gaziosmanpaşa Üniversitesi, Fen Edebiyat Fakültesi, Matematik Böümü, Tokat-Turkey, omukhtarov@yahoo.com

Mahir Kadakal (Κα∂ακαΛ Maxup) Ondokuz Mayıs Üniversitesi, Fen Edebiyat Fakültesi, Matematik Böümü, Samsun-Turkey mkadakal@yahoo.com