МЕТРИКИ С ГРУППОЙ ГОЛОНОМИИ G_2 , СВЯЗАННЫЕ С 3–САСАКИЕВЫМ МНОГООБРАЗИЕМ

Я. В. Базайкин, Е. Г. Малькович

Аннотация. Строятся полные некомпактные римановы метрики с группой голономии G_2 на некомпактных орбифолдах, являющихся \mathbb{R}^3 -расслоениями с твисторным пространством \mathscr{Z} в качестве сферического слоя.

Ключевые слова: исключительная группа гомологии, 3-сасакиево многообразие, твисторное пространство.

1. Введение

Статья посвящена изучению метрик с группой голономии G_2 и является естественным продолжением исследований, начатых в [1] в связи с изучением метрик с группами голономии Spin(7). Мы рассматриваем произвольное компактное семимерное 3-сасакиево многообразие M и исследуем вопрос о том, существует ли гладкое разрешение конусной метрики над твисторным пространством \mathscr{Z} , ассоциированным с M.

Кратко говоря, 3-сасакиево многообразие M — это многообразие, для которого стандартная метрика на конусе над M является гиперкэлеровой. С каждым таким многообразием M тесно связано твисторное пространство \mathscr{Z} — орбифолд, обладающий метрикой Кэлера — Эйнштейна. Мы рассматриваем метрики, являющиеся естественными разрешениями стандартной конусной метрики над \mathscr{Z} :

$$ar{g} = dt^2 + A(t)^2 (\eta_2^2 + \eta_3^2) + B(t)^2 (\eta_4^2 + \eta_5^2) + C(t)^2 (\eta_6^2 + \eta_7^2),$$
 (*)

где η_2,η_3 — характеристические 1-формы M, а $\eta_4,\eta_5,\eta_6,\eta_7$ — формы, аннулирующие 3-сасакиево слоение на M и A,B,C — вещественные функции.

Одним из основных результатов статьи является конструкция (в случае кэлеровости M/SU(2)) G_2 -структуры, параллельность которой относительно метрики (*) равносильна следующей системе обыкновенных дифференциальных уравнений:

$$A' = \frac{2A^2 - B^2 - C^2}{BC}, \quad B' = \frac{B^2 - C^2 - 2A^2}{CA}, \quad C' = \frac{C^2 - 2A^2 - B^2}{AB}.$$
 (**)

Таким образом, метрика (*) при условии (**) имеет группу голономии G_2 и, в частности, является Риччи-плоской. Ранее система (**) была получена в [2] в частном случае $M = SU(3)/S^1$.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 06–01–0094а) и комплексного интеграционного проекта 2.15 СО РАН. Первый автор подержан грантом президента РФ (проект МК–8712.2006.1)

Для того, чтобы решение системы (**) было определено на некотором орбифолде либо многообразии, необходимо дополнительное выполнение краевых условий в точке t_0 , которые мы формулируем. Эти условия не могут быть выполнены, кроме случая B=C, который приводит нас к функциям, дающим решения, найденные впервые в [3] в случае $M=S^7$ и $M=SU(3)/S^1$. В случае B=C метрика (*) определена на тотальном пространстве \mathbb{R}^3 -расслоения $\mathscr N$ над кватернионно-кэлеровым орбифолдом $\mathscr O$. Вообще говоря, $\mathscr N$ является орбифолдом, кроме случая $M=S^7$ и $M=SU(3)/S^1$. Отметим, что при B=C условие кэлеровости $\mathscr O$ не является необходимым.

В заключение мы рассматриваем известные примеры 3-сасакиевых многообразий, построенные в [4], и описываем топологию соответствующих орбифолдов ${\mathcal N}$.

2. Конструкция параллельной G_2 -структуры

Определение, основные свойства и дальнейшие ссылки, связанные с понятием 3-сасакиева многообразия, можно найти в [1]. Оттуда же взяты основные обозначения.

Пусть M — компактное семимерное 3-сасакиево многообразие с характеристическими полями ξ^1, ξ^2, ξ^3 и характеристическими 1-формами η_1, η_2, η_3 . Рассмотрим главное расслоение $\pi: M \to \mathscr{O}$ со структурной группой Sp(1) либо SO(3) над кватернионно-кэлеровым орбифолдом \mathscr{O} , ассоциированным с M. Нас будет интересовать специальный случай, когда \mathscr{O} дополнительно обладает кэлеровой структурой.

Поле ξ^1 порождает локально свободное действие окружности S^1 на M, и метрика на твисторном пространстве $\mathscr{Z}=M/S^1$ является метрикой Кэлера — Эйнштейна. Очевидно, что \mathscr{Z} топологически представляет собой расслоенное пространство над \mathscr{O} со слоем $S^2=Sp(1)/S^1$ (либо $S^2=SO(3)/S^1$), ассоциированное с π . Рассмотрим очевидное действие SO(3) на \mathbb{R}^3 . Двулистное накрытие $Sp(1)\to SO(3)$ задает также действие Sp(1) на \mathbb{R}^3 . Пусть теперь \mathscr{N} — расслоенное пространство над \mathscr{O} со слоем \mathbb{R}^3 , ассоциированное с π . Легко видеть, что \mathscr{O} вложено в \mathscr{N} в качестве нулевого, а \mathscr{Z} вложено в \mathscr{N} в качестве сферического сечения. Пространство $\mathscr{N}\setminus\mathscr{O}$ диффеоморфно произведению $\mathscr{Z}\times(0,\infty)$. Заметим, что \mathscr{N} можно считать проективизацией расслоения $\mathscr{M}_1\to\mathscr{O}$ из [1]. В общей ситуации \mathscr{N} является семимерным орбифолдом, однако если M — регулярное 3-сасакиево пространство, то \mathscr{N} — семимерное многообразие.

Пусть $\{e^i\}$, $i=0,2,3,\ldots,7$, — ортонормированный базис из 1-форм на стандартном евклидовом пространстве \mathbb{R}^7 (способ нумерации базиса здесь выбран таким образом, чтобы подчеркнуть связь с конструкциями из [1] и максимально сохранить принятые там обозначения). Положив $e^{ijk}=e^i\wedge e^j\wedge e^k$, рассмотрим следующую 3-форму Ψ_0 на \mathbb{R}^7 :

$$\Psi_0 = -e^{023} - e^{045} + e^{067} + e^{346} - e^{375} - e^{247} + e^{256}.$$

Дифференциальная 3-форма Ψ на ориентированном римановом 7-мерном многообразии N задает G_2 -структуру, если в окрестности каждой точки $p \in N$ существует сохраняющая ориентацию изометрия $\phi_p: T_pN \to \mathbb{R}^7$ такая, что $\phi_p^*\Psi_0 = \Psi|_p$. При этом форма Ψ определяет единственную метрику g_{Ψ} такую, что $g_{\Psi}(v,w) = \langle \phi_p v, \phi_p w \rangle$ для $v,w \in T_pN$ [3]. Если форма Ψ параллельна ($\nabla \Psi = 0$), то группа голономии риманова многообразия N будет содержаться в G_2 . Параллельность формы Ψ эквивалентна ее замкнутости и козамкнутости [5]:

$$d\Psi = 0, \quad d * \Psi = 0. \tag{1}$$

Заметим, что форма $\Phi_0 = e^1 \wedge \Psi_0 - *\Psi_0$, где * — оператор Ходжа в \mathbb{R}^7 , задает Spin(7)-структуру на \mathbb{R}^8 с ортонормированным базисом $\{e^i\}_{i=0,1,2,...,7}$.

Локально выберем ортонормированную систему $\eta_4, \eta_5, \eta_6, \eta_7$, порождающую аннулятор вертикального подрасслоения \mathcal{V} , так что

$$\omega_1 = 2(\eta_4 \wedge \eta_5 - \eta_6 \wedge \eta_7), \quad \omega_2 = 2(\eta_4 \wedge \eta_6 - \eta_7 \wedge \eta_5), \quad \omega_3 = 2(\eta_4 \wedge \eta_7 - \eta_5 \wedge \eta_6),$$

где формы ω_i отвечают кватернионно-кэлеровой структуре на \mathscr{O} . Ясно, что $\eta_2, \eta_3, \ldots, \eta_7$ является ортонормированным базисом в M, аннулирующим одномерное слоение, порожденное полем ξ^1 , поэтому можно рассмотреть метрику на $(0, \infty) \times \mathscr{Z}$ следующего вида:

$$\bar{g} = dt^2 + A(t)^2 (\eta_2^2 + \eta_3^2) + B(t)^2 (\eta_4^2 + \eta_5^2) + C(t)^2 (\eta_6^2 + \eta_7^2), \tag{2}$$

где функции A(t), B(t) и C(t) определены на промежутке $(0, \infty)$.

Мы предполагаем, что $\mathcal O$ является кэлеровым орбифолдом, поэтому на нем существует замкнутая кэлерова форма, которую можно поднять на горизонтальное подрасслоение $\mathcal H$ и получить замкнутую форму ω . Локально, не ограничивая общности рассуждений, можно считать, что

$$\omega=2(\eta_4\wedge\eta_5+\eta_6\wedge\eta_7).$$

Если теперь положить

$$e^0 = dt$$
, $e^i = A\eta_i$, $i = 2, 3$, $e^j = B\eta_i$, $j = 4, 5$, $e^k = C\eta_k$, $k = 6, 7$,

то формы Ψ_0 и $*\Psi_0$ будут иметь вид

$$\Psi_1 = -e^{023} - rac{B^2 + C^2}{4} e^0 \wedge \omega_1 - rac{B^2 - C^2}{4} e^0 \wedge \omega + rac{BC}{2} e^3 \wedge \omega_2 - rac{BC}{2} e^2 \wedge \omega_3,$$

$$\Psi_2 = C^2 B^2 \Omega - rac{B^2 + C^2}{4} e^{23} \wedge \omega_1 - rac{B^2 - C^2}{4} e^{23} \wedge \omega + rac{BC}{2} e^{02} \wedge \omega_2 + rac{BC}{2} e^{03} \wedge \omega_3,$$

где
$$\Omega=\eta_4\wedge\eta_5\wedge\eta_6\wedge\eta_7=-rac{1}{8}\omega_1\wedge\omega_1=-rac{1}{8}\omega_2\wedge\omega_2=-rac{1}{8}\omega_3\wedge\omega_3.$$

При этом очевидно, что формы Ψ_1 , Ψ_2 уже являются глобально определенными и не зависят от локального выбора η_i , следовательно, однозначно определяют некоторую метрику \bar{g} , локально заданную формулой (2). Тогда условие (1) принадлежности группы голономии G_2 равносильно уравнению

$$d\Psi_1 = d\Psi_2 = 0. (3)$$

Теорема. Если $\mathscr O$ обладает кэлеровой структурой, то метрика (2) на $\mathscr N$ является гладкой метрикой c группой голономии G_2 , заданной формой Ψ_1 тогда и только тогда, когда функции A, B, C, определенные на промежутке $[t_0, \infty)$, удовлетворяют следующей системе обыкновенных дифференциальных уравнений:

$$A' = \frac{2A^2 - B^2 - C^2}{BC}, \quad B' = \frac{B^2 - C^2 - 2A^2}{CA}, \quad C' = \frac{C^2 - 2A^2 - B^2}{AB}$$
 (4)

с начальными условиями

- (1) A(0) = 0, $|A'_1(0)| = 2$;
- (2) $B(0), C(0) \neq 0, B'(0) = C'(0) = 0;$

(3) функции A, B, C знакоопределенны на промежутке (t_0, ∞) .

Доказательство. В [1] получены соотношения, замыкающие алгебру форм:

$$egin{aligned} de^0 &= 0, \ de^i &= rac{A_i'}{A_i} e^0 \wedge e^i + A_i \omega_i - rac{2A_i}{A_{i+1} A_{i+2}} e^{i+1} \wedge e^{i+2}, \quad i = 1, 2, 3 \, \mathrm{mod} \, 3, \ d\omega_i &= rac{2}{A_{i+2}} \omega_{i+1} \wedge e^{i+2} - rac{2}{A_{i+1}} e^{i+1} \wedge \omega_{i+2}, \quad i = 1, 2, 3 \, \mathrm{mod} \, 3. \end{aligned}$$

Добавив соотношение $d\omega = 0$ и выполнив вычисления, которые мы здесь опускаем, получаем требуемую систему.

Условия гладкости метрики в точке t_0 доказывается совершенно аналогично случаю группы голономии Spin(7), который подробно изложен в [1]. Заметим только, что при факторизации единичной сферы S^3 по хопфовскому действию окружности мы получаем сферу радиуса 1/2, что и объясняет условие |A'(0)| = 2.

При B=C система сводится к паре уравнений

$$A'=2\left(rac{A^2}{B^2}-1
ight),\quad B'=-2rac{A}{B},$$

решение которой дает следующую метрику:

$$ar{g} = rac{dr^2}{1 - r_0^4/r^4} + r^2 \left(1 - rac{r_0^4}{r^4}
ight) \left(\eta_2^2 + \eta_3^2
ight) + 2r^2 ig(\eta_4^2 + \eta_5^2 + \eta_6^2 + \eta_7^2ig).$$

Условия регулярности выполнены, и эта гладкая метрика найдена впервые в [3] для случая $M = SU(3)/S^1$ и $M = S^7$ (отметим, что при B = C не обязательно требовать кэлеровости \mathscr{O}).

В общем случае $B \neq C$ система (4) также интегрируется [2], однако получающиеся решения не удовлетворяют условиям регулярности.

3. Примеры

Интересное семейство примеров возникает, если рассмотреть в качестве 3сасакиевых многообразий семимерные двойные частные группы Ли SU(3). А именно, пусть p_1 , p_2 , p_3 — попарно взаимно простые положительные целые числа. Рассмотрим следующее действие группы S^1 на группе Ли SU(3):

$$z \in S^1 : A \mapsto \operatorname{diag}(z^{p_1}, z^{p_2}, z^{p_3}) \cdot A \cdot \operatorname{diag}(1, 1, z^{-p_1 - p_2 - p_3}).$$

Такое действие свободно, и в [4] показано, что на пространстве орбит $\mathscr{S}=\mathscr{S}_{p_1,p_2,p_3}$ существует 3-сасакиева структура. Более того, действие группы SU(2) на SU(3) правыми сдвигами

$$B \in SU(2): A \mapsto A \cdot \begin{pmatrix} B & 0 \\ 0 & 1 \end{pmatrix}$$

коммутирует с действием S^1 и переносится на пространство орбит \mathscr{S} . Соответствующие киллинговы поля и будут являться характеристическими полями ξ_i на \mathscr{S} . Следовательно, соответствующим твисторным пространством $\mathscr{Z} = \mathscr{Z}_{p_1,p_2,p_3}$ будет пространство орбит следующего действия тора T^2 на SU(3):

$$(z, u) \in T^2 : A \mapsto \operatorname{diag}(z^{p_1}, z^{p_2}, z^{p_3}) \cdot A \cdot \operatorname{diag}(u, u^{-1}, z^{-p_1 - p_2 - p_3}).$$
 (5)

Лемма. Пространство $\mathscr{Z}_{p_1,p_2,p_3}$ диффеоморфно пространству орбит группы U(3) относительно следующего действия тора T^3 :

$$(z, u, v) \in T^3 : A \mapsto \operatorname{diag}(z^{-p_2 - p_3}, z^{-p_1 - p_3}, z^{-p_1 - p_2}) \cdot A \cdot \operatorname{diag}(u, v, 1).$$
 (6)

Для доказательства достаточно проверить, что каждая T^3 -орбита в U(3) высекает в группе $SU(3) \subset U(3)$ в точности орбиту T^2 -действия (5).

Действие (6) позволяет прозрачно описать топологию \mathscr{Z} и, следовательно, топологию \mathscr{N} . При этом мы пользуемся конструкцией, взятой из [6]. Рассмотрим подмногообразие $E = \{(u,[v]) \mid u \perp v\} \subset S^5 \times \mathbb{C}P^2$. Очевидно, что E диффеоморфно $U(3)/S^1 \times S^1$ («правая» часть действия (6)) и представляет собой проективизацию \mathbb{C}^2 -расслоения $\widetilde{E} = \{(u,v) \mid u \perp v\} \subset S^5 \times \mathbb{C}^3$ над S^5 . Добавив тривиальное одномерное комплексное расслоение над S^5 к \widetilde{E} , получаем тривиальное расслоение $S^5 \times \mathbb{C}^3$ над S^5 .

Группа S^1 действует слева автоморфизмами векторного расслоения \widetilde{E} , и $\mathscr{Z}=S^1\backslash E$ является проективизацией \mathbb{C}^2 -расслоения $S^1\backslash \widetilde{E}$ над взвешенным комплексным проективным пространством $\mathscr{O}=\mathbb{C}P^2(q_1,q_2,q_3)=S^1\backslash S^5$, где $q_i=(p_{i+1}+p_{i+2})/2$, если все p_i нечетны, и $q_i=(p_{i+1}+p_{i+2})$ в противном случае.

Из всего вышесказанного вытекает, что расслоение $S^1 \backslash \widetilde{E}$ стабильно эквивалентно расслоению $S^1 \backslash (S^5 \times \mathbb{C}^3)$ над \mathscr{O} . Последнее расслоение очевидным образом раскладывается в сумму Уитни $\sum\limits_{i=1}^3 \xi^{q_i}$, где ξ — аналог одномерного универсального расслоения для орбифолда \mathscr{O} .

Следствие. Твисторное пространство \mathscr{Z} диффеоморфно проективизации двумерного комплексного расслоения над $\mathbb{C}P^2(q_1,q_2,q_3)$, стабильно эквивалентного $\xi^{q_1} \oplus \xi^{q_2} \oplus \xi^{q_3}$.

ЛИТЕРАТУРА

- **1.** *Базайкин Я. В.* О новых примерах полных некомпактных метрик с группой голономии Spin(7) // Сиб. мат. журн. 2007. Т. 48, № 1. С. 11–32.
- Cvetic M., Gibbons G. W., Lu H., Pope C. N. Cohomogeneity one manifolds of Spin(7) and G(2) holonomy // Phys. Rev. D. 2002. V. 65, N 10. P. 106004.
- Bryant R. L., Salamon S. L. On the construction of some complete metrics with exceptional holonomy // Duke Math. J. 1989. V. 58, N 3. P. 829–850.
- Boyer C. P., Galicki K., Mann B. M. The geometry and topology of 3-Sasakian manifolds // J. Reine Angrew. Math. 1994. V. 455. P. 183–220.
- 5. Gray A. Weak holonomy groups // Math. Z. 1971. Bd 123. S. 290–300.
- Eschenburg J. H. Inhomogeneous spaces of positive curvature // Differential Geom. Appl. 1992. V. 2, N 2. P. 123–132.

Статья поступила 30 марта 2007 г.

Базайкин Ярослав Владимирович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 bazaikin@math.nsc.ru

Малькович Евгений Геннадьевич Новосибирский гос. университет, механико-математический факультет, ул. Пирогова, 2, Новосибирск 630090 topolog@ngs.ru