О РЯДАХ ФУРЬЕ — УОЛША ФУНКЦИЙ, АБСОЛЮТНО НЕПРЕРЫВНЫХ В ОБОБЩЕННОМ УЗКОМ СМЫСЛЕ

С. Ф. Лукомский

Аннотация: Рассматриваются вопросы сходимости рядов Фурье — Уолша функций с интегрируемой в смысле Данжуа производной в пространствах Лоренца. Доказано, что условие на функцию f, при котором ее ряд Фурье — Уолша сходится в пространствах Лоренца, «достаточно близких» к L_{∞} , нельзя выразить в терминах роста производной f'.

Ключевые слова: ряд Фурье — Уолша, сходимость, пространство Лоренца, интеграл Данжуа.

Хорошо известно [1, с. 54], что если f абсолютно непрерывна на [0, 1], то ее ряд Фурье — Уолша сходится равномерно. Нас будет интересовать вопрос, как меняется сходимость ряда Фурье — Уолша при ослаблении условия абсолютной непрерывности. Мы покажем, что если функция $\psi(t)$, определяющая пространство Лоренца $\Lambda(\psi)$, удовлетворяет условию

$$\int_{0}^{1} \psi(t) \log \frac{2}{t} dt = +\infty, \tag{1}$$

то существует непрерывная функция f, абсолютно непрерывная в обобщенном узком смысле, ряд Фурье — Уолша которой не сходится в пространстве $\Lambda(\psi)$.

Более того, для всякой положительной возрастающей на [0,1] функции φ , удовлетворяющей условию $\varphi(t)=o(t)$ $(t\to\infty)$, функцию f можно выбрать так, что ее производная f' принадлежит классу $\varphi(L)$, т. е. $\int\limits_0^1 \varphi(|f'(x)|)\,dx<\infty$.

1. Основные понятия и формулировки основных результатов. Функции Уолша $w_n(t)$ $(n=0,1,\dots)$ будем считать определенными на [0,1), как в [1], и продолженными по непрерывности в точку t=1. Если $f\in L[0,1]$, то для частичных сумм

$$S_n(f,x) = \sum_{k=0}^{n-1} c_k w_k(x)$$

ее ряда Фурье — Уолша справедливо представление

$$S_n(f,x) = \int\limits_0^1 f(x\oplus t) D_n(t) \, dt = \int\limits_0^1 f(t) D_n(x\oplus t) \, dt,$$

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 03–01–00390).

где

$$D_n(t) = \sum_{k=0}^{n-1} w_k(t)$$

— ядро Дирихле, а $x \oplus t$ обозначает покоординатное сложение по 2, перенесенное на полуинтервал [0,1), как в [1, c. 17]. Функцию $D_n^*(t) = D_n(t)w_n(t)$ называют модифицированным ядром Дирихле. Если натуральное n имеет представление

$$n = \sum_{j=1}^{s} \sum_{k=n_{2j-1}-1}^{n_{2j}} 2^k \quad (n_1 > n_2 > \dots > n_{2s} \ge 0),$$

то модифицированное ядро можно записать в виде [1, с. 120]

$$D_n^*(t) = \sum_{k=1}^{2s} (-1)^{k+1} D_{2^{n_k}}(t).$$

Символом $\Delta_x^{(k)}$ будем обозначать тот из промежутков $\left[\frac{i-1}{2^k},\frac{i}{2^k}\right)$, который содержит точку x.

Мы будем рассматривать пространства Лоренца [2, с. 145; 3, с. 142]

$$\Lambda(\psi) = \left\{f \in L(0,1): \ \|f\|_{\Lambda(\psi)} \stackrel{df}{=} \int\limits_0^1 f^*(t) \psi(t) \, dt < +\infty
ight\},$$

где непрерывная положительная убывающая на (0,1] функция $\psi(t)$ удовлетворяет условиям

$$\lim_{t o 0+0}\psi(t)=\infty,\quad \int\limits_{0}^{1}\psi(t)\,dt<+\infty.$$

Такую функцию будем называть функцией Лоренца. При этих условиях на функцию ψ пространство $\Lambda(\psi)$ будет симметрическим сепарабельным пространством [2, с. 150], $f^*(t)$ в определении $\Lambda(\psi)$ — убывающая перестановка функции |f(t)|.

Напомним понятия из [4, с. 90; 5, с. 333], приводящие к обобщенно абсолютно непрерывным функциям.

Пусть f определена на отрезке [a,b] и $\omega(f,E)=\sup_{x,y\in E}|f(x)-f(y)|$ — есть колебание функции f на множестве $E \subset [a,b]$. Функцию f называют абсолютно непрерывной на $E \subset [a,b]$ в узком смысле, короче $f \in AC_*(E)$, если для любого $\varepsilon>0$ существует $\delta>0$ такое, что для любого конечного набора дизъюнктных интервалов $(a_j,b_j)_{j=1}^m$, для которых $a_j,b_j\in E$ и $\sum_{i=1}^m |b_j-a_j|<\delta$, выполнено неравенство

$$\sum_{j=1}^{m} \omega(f, [a_j, b_j]) < \varepsilon.$$

Отметим, что при определении класса $AC_*(E)$ используются значения функции не только в точках множества E.

Наконец, функцию f называют обобщенно абсолютно непрерывной в узком *смысле на* E, короче $f \in ACG_*(E)$, если сужение $f|_E$ есть непрерывная на E

функция и существует представление $E=\bigcup_{j=1}^\infty E_j$ такое, что $f\in AC_*(E_j)$ при всех $j\in\mathbb{N}.$

Понятие обобщенно абсолютно непрерывной в узком смысле функции приводит к узкому интегралу Данжуа [4, с. 108; 5, с. 348]. Функцию $f:[a,b]\to \mathbb{R}$ называют интегрируемой в смысле Данжуа, если существует функция $F\in ACG_*([a,b])$ такая, что F'=f п. в. на [a,b]. Число

$$(D)\int_{a}^{b} f \stackrel{df}{=} F(b) - F(a)$$

называют узким интегралом Данжуа. Множество функций, интегрируемых на [a,b] в узком смысле Данжуа, обозначают через D([a,b]).

Таким образом, если $F \in ACG_*([a,b])$, то $F' \in D([a,b])$. Если $F' \in L([a,b])$, то $F \in AC([a,b])$, но условия $F' \in \varphi(L)$ ($\varphi(t) = o(t)$ при $t \to \infty$) недостаточно для абсолютной непрерывности F.

Теперь мы можем сформулировать основные результаты в виде следующих теорем.

Теорема 1. Если функция Лоренца ψ удовлетворяет условию

$$\int_{0}^{1} \log \frac{2}{t} \psi(t) dt < +\infty, \tag{2}$$

то ряд Фурье — Уолша любой ограниченной функции сходится к f по норме пространства $\Lambda(\psi)$.

Теорема 2. Пусть ψ — функция Лоренца c условием (1) и φ — положительная возрастающая функция, для которой $\varphi(t) = o(t)$ $(t \to \infty)$. Тогда существует функция $f \in ACG_*([0,1])$, дифференцируемая всюду, кроме одной точки, производная которой принадлежит классу $\varphi(L)$, и ряд Фурье — Уолша функции f не сходится в пространстве Лоренца $\Lambda(\psi)$.

2. Доказательство основных результатов.

Лемма. Пусть $p_1 < p_2 < \dots < p_{k+1}$ — натуральные числа и Q(x) — многочлен степени не выше k. Тогда для любого двоичного интервала $\Delta_i^{(p_1)}$ ранга p_1

$$\int\limits_{\Delta_i^{(p_1)}} r_{p_1}(x) r_{p_2}(x) \dots r_{p_{k+1}}(x) Q(x) \, dx = 0.$$

ДОКАЗАТЕЛЬСТВО. Так как $r_{p_1}(x)$ принимает значение +1 на $\Delta_{2i}^{(p_1+1)}$ и -1 на $\Delta_{2i+1}^{(p_1+1)}$, то

$$egin{aligned} I &= \int\limits_{\Delta_i^{(p_1)}} r_{p_1}(x) r_{p_2}(x) \dots r_{p_{k+1}}(x) Q(x) \, dx \ &= \int\limits_{\Delta_{2i}^{(p_1+1)}} r_{p_2}(x) \dots r_{p_{k+1}}(x) Q(x) \, dx - \int\limits_{\Delta_{2i+1}^{(p_1+1)}} r_{p_2}(x) \dots r_{p_{k+1}}(x) Q(x) \, dx. \end{aligned}$$

Производя во втором интеграле замену $x_1 = x - \frac{1}{2^{p_1+1}}$, получаем равенство

$$I = \int\limits_{\Delta_{2i}^{(p_1+1)}} r_{p_2}(x) \dots r_{p_{k+1}}(x) \left(Q(x) - Q\left(x + rac{1}{2^{p_1+1}}
ight)
ight) dx \ = \int\limits_{\Delta_{2i}^{(p_1+1)}} r_{p_2}(x) \dots r_{p_{k+1}}(x) \Delta_{2^{-p_1-1}} Q(x) \, dx.$$

Последний интеграл можно записать как сумму интегралов по интервалам ранга p_2 (если $p_1 + 1 < p_2$):

$$I = \sum_{j} \int_{\Delta_{i}^{(p_{2})}} r_{p_{2}}(x) \dots r_{p_{k+1}}(x) \Delta_{2^{-p_{1}-1}} Q(x) dx.$$

Производя те же действия с внутренним интегралом k раз, получаем

$$\begin{split} I = \sum_{j} \int\limits_{\Delta_{j}^{(p_{k+1})}} r_{p_{k+1}}(x) \Delta_{2^{-p_{k}-1}} \Delta_{2^{-p_{k-1}-1}} \dots \Delta_{2^{-p_{1}-1}} Q(x) \, dx \\ = \sum_{j} \int\limits_{\Delta_{2j}^{(p_{k+1}+1)}} \Delta_{\frac{1}{2^{p_{k}+1}}} \Delta_{\frac{1}{2^{p_{k}+1}}} \dots \Delta_{\frac{1}{2^{p_{1}+1}}} Q(x) \, dx. \end{split}$$

Но (k+1)-я разность от многочлена степени k равна нулю, и лемма доказана. Доказательство теоремы 1. Для функции $f\in\bigcup_{p>1}L_p(0,1)$ определим «норму» $\|\|f\|\|_{\Lambda(\psi)}$ равенством

$$|||f||_{\Lambda(\psi)} = \sum_{n=1}^{\infty} \frac{||f||_n}{2^n} \psi\left(\frac{1}{2^n}\right).$$

Покажем, что

$$||f||_{\Lambda(\psi)} \le 4|||f||_{\Lambda(\psi)}.$$

В самом деле,

$$||f||_n = \left(\int_0^1 (f^*(t))^n dt\right)^{1/n} = \left(\sum_{k=0}^\infty \int_{2^{-k-1}}^{2^{-k}} (f^*(t))^n dt\right)^{1/n}$$

$$\geq \left(\int_{2^{-n-1}}^{2^{-n}} (f^*(t))^n dt\right)^{1/n} \geq \frac{1}{4} f^*\left(\frac{1}{2^n}\right).$$

Поэтому

$$||f||_{\Lambda(\psi)} = \int_{0}^{1} \psi(t)f^{*}(t) dt = \sum_{n=0}^{\infty} \int_{2^{-n-1}}^{2^{-n}} \psi(t)f^{*}(t) dt$$

$$\leq \sum_{n=1}^{\infty} \psi(2^{-n})f^{*}(2^{-n})2^{-n} \leq 4 \sum_{n=1}^{\infty} \psi(2^{-n}) \frac{||f||_{n}}{2^{n}} = 4|||f||_{\Lambda(\psi)}.$$

Учитывая это, а также неравенство [6, с. 103]

$$||S_m(f)||_q \le Cq||f||_q \quad (q \ge 2),$$
 (3)

где C>0 — абсолютная константа, для ограниченной функции f ввиду (2) имеем неравенство

$$||S_n(f)||_{\Lambda(\psi)} \le 4 \sum_{n=1}^{\infty} \frac{||S_m(f)||_n}{2^n} \psi(2^{-n}) \le 4 \sum_{n=1}^{\infty} \frac{||S_m(f)||_{n+1}}{2^n} \psi(2^{-n})$$

$$\le 4C \sum_{n=1}^{\infty} \frac{(n+1)||f||_{n+1}}{2^n} \psi(2^{-n}) \le 8C ||f||_M \sum_{n=1}^{\infty} \frac{n}{2^n} \psi(2^{-n})$$

$$\le 8C ||f||_M \sum_{n=1}^{\infty} \int_{2^{-n}}^{2^{1-n}} \log \frac{2}{t} \psi(t) dt = 8C ||f||_M \int_0^1 \log \frac{2}{t} \psi(t) dt \le C_1 ||f||_M.$$

Символом $||f||_M$ здесь обозначена норма в пространстве ограниченных функций. Отсюда стандартным способом получается утверждение теоремы.

Замечание. Неравенство (3) в [6] записано в виде

$$||S_m(f)||_q \le C_q ||f||_q \quad (q > 1).$$

Однако из доказательства этого неравенства в [6] видно, что через C_q там обозначено число $C\frac{q^2}{q-1}$, откуда и следует неравенство (3) при $q\geq 2$.

Доказательство теоремы 2 проведем в два этапа. Вначале построим ступенчатую ограниченную функцию, ряд Фурье которой расходится в пространстве $\Lambda(\psi)$, а затем изменим ее на множестве малой меры.

Пусть $(\lambda_k)_{k=0}^{\infty}$ — произвольная пока числовая последовательность такая, что $|\lambda_k|\downarrow 0$. Определим функцию F(x) на (0,1] равенствами

$$F(x)=\lambda_k$$
 при $x\in\left(rac{1}{2^{k+1}},rac{1}{2^k}
ight]$ $(k=0,1,\dots).$

Пусть $(k_n)_{n=0}^{\infty}$ — возрастающая последовательность четных чисел такая, что

$$k_0 = 0, \ k_1 = 2, \ k_{n+1} \ge 4k_n \quad (n = 1, 2, \dots).$$

Функцию f(x) определим равенствами

$$f(x) = r_{k_n}(x)r_{k_n+2}(x)\dots r_{k_{n+1}}(x)F(x) \quad (x \in (2^{-k_{n+1}}, 2^{-k_n}]).$$

Покажем, что λ_k и k_n можно выбрать так, чтобы

$$||S_m(f,x)||_{\Lambda(\psi)} \to +\infty$$
 при $m = 2^{k_n} + 2^{k_n+2} + \dots + 2^{k_{n+1}} \to +\infty.$ (4)

Так как

$$D_m^*(t) = w_m(t)D_m(t) = \sum_{\nu=k_n}^{k_{n+1}+1} (-1)^{\nu+1}D_{2^{\nu}}(t),$$

то

$$D_m(t) = w_m(t) \sum_{
u=k_n}^{k_{n+1}+1} (-1)^{
u+1} D_{2^{
u}}(t)$$

и поэтому

$$S_m(f,x) = \int\limits_0^1 D_m(x \oplus t) f(t) \, dt = w_m(x) \sum_{\nu=k_n}^{k_{n+1}+1} (-1)^{\nu+1} \frac{1}{|\Delta_x^{(\nu)}|} \int\limits_{\Delta^{(\nu)}} w_m(t) f(t) \, dt.$$

Найдем оценку для $|S_m(f,x)|$ снизу. Рассмотрим несколько возможностей. 1. Пусть $x\in (2^{-j-1},2^{-j})\subset (2^{-k_{n+1}},2^{-k_n})$. Запишем $S_m(f,x)$ в виде

$$S_m(f,x) = w_m(x) \sum_{\nu=k_n}^j (-1)^{\nu+1} 2^{\nu} \int_{\Delta_x^{(\nu)}} w_m(t) f(t) dt + w_m(x) \sum_{\nu=j+1}^{k_{n+1}+1} (-1)^{\nu+1} 2^{\nu} \int_{\Delta_x^{(\nu)}} w_m(t) f(t) dt = (\Sigma_1 + \Sigma_2) w_m(x).$$

Так как в Σ_1 будет $\Delta_x^{(\nu)} = \Delta_0^{(\nu)}$, то

$$\Sigma_1 = \sum_{\nu=k_n}^{j} (-1)^{\nu+1} 2^{\nu} \int_{\Delta_0^{(\nu)}} w_m(t) f(t) dt$$

$$= \sum_{\nu=k_n}^{j} (-1)^{\nu+1} 2^{\nu} \left(\sum_{q=1}^{\infty} \int_{2^{-k_n+q}}^{2^{-k_n+q}} w_m(t) f(t) dt + \int_{2^{-k_n+1}}^{2^{-\nu}} F(t) dt \right).$$

На каждом интервале $(2^{-k_{n+q+1}},2^{-k_{n+q}})$ при $q\geq 1$ функции $w_m(t)$ постоянны, поэтому для всех $q\geq 1$

$$\int\limits_{2^{-k}n+q+1}^{2^{-k}n+q}w_m(t)f(t)\,dt=0,$$

значит,

$$\Sigma_{1} = \sum_{\nu=k_{n}}^{j} (-1)^{\nu+1} 2^{\nu} \int_{2^{-k_{n+1}}}^{2^{-\nu}} F(t) dt = \sum_{\nu=k_{n}}^{j} (-1)^{\nu+1} 2^{\nu} \left(\sum_{l=\nu}^{k_{n+1}-1} \int_{2^{-l}}^{2^{-l}} F(t) dt \right)$$

$$= \sum_{\nu=k_{n}}^{j} (-1)^{\nu+1} 2^{\nu} \sum_{l=\nu}^{k_{n+1}-1} \frac{1}{2^{l}} \lambda_{l}.$$

Положим теперь $\lambda_l = |\lambda_l| \cdot (-1)^{l+1}.$ Так как $|\lambda_l|$ убывает, то

$$\frac{|\lambda_{\nu}|}{2^{\nu+1}} \le \left| \sum_{l=\nu}^{k_{n+1}-1} \frac{1}{2^l} \lambda_l \right| \le \frac{|\lambda_{\nu}|}{2^{\nu}}$$

И

$$\operatorname{sign}\left(\sum_{l=
u}^{k_{n+1}-1}rac{1}{2^l}\lambda_l
ight)=\operatorname{sign}\lambda_
u=(-1)^{
u+1}.$$

Но тогда

$$\frac{1}{2} \sum_{\nu=k_n}^{j} |\lambda_{\nu}| \le |w_m(x)\Sigma_1| \le \sum_{\nu=k_n}^{j} |\lambda_{\nu}|.$$
 (5)

Оценим Σ_2 . Так как $x\in (2^{-j-1},2^{-j})\subset (2^{-k_{n+1}},2^{-k_n})$, то в сумме Σ_2 будет $w_m(t)f(t)=F(x)=\lambda_j$ и поэтому

$$\Sigma_2 = \sum_{\nu=j+1}^{k_{n+1}+1} (-1)^{\nu+1} \lambda_j = \left\{ egin{array}{ll} \lambda_j, & ext{если } j \text{ четное}, \\ 0, & ext{если } j \text{ нечетное}. \end{array} \right.$$

Соединяя с (5), при $x \in \left(\frac{1}{2^{j+1}}, \frac{1}{2^j}\right)$ и $j \ge k_n + 2$ имеем

$$\frac{1}{2} \sum_{\nu=k_n}^{j-2} |\lambda_{\nu}| \leq \frac{1}{2} \sum_{\nu=k_n}^{j} |\lambda_{\nu}| - |\lambda_{j}| \leq |w_m(x)(\Sigma_1 + \Sigma_2)| \leq 2 \sum_{\nu=k_n}^{j} |\lambda_{\nu}|.$$

2. Пусть теперь

$$x \in (2^{-j-1}, 2^{-j}) \subset (2^{-k_{n-q}}, 2^{-k_{n-q-1}}) \quad (q = 0, 1, \dots, n-1).$$
 (6)

Напомним, что m и k_n связаны соотношениями (4). В этом случае снова записываем $S_m(f,x)$ в виде

$$S_m(f,x) = \left(\sum_{\nu=k_n}^{k_{n+1}+1} (-1)^{\nu+1} 2^{\nu} \int_{\Delta_x^{(\nu)}} w_m(t) f(t) dt\right) w_m(x). \tag{7}$$

Из (6) следует, что $\Delta_x^{(\nu)} \subset (2^{-k_{n-q}}, 2^{-k_{n-q-1}})$. А так как w_m содержит в качестве множителя $r_{k_{n+1}}(t)$, то в сумме (7) остается одно слагаемое при $\nu=k_{n+1}+1$ и поэтому $|S_m(f,x)|=|\lambda_j|$.

3. Пусть

$$x \in (2^{-j-1}, 2^{-j}) \subset (2^{-k_{n+q+1}}, 2^{k_{n+q}}) \quad (q = 1, 2, \dots; \ j \neq 2^{k_{n+1}}).$$

Частичную сумму $S_m(f,x)$ записываем в виде

$$S_{m}(f,x) = w_{m}(x)(-1)^{k_{n+1}} 2^{k_{n+1}+1} \int_{\Delta_{0}^{(k_{n+1}+1)}} w_{m}(t)f(t) dt + w_{m}(x) \sum_{\nu=k_{n}}^{k_{n+1}} (-1)^{\nu+1} 2^{\nu} \left(\int_{0}^{2^{-k_{n+1}}} w_{m}(t)f(t) dt + \int_{2^{-k_{n+1}}}^{2^{-\nu}} w_{m}(t)f(t) dt \right).$$
(8)

Вычислим интегралы в (8). Во-первых, в силу определения функции f(x)

$$\int_{\Delta_0^{(k_{n+1}+1)}} w_m(t)f(t) dt = 0.$$
 (9)

Во-вторых,

$$\int_{0}^{2^{-k}n+1} w_m(t)f(t) dt = \int_{0}^{2^{-k}n+1} f(t) dt - \int_{2^{-k}n+1}^{2^{-k}n+1} f(t) dt = 0 - 0 = 0$$
 (10)

по той же причине, что и в (9). В-третьих,

$$\int\limits_{2^{-k}_{n+1}}^{2^{-\nu}} w_m(t)f(t)\,dt = \int\limits_{2^{-k}_{n+1}}^{2^{-\nu}} F(t)\,dt = \sum_{i=\nu}^{k_{n+1}-1} \int\limits_{2^{-i}-1}^{2^{-i}} F(t)\,dt = \sum_{i=\nu}^{k_{n+1}-1} \lambda_i \frac{1}{2^{i+1}}.$$

Так же, как и при получении неравенства (5), имеем

$$\frac{1}{2} \frac{|\lambda_{\nu}|}{2^{\nu+1}} \le \sum_{i=\nu}^{k_{n+1}-1} \lambda_i \frac{1}{2^{i+1}} \le \frac{|\lambda_{\nu}|}{2^{\nu+1}} \tag{11}$$

И

$$\operatorname{sign}\left(\sum_{i=\nu}^{k_{n+1}-1} \lambda_i \frac{1}{2^{i+1}}\right) = \operatorname{sign} \lambda_{\nu} = (-1)^{\nu+1}.$$
 (12)

Подставляя (9)-(12) в (8), получаем

$$|S_m(f,x)| \ge \frac{1}{4} \sum_{\nu=k_{rr}}^{k_{rr+1}} |\lambda_{\nu}|.$$

4. Остался последний случай $x \in (2^{-k_{n+1}-1}, 2^{-k_{n+1}})$, который рассматривается, как и предыдущий. Получаем оценку

$$|S_m(f,x)| \ge \frac{1}{4} \sum_{i=k_n}^{k_{n+1}} |\lambda_i|.$$

Соединяя полученные для $S_m(f,x)$ оценки, находим для перестановки $S_m^*(f,x)$ на $(0,\frac{1}{2^{k_n}})$ оценку

$$S_m^*(f,x) \geq rac{1}{2} \sum_{
u=k_n}^{j-2} |\lambda_
u|$$
 при $x \in \left(rac{1}{2^{j+1}},rac{1}{2^j}
ight) \subset \left(rac{1}{2^{k_{n+1}}},rac{1}{2^{k_n}}
ight), \ j \geq k_n+2,$

$$S_m^*(f,x) \ge \frac{1}{8} \sum_{\nu=k_n}^{k_{n+1}} |\lambda_{\nu}| \quad \text{при } x \in \left(0, \frac{1}{2^{k_{n+1}}}\right).$$
 (13)

Учитывая неравенства (13), находим

$$\int_{0}^{1} S_{m}^{*}(f,x)\psi(x) dx \ge \frac{1}{2} \sum_{j=k_{n}+2}^{k_{n+1}-1} \int_{2-j-1}^{2-j} \sum_{\nu=k_{n}}^{j-2} |\lambda_{\nu}|\psi(x) dx.$$

Можно считать для простоты, что $|\lambda_j| = \mu_n$, если $k_n \leq j \leq k_{n+1} - 1$. В этом случае

$$\int_{0}^{1} S_{m}^{*}(f, x) \psi(x) dx \ge \frac{1}{2} \mu_{n} \sum_{j=k_{n}+2}^{k_{n+1}-1} \psi\left(\frac{1}{2^{j+1}}\right) \frac{j-k_{n}-1}{2^{j+1}}$$

$$\ge \frac{\mu_{n}}{4} \sum_{j=2k_{n}+2}^{k_{n+1}-1} \psi\left(\frac{1}{2^{j+1}}\right) \frac{j}{2^{j+1}}.$$

Из (1) следует, что

$$\sum_{j=1}^{\infty} \psi\left(\frac{1}{2^j}\right) \frac{j}{2^j} = +\infty,$$

и, значит, последовательность (k_n) можно выбрать растущей настолько быстро, а последовательность (μ_n) — убывающей к нулю настолько медленно, что $\|S_m(f)\|_{\Lambda(\psi)} \to +\infty$.

Исправим теперь функцию f так, чтобы она стала непрерывной на отрезке [0,1] и дифференцируемой на (0,1]. Обозначим точки разрыва функции f через d_i $(i=0,1,\dots)$, выберем последовательность четных чисел (l_n) так, чтобы $l_n>2k_{n+1}+2$. Каждую точку разрыва d_i окружим окрестностью $(d_i-\delta_i',d_i+\delta_i'')$ следующим образом. Если $d_i\in (2^{-k_{n+1}},2^{-k_n})$, то положим $\delta_i'=\delta_i''=2^{-l_n}$. Если $d_i=2^{-k_n}$, то положим $\delta_i'=\delta_i''=2^{-l_n}$. На каждом отрезке $[d_i-\delta_i',d_i+\delta_i'']$ заменим функцию f(x) многочленом третьей степени P(x) таким, что f(x)=P(x) и P'(x)=0 в граничных точках отрезка. Полученная функция $\tilde{f}(x)$ будет непрерывной на отрезке [0,1] и дифференцируема в интервале (0,1].

Покажем, что нормы $||S_m(\tilde{f})||_{\Lambda(\psi)}$ не ограничены. Для этого достаточно доказать, что нормы $||S_m(f-\tilde{f})||_{\Lambda(\psi)}$ ограничены. Докажем, что частичные суммы $S_m(f-\tilde{f})$ равномерно ограничены в совокупности на (0,1).

Рассмотрим несколько возможностей.

1. Пусть вначале $x \in (2^{-j-1}, 2^{-j}) \subset (2^{-k_{n+1}}, 2^{-k_n})$. Частичную сумму $S_m(f-\tilde{f})$ запишем в виде

$$S_m(f- ilde{f},x) = w_m(x) \sum_{
u=k_n}^j (-1)^{
u+1} 2^
u \int_{\Delta_x^{(
u)}} w_m(t)(f- ilde{f}) dt + w_m(x) \sum_{
u=j+1}^{k_{n+1}+1} (-1)^{
u+1} 2^
u \int_{\Delta_x^{(
u)}} w_m(t)(f- ilde{f}) dt = w_m(x)(\Sigma_1^\sim + \Sigma_2^\sim).$$

В Σ_1^\sim имеем $\Delta_x^{(
u)}=\Delta_0^{(
u)}$. Поэтому

$$\Sigma_{1}^{\sim} = \sum_{\nu=k_{n}}^{j} (-1)^{\nu+1} 2^{\nu} \int_{\Delta_{0}^{(\nu)}} w_{m}(t)(f-\tilde{f}) dt$$

$$= \sum_{\nu=k_{n}}^{j} (-1)^{\nu+1} 2^{\nu} \left(\sum_{q=1}^{\infty} \int_{2^{-k_{n+q+1}}}^{2^{-k_{n+q}}} w_{m}(t)(f-\tilde{f}) dt + \int_{2^{-k_{n+1}}}^{2^{-\nu}} w_{m}(t)(f-\tilde{f}) dt \right). \quad (14)$$

Каждый интеграл в (14) достаточно оценить через произведение наибольшего значения $|f-\tilde{f}|$ на меру носителя:

$$\left| \int_{2^{-k_{n+q+1}}}^{2^{-k_{n+q}}} w_m(t)(f-\tilde{f}) dt \right| \le 2\mu_{n+q} 2^{-l_{n+q}} 2^{k_{n+q+1}} \le \frac{\mu_{n+q}}{2} \frac{1}{2^{k_{n+q+1}}},$$

$$\left| \int_{2^{-k_{n+1}}}^{2^{-\nu}} w_m(t)(f-\tilde{f}) dt \right| \le 2\mu_n 2^{-l_n} 2^{k_{n+1}} \le \frac{\mu_n}{2} \frac{1}{2^{k_{n+1}}}.$$

Учитывая эти неравенства, из (14) получаем

$$|\Sigma_1^\sim| \leq \sum_{\nu=k_n}^j 2^\nu \left(\sum_{q=0}^\infty \frac{\mu_{n+q}}{2} 2^{-k_{n+q+1}}\right) \leq \frac{\mu_n}{2} 2^{-k_{n+1}} \cdot 2^{k_{n+1}+1} \cdot 4 \leq 4\mu_0.$$

Аналогично оценивается Σ_2^{\sim} :

$$|\Sigma_2^{\sim}| \le 2 \sum_{\nu=j+1}^{k_{n+1}+1} 2^{\nu} \mu_n \frac{2^{k_{n+1}}}{2^{l_n}} \le \frac{\mu_n}{2} \sum_{\nu=j+1}^{k_{n+1}+1} 2^{\nu} \frac{1}{2^{k_{n+1}}} \le 2\mu_0.$$

Таким образом, на $(2^{-k_{n+1}}, 2^{-k_n})$ имеем оценку $|S_m(f - \tilde{f}, x)| \le 6\mu_0$.

$$x \in (2^{-j-1}, 2^{-j}) \subset (2^{-k_{n+q+1}}, 2^{-k_{n+q}}) \quad (q = 1, 2, \dots), \ j \neq k_{n+1}.$$

В этом случае $\Delta_x^{(
u)} = \Delta_0^{(
u)}$ при $u \in [k_n, k_{n+1}]$. Поэтому

$$|S_m(f - \tilde{f}, x)| \le \sum_{\nu = k_n}^{k_{n+1}} 2^{\nu} \int_{\Delta_0^{(\nu)}} |f - \tilde{f}| dt + 2^{k_{n+1}+1} \int_{\Delta_0^{(k_{n+1}+1)}} |f - \tilde{f}| dt.$$
 (15)

Так как

$$\int\limits_{\Delta_0^{(
u)}} |f- ilde{f}| \, dt = \sum_{i=1}^{\infty} \int\limits_{2^{-k}n+i+1}^{2^{-k}n+i} |f- ilde{f}| \, dt + \int\limits_{2^{-k}n+1}^{2^{-
u}} |f- ilde{f}|) \, dt,$$

для первого слагаемого в (15) получим ту же оценку, что и для Σ_1^{\sim} , т. е.

$$\left| \sum_{\nu=k_n}^{k_{n+1}} (-1)^{\nu+1} 2^{\nu} \int_{\Delta_0^{(\nu)}} (f - \tilde{f}) w_m(t) dt \right| \le 4\mu_0.$$
 (16)

Для второго слагаемого в правой части (15) имеем

$$2^{k_{n+1}+1} \int_{\Delta_{0}^{(k_{n+1}+1)}} |f - \tilde{f}| dt$$

$$\leq 2^{k_{n+1}+1} \sum_{i=1}^{\infty} \int_{2^{-k_{n+i}}}^{2^{-k_{n+i}}} |f - \tilde{f}| dt \leq 2^{k_{n+1}+2} \sum_{i=1}^{\infty} \mu_{n+i} \frac{2^{k_{n+i+1}}}{2^{l_{n+i}}}$$

$$\leq 2^{k_{n+1}+2} \sum_{i=1}^{\infty} \mu_{n+i} \frac{2^{k_{n+i+1}}}{2^{2k_{n+i+1}+2}} \leq 2^{k_{n+1}} \mu_{n+1} \frac{1}{2^{k_{n+2}}} \leq \mu_{0}. \quad (17)$$

3. Если $x \in (2^{-k_{n+1}-1}, 2^{-k_{n+1}})$, то

$$|S_m(f-\tilde{f},x)| \le \sum_{\nu=k_n}^{k_{n+1}} 2^{\nu} \int_{\Delta_0^{(\nu)}} |f-\tilde{f}| dt + 2^{k_{n+1}+1} \int_{2^{-k_{n+1}-1}}^{2^{-k_{n+1}}} |f-\tilde{f}| dt.$$

Первая сумма в правой части оценивается, как в (16), через $2\mu_0$. Второе слагаемое оценивается, как в (17), через μ_0 . Таким образом, для всех $x \in (0, 2^{-k_{n+1}})$ имеем $|S_m(f-\tilde{f},x)| \leq 5\mu_0$.

4. Пусть, наконец,

Итак,

$$x \in (2^{-k_{n-p}}, 2^{-k_{n-p-1}}) \quad (p = 0, 1, \dots, n-1).$$

Сумму $S_m(f-\tilde{f},x)$ запишем в виде

$$S_{m}(f - \tilde{f}, x) = w_{m}(x) \left(\sum_{\nu=k_{n}}^{l_{n-p}} (-1)^{\nu} 2^{\nu} \int_{\Delta_{x}^{(\nu)}} w_{m}(t) (f - \tilde{f}) dt + \sum_{\nu=l_{n-p}+1}^{k_{n+1}+1} (-1)^{\nu} 2^{\nu} \int_{\Delta_{x}^{(\nu)}} w_{m}(t) (f - \tilde{f}) dt \right) = w_{m}(t) (\Sigma_{3}^{\sim} + \Sigma_{4}^{\sim}).$$
 (18)

Отметим, что возможна ситуация, когда в Σ_3^\sim нет ни одного слагаемого. В этом случае в Σ_4^\sim суммирование начинается с $\nu=k_n$.

Очевидно, что последовательность (l_n) можно выбрать так, чтобы ее члены не попадали в отрезки $[k_i-4,k_i]$. Покажем, что в этом случае в сумме Σ_3^{\sim} все слагаемые равны нулю.

Каждый интеграл $\int\limits_{\Delta_x^{(\nu)}} w_m(t) (f-\tilde{f})\,dt$ запишем как сумму интегралов по ин-

тервалам $\Delta^{(l_{n-p})}$ ранга l_{n-p} . На каждом таком интервале $\Delta^{(l_{n-p})}$ либо $f-\tilde{f}\equiv 0$, либо $f-\tilde{f}$ — многочлен третьей степени. Пусть $\Delta^{(l_{n-p})}_i$ — один из интервалов, на котором $f-\tilde{f}$ — многочлен третьей степени. Функции $r_{k_n}(t),\ldots,r_{l_{n-p}-2}(t)$ постоянны на $\Delta^{(l_{n-p})}_i$. Обозначая через $r_{k_n},\ldots,r_{l_{n-p}-2}$ их значения на $\Delta^{(l_{n-p})}_i$, имеем

$$\int\limits_{\Delta_i^{(l_{n-p})}} w_m(t)(f- ilde{f})\,dt = r_{k_n}\dots r_{l_{n-p}-2}\int\limits_{\Delta_i^{(l_{n-p})}} r_{l_{n-p}}(t)\dots r_{k_{n+1}}(t)(f- ilde{f})\,dt.$$

Но последний интеграл согласно лемме равен нулю, ибо $l_{n-p} < k_{n+1} - 4$. В сумме Σ_4^\sim согласно лемме

$$\int w_m(t)(f- ilde f)\,dt=0,$$

 $\Delta_x^{(\nu)}$ если $\nu < k_{n+1}-4$, т. е. в сумме Σ_4^\sim не более пяти отличных от нуля слагаемых.

$$|S_m(f-\tilde{f},x)| \le \sum_{\nu=k_{n+1}-4}^{k_{n+1}+1} 2^{\nu} \int_{\Delta \nu} |f-\tilde{f}| dt \le 5\mu_0.$$

Соединяя рассмотренные случаи, имеем $|S_m(f-\tilde{f},x)| \leq 6\mu_0$. Неограниченность последовательности $||S_m(\tilde{f},x)||_{\Lambda(\psi)}$ доказана.

Пусть теперь функции $\psi(x)$ и $\varphi(x)$ заданы. Покажем, что, выбирая последовательность (l_n) растущей достаточно быстро, можно добиться, чтобы интеграл

$$\int_{1}^{1} \varphi(|\tilde{f}'(x)|) \, dx$$

сходился.

Нетрудно проверить, что функция \tilde{f} на отрезке $[2^{-k_{n+1}}, 2^{-k_n}]$ имеет производную, удовлетворяющую неравенству $|f'(x)| \leq \frac{3}{2} \mu_n 2^{l_n}$. Поэтому

$$\int\limits_{0}^{1} \varphi(|\tilde{f}'(x)|) \, dx = \sum_{n=0}^{\infty} \int\limits_{2^{-k_n}}^{2^{-k_n}} \varphi(|\tilde{f}'(x)|) \, dx \leq \sum_{n=0}^{\infty} \frac{\varphi\left(\frac{3}{2}\mu_n 2^{l_n}\right)}{2^{l_n}} 2^{k_{n+1}-k_n+1}.$$

Поскольку $\varphi(x) = o(x) \ (x \to +\infty)$, последовательность (l_n) можно выбрать так, чтобы ряд сходился. Теорема доказана.

Замечание. Доказанная теорема означает, что нельзя указать условие на функцию f в терминах роста ее производной f', при котором ряд Фурье — Уолша функции f сходится в пространстве Лоренца $\Lambda(\psi)$ с условием (1). Вопрос о том, каким должно быть это условие, остается открытым.

ЛИТЕРАТУРА

- Голубов Б. И., Ефимов А. В., Скворцов В. А. Ряды и преобразования Уолша. Теория и приложения. М.: Наука, 1987.
- Крейн С. Г., Петунин Ю. И., Семенов Е. М. Интерполяция линейных операторов. М.: Наука, 1978.
- Lindenstrauss J., Tzafriri L. Classical Banach spaces. II. Function spaces. Berlin: Springer-Verl., 1973.
- Gordon R. A. The integrals of Lebesgue, Denjoy, Perron and Henstock. Providence, RI: Amer. Math. Soc., 1994.
- 5. Сакс С. Теория интеграла. М.: Изд-во иностр. лит., 1949.
- Schipp F. Wade W. R., Simon P. Walsh series. An introduction to dyadic harmonic analysis. Budapest: Akad. Kiado, 1990.

Cтатья поступила 22 ноября $2004\,$ г., окончательный вариант - $29\,$ июня $2005\,$ г.

Лукомский Сергей Федорович

Саратовский гос. университет, механико-математический факультет,

Астраханская, 83, Саратов 410012

 ${\tt LukomskiiSF@info.sgu.ru}$