*-ЭКСТРЕМАЛЬНЫЕ НОРМИРОВАННЫЕ ПОЛЯ

Ю. Л. Ершов

Аннотация. Предложена удобная модификация понятия экстремального поля, введенного ранее автором и оказавшегося вырожденным.

Ключевые слова: экстремальное поле, алгебраическое поле, нормированное поле.

В статье предложена полезная модификация понятия экстремального поля, введенного в [1] и оказавшегося вырожденным (см. предложение 8 ниже).

Все нужные для дальнейшего определения и свойства нормированных полей содержатся в [2].

Определение. Нормированное поле $\mathbb{F} = \langle F, R \rangle$ называется *-экстремальным, если выполнено следующее: для любого многочлена $f(\bar{x}) \in F[x_0, \dots, x_n]$ множество

$$V_f \rightleftharpoons \{vf(\bar{a}) \mid \bar{a} = (a_0, \dots, a_n), a_i \in R\} \subseteq \Gamma_R \cup \{\omega\}$$

содержит наибольший элемент.

Следующее предложение дает важные примеры *-экстремальных нормированных полей.

Предложение 1. Всякое алгебраически полное дискретно нормированное поле \mathbb{F} является *-экстремальным.

Действительно, доказательство предложения 2 из [1] устанавливает это предложение. \Box

Следующие два предложения показывают, что в *-экстремальных полях наибольшие элементы существуют и в других естественно определенных множествах значений норм многочлена.

Предложение 2. Пусть \mathbb{F} *-экстремально, $f(x_0, \ldots, x_n) \in F[\bar{x}]; \gamma_0, \ldots, \gamma_n \in \Gamma_R;$ тогда множество $V_{f,\bar{\gamma}} \rightleftharpoons \{vf(\bar{a}) \mid a_0, \ldots, a_n \in F, v(a_0) \geq \gamma_0, \ldots, v(a_n) \geq \gamma_n\}$ имеет наибольший элемент.

Выберем элементы $b_0,\ldots,b_n\in F$ так, что $v(b_i)=\gamma_i,\ i\leq n.$ Рассмотрим многочлен $g(x_0,\ldots,x_n)\rightleftharpoons f(x_0b_0,\ldots,x_nb_n)\in F[\bar x]$. Пусть $\gamma_*\in \Gamma_R\cup\{\omega\}$ — наибольший элемент множества $V_g(=\{vg(\bar a)\mid a_0,\ldots,a_n\in R\})$. Проверим, что γ_* является наибольшим элементом множества $V_{f,\bar\gamma}$. Пусть $a_0^*,\ldots,a_n^*\in R$ таковы, что $\gamma_*=v(g(\bar a^*))=v(f(a_0^*b_0,\ldots,a_n^*b_n))$. Имеем $v(a_i^*b_i)=v(a_i^*)+v(b_i)\geq v(b_i)=\gamma_i,\ i\leq n,$ следовательно, $\gamma_*\in V_{f,\bar\gamma}$. Обратно, пусть $a_0,\ldots,a_n\in F$ таково, что $v(a_i)\geq \gamma_i,\ i\leq n.$ Тогда $v(a_ib_i^{-1})=v(a_i)-v(b_i)\geq 0,\ a_ib_i^{-1}\in R,$ следовательно, $vg(a_0b_0^{-1},\ldots,a_nb_n^{-1})\geq \gamma^*,$ но $g_0(a_0b_0^{-1},\ldots a_nb_n^{-1})=f(a_0b_0^{-1}b_0,\ldots,a_nb_n^{-1}b_n)=f(a_0,\ldots,a_n),$ значит, $vf(\bar a)=vg(a_0b_0^{-1},\ldots,a_nb_n^{-1})\geq \gamma_*.$ Итак, γ_* — наибольший элемент в $V_{f,\bar\gamma}$. Предложение доказано. \square

Предложение 3. Пусть \mathbb{F} *-экстремально, $f \in F[x]$ — унитарный многочлен от одной переменной. Тогда множество $V_f^* \rightleftharpoons \{vf(a) \mid a \in F\}$ имеет наибольший элемент.

Если f(0)=0, то $vf(0)=\omega\in V_f^*$ является наибольшим элементом в V_f^* . Пусть $f(0)\neq 0$ и $f=\prod_{i\leq n}(x-\alpha_i)$ — разложение f на линейные множители

над алгебраическим замыканием \widetilde{F} поля F. Пусть \widetilde{R} — кольцо нормирования поля \widetilde{F} , доминирующее $R(\widetilde{R}\cap F=R)$, $\Gamma_R\leq \Gamma_{\widetilde{R}}$. Пусть $\gamma_0\in \Gamma_R$ таково, что $\gamma_0\leq v_{\widetilde{R}}(\alpha_i)$ для i< n. Множество $V_{f,\gamma_0}=\{vf(a)\mid v(a)\geq \gamma_0\}$ содержит наибольший элемент γ^* . Имеем $V_{f,\gamma_0}\subseteq V_f^*$, покажем, что γ_* — наибольший элемент в V_f^* . Если $\gamma_*=\omega$, то это очевидно. Пусть $\gamma_*\in \Gamma_R$ и $\delta\in V_f^*\setminus V_{f,\gamma_0}$. Тогда $\delta=vf(a)$ для некоторого $a\in F$ такого, что $v(a)<\gamma_0$. Имеем

$$vf(a) = v\Big(\prod_{i < n} (a - \alpha_i)\Big) = \sum_{i < n} v(a - \alpha_i).$$

Так как $v(a) < \gamma_0 \le v(\alpha_i)$, то $v(a - \alpha_i) = v(a)$, i < n, и

$$\gamma_* \ge vf(0) = v \prod_{i < n} (0 - \alpha_i) = \sum_{i < n} v(\alpha_i) \ge n\gamma_0 > nv(a) = \sum_{i < n} v(a - \alpha_i) = vf(a) = \delta.$$

Предложение доказано.

Предложение 4. Всякое *-экстремальное поле $\mathbb{F} = \langle F, R \rangle$ является гензелевым.

Доказательство. По предложению 1.3.4(d) из [2] достаточно доказать, что для любых унитарного многочлена $f \in R[x]$ и элемента $a \in R$ такого, что $f(a) \in \mathfrak{m}(R)$ и $f'(a) \notin \mathfrak{m}(R)$, в кольце R найдется элемент α такой, что $f(\alpha) = 0$ и $a - \alpha \in \mathfrak{m}(R)(v(a - \alpha) > 0)$.

Итак, пусть $f \in R[x]$ — унитарный многочлен и $a \in R$ такой, что $f(a) \in \mathfrak{m}(R), \ f'(a) \not\in \mathfrak{m}(R).$ Полагаем $A \rightleftharpoons \{a' \mid a' \in R, \ v(a-a') \geq vf(a)\}.$

Лемма 1. Пусть $a' \in A$. Тогда

- (i) $v(f(a') f(a)) = v(a' a) (\ge vf(a)), vf(a') \ge vf(a) \text{ if } vf'(a') = 0;$
- (ii) если $a'' \rightleftharpoons a' f(a')f'(a')^{-1}$, то $a'' \in A$ и vf(a'') > vf(a').

Доказательство. (i). Полагаем $\varepsilon \rightleftharpoons a'-a$. Тогда $a'=a+\varepsilon$. Используя разложение Тейлора, получим равенство $f(a')=f(a)+f'(a)\varepsilon+\varepsilon^2r$ для подходящего $r\in R$. Тогда $f(a')-f(a)=f'(a)\varepsilon+\varepsilon^2r$, и так как $v(f'(a)\varepsilon)=vf'(a)+v(\varepsilon)=v(\varepsilon)<2v(\varepsilon)\leq v(\varepsilon^2r)$, имеем $v(f(a')-f(a))=v(\varepsilon)=v(a'-a)$.

Поскольку $v(\varepsilon) \geq vf(a)$ $(a' \in A!)$, из $v(f(a') - f(a)) = v(\varepsilon)$ следует, что $vf(a') \geq vf(a)$.

Опять используя разложение Тейлора, получим

$$f(a) = f(a' - \varepsilon) = f(a') - f'(a')\varepsilon + \varepsilon^2 r'$$

для некоторого $r'\in R$. Если предположить, что vf'(a')>0, то из равенства $f(a)-f(a')=-f'(a')\varepsilon+\varepsilon^\Gamma r'$ выводим, что

$$v(\varepsilon) = v(f(a) - f(a')) \ge \min\{vf'(a')\varepsilon, \varepsilon^2 r'\} > v(\varepsilon).$$

Полученное противоречие доказывает, что vf'(a') = 0.

(іі). Имеем

$$v(a''-a) = v((a'-a) - f(a')f'(a')^{-1}) \ge \min\{v(a'-a), v(f(a')f'(a')^{-1})\} \ge vf(a)$$

(по доказанному выше), следовательно, $a'' \in A$.

Используя разложение Тейлора, получим равенство

$$f(a'')=f(a'-f(a')f'(a')^{-1})=f(a')-f'(a')f(a')f'(a')^{-1}+(f(a')f'(a')^{-1})^2r''$$
для некоторого $r''\in R$. Тогда

$$f(a'')=(f(a')f'(a')^{-1})^2r''\text{ и }vf(a'')=v(f(a')^2f'(a')^{-\Gamma}r'')\geq 2vf(a')>vf(a'),$$
 так как $vf'(a')=0.$

Лемма доказана. □

Возвращаемся к доказательству предложения. Заметим, что $\{vf(a') \mid a' \in A\} = \{vf(a+\varepsilon) \mid v(\varepsilon) \geq vf(a)\} = V_{g,\gamma}$ для $g(x) \rightleftharpoons f(a+x), \gamma \rightleftharpoons vf(a)$. Так как \mathbb{F} *-экстремально, существует элемент $a' \in A$ такой, что $vf(a') \geq vf(a'')$ для любого $a'' \in A$. Если $vf(a') = \omega$, т. е. f(a') = 0, то это и требовалось. Если $vf(a') \neq \omega$, то, полагая $a'' \rightleftharpoons a' - f(a')f'(a')^{-1} \in A$, будем иметь по лемме 1(ii) vf(a'') > vf(a'). Полученное противоречие доказывает предложение. \square

Предложение 5. Пусть \mathbb{F} *-экстремально, \widetilde{F} — алгебраическое замыкание $F, g(\bar{x}) \in \widetilde{F}[x_0, \ldots, x_k]$ — многочлен. Тогда множество $\{vg(\bar{a}) \mid \bar{a} \in R^{k+1}\}$ имеет наибольший элемент.

Пусть F_0 — подполе поля \widetilde{F} , порожденное над F коэффициентами многочлена $g; n \rightleftharpoons [F_0:F]$. Пусть $\sigma_0,\ldots,\sigma_{n-1}$ — все F-вложения поля F_0 в \widetilde{F} (взятые с кратностью, равной степени несепарабельности поля F_0 над F). Рассмотрим многочлен $G(\bar{x}) \rightleftharpoons \prod_i (\sigma_i g)(\bar{x})$ (ясно, что $G(\bar{x}) \in F[\bar{x}]$).

Заметим, что для любого набора элементов $\bar{a} \in F^{k+1}$ имеем равенства $(\sigma_i g)(\bar{a}) = \sigma_i(g(\bar{a}))$, а гензелевость $\mathbb F$ влечет, что $v\sigma_i(g(\bar{a})) = v(g(\bar{a}))$, следовательно, $vG(\bar{a}) = nvg(\bar{a})$.

Так как \mathbb{F} *-экстремально, существует набор $\bar{a}_0 \in R^{k+1}$ такой, что $vG(\bar{a_0}) > vG(\bar{a})$ для любого набора $\bar{a} \in R^{k+1}$. Поскольку

$$nvg(\bar{a}_0) = vG(\bar{a}_0) \ge vG(\bar{a}) = nvg(\bar{a}),$$

имеем $vg(\bar{a}_0) \geq vg(\bar{a})$ для всех $\bar{a} \in \mathbb{R}^{k+1}$. Предложение доказано. \square

Следствие. Пусть \mathbb{F} *-экстремально, \widetilde{F} — алгебраическое замыкание F, $g(\bar{x}) \in \widetilde{F}[x_0, \dots, x_k]; \ \gamma_0, \dots, \gamma_k \in \Gamma_R$. Тогда множество $\{vg(\bar{a}) \mid \bar{a} \in F^{k+1}, v_R(a_i) \geq \gamma_i, i < k\}$ имеет наибольший элемент.

Доказывается, как предложение 2. \square

Напомним, что гензелево нормированное поле $\mathbb F$ называется алгебраически полным [1], если для любого конечного расширения $\mathbb F_0 \geq \mathbb F$ степени $n \rightleftharpoons [F_0:F]$ имеет место равенство n=ef, где $e \rightleftharpoons [\Gamma_{R_0}:\Gamma_R]$ — индекс ветвления, $f \rightleftharpoons [F_{R_0}:F_R]$ — относительная степень.

Предложение 6. Всякое *-экстремальное поле является алгебраически полным.

Пусть $\mathbb{F}_{}$ *-экстремально, $\mathbb{F}_{0} \geq \mathbb{F}_{}$ — конечное алгебраическое расширение степени $n,\ f \rightleftharpoons [F_{R_{0}}:F_{R}],\ e \rightleftharpoons [\Gamma_{R_{0}}:\Gamma_{R}],\ u$ предположим, что ef < n. Пусть $a_{0},\ldots,a_{f-1}\in R_{0}\setminus\mathfrak{m}(R_{0})$ таковы, что элементы $\bar{a}_{0}\rightleftharpoons a_{0}+\mathfrak{m}(R_{0}),\ldots,\bar{a}_{f-1}\rightleftharpoons a_{f-1}+\mathfrak{m}(R_{0})$ образуют базис поля $F_{R_{0}}$ над F_{R} . Пусть $b_{0},\ldots,b_{e-1}\in F_{0}^{\times}$ таковы, что $\gamma_{0}\rightleftharpoons v(b_{0})+\Gamma_{R},\ldots,\gamma_{e-1}\rightleftharpoons v(b_{e-1})+\Gamma_{R}$ — это все элементы фактор-группы $\Gamma_{R_{0}}/\Gamma_{R}$. Обозначим $c_{ij}=a_{i}b_{j}$.

Лемма 2. Для любого элемента $d \in F_0^{\times}$ найдутся элементы $d_{ij} \in F$, i < f, j < e, такие, что $v_{R_0}(d - \sum d_{ij}c_{ij}) > v_{R_0}(d)$.

Пусть $j_0 < e$ такое, что $v_{R_0}(d) = \gamma_{j_0} = v_{R_0}(b_{j_0})$. Тогда $v_{R_0}(db_{j_0}^{-1}) = v_{R_0}(d) - v_{R_0}(b_{j_0}) = 0$. Далее, найдутся элементы $e_i \in R_0$, i < f, такие, что $v_{R_0}(db_{j_0}^{-1} - \sum e_i a_i) > 0$. Тогда $v_{R_0}(d - b_{j_0} \sum e_i a_i) > v_{R_0}(b_{j_0}) = v_{R_0}(d)$, и если положить $d_{ij_0} \rightleftharpoons e_i$, i < f; $d_{ij} \rightleftharpoons 0$, i < f, $j_0 \ne j < e$, то выполнено заключение леммы. \square Так как ef < n, то $F_0 \ne \sum_{i < f, j < e} Fc_{ij}$. Пусть $0 \ne d \in F_0 \setminus \sum Fc_{ij}$. Рассмотрим

линейную форму

$$L(\bar{y}) \rightleftharpoons \sum_{i < f, j < e} c_{ij} y_{ij} - d \in F_0[y_{ij}].$$

Поскольку \mathbb{F} *-экстремально, по предложению 4 найдутся элементы $e_{ij}^*, i < f, j < e$, такие, что $v(L(\bar{e}^*)) \geq v(L\bar{e})$ для любых $e_{ij} \in F, i < k, j < e$. Пусть

$$d_0 \rightleftharpoons L(\bar{e}^*) = \sum_{i < f, j < e} e_{ij}^* c_{ij} - d;$$

Так как $d \not\in \sum_{i < f, \, j < e} Fc_{ij}$, то $d_0 \neq 0$. По лемме 2 найдутся элементы $d_{ij} \in F$, $i < f, \, j < e$, такие, что

$$v\left(d_0 - \sum_{i < f, j < e} d_{ij}c_{ij}\right) > v(d_0).$$

Если положить $d_{ij}^* \rightleftharpoons e_{ij}^* - d_{ij}$ и $d_0^* \rightleftharpoons \sum d_{ij}^* c_{ij} - d$, то имеем $v(L(\bar{d}^*)) = v(d_0^*) > v(d_0) = v(L(\bar{e}^*))$, что противоречит выбору \bar{e}^* .

Предложение доказано.

Свойство алгебраической полноты (бездефектности) справедливо и для конечномерных тел с *-экстремальным центром. А именно, доказательство теоремы в [1] показывает, что справедлива

Теорема. Пусть $\mathbb{F}\langle F,R\rangle$ — *-экстремальное нормированное поле. Тогда любое конечномерное тело D c центром F является бездефектным расширением F. \square

Предложение 7. Конечное расширение *-экстремального поля является *-экстремальным.

Пусть \mathbb{F} *-экстремально, $\mathbb{F}_0 \geq \mathbb{F}$ — конечное расширение. Так как по предложению 6 — \mathbb{F} алгебраически полно, существует ортогональный базис $\alpha_0, \ldots, \alpha_{n-1}$ — F_0 над F, т. е. такой базис F_0 над F, что для любых

$$a_0, \ldots, a_{n-1} \in F$$
 $v_{R_0}\left(\sum a_i \alpha_i\right) = \min_{i < n} v_{R_0}(a_i \alpha_i)$

(в качестве такого базиса можно взять семейство $\{c_{ij} \mid i < f, j < e\}$ из доказательства предложения 6).

Пусть $f(x_0,\ldots,x_{k-1}) \in F_0[\bar{x}]$. Рассмотрим

$$g(\bar{y}) = f\left(\sum_{i < n} y_{0i}\alpha_i, \dots, \sum_{i < n} y_{k-1,i}\alpha_i\right) \in F_0[\bar{y}]$$

от kn переменных $y_{ji},\ j < k,\ i < n.$ Пусть $\gamma_i \rightleftharpoons -v(\alpha_i)$. По следствию к предложению 5 существует набор $\bar{a} = (a_{ji}) \in F^{kn}$ такой, что $v(a_{ji}) \ge \gamma_i,\ j < k,$ i < n, и $vg(\bar{a}) \ge vg(\bar{a}')$ для любого набора $\bar{a}' = (a'_{ji}) \in F^{kn}$ такого, что $v(a'_{ji}) \ge \gamma_i,$

 $j < k, \ i < n$. Если положить $b_j \Longrightarrow \sum_{i < n} a_{ji} \alpha_i, \ j < i, \ {
m to} \ \bar{b} = (b_j) \in R_0^k$. Проверим, что $f(\bar{b}) \ge v f(\bar{b}')$ для любого набора $\bar{b}' = (\bar{b}'_j) \in R_0^k$. Действительно, если

$$\bar{b}' = (\bar{b}'_j) \in R^k_0 \quad \text{if} \quad b'_j = \sum_{i < n} a'_{ji} \alpha_i, \quad a'_{ji} \in ^F, \quad j < k, \ i < n,$$

то по свойству ортогональности имеем $v(a'_{ji}) \geq -v(\alpha_i) = \gamma_i, \ j < k, \ i < n,$ но тогда $vf(\bar{b}') = vg(\bar{a}') \leq vg(\bar{a}) = vf(\bar{b}),$ что и требовалось доказать. \square

Напомним, что в соответствии с [1] нормированное поле $\mathbb F$ называется экстремальным, если для любого многочлена $f \in F[\bar x]$ множество $V_f^* \rightleftharpoons \{vf(\bar a) \mid \bar a \in F\} \subset \Gamma_R \cup \{\omega\}$ содержит наибольший элемент.

Предложение 8. Если нормированное поле $\mathbb{F} = \langle F, R \rangle$ не является алгебраически замкнутым, то оно не экстремально.

Лемма 3. Если $g(x_0, x_1, \ldots, x_n) \in F[\bar{x}]$ — форма, не представляющая нуля в F, то многочлен $f(\bar{x}) \rightleftharpoons g(x_0x_1-1, x_1, \ldots, x_n)$ не имеет нуля в F, а множество $V_f^* = \{vf(\bar{a}) \mid \bar{a} \in F\}$ не ограничено в Γ_R .

Предположим, что $f(a_0a_1,\ldots,a_n)=0$ для $\bar{a}\in F$. Так как g не представляет нуля и $g(a_0a_1-1,a_1,\ldots,a_n)=0$, то $a_0a_1-1=0$, $a_1=0$; противоречие. Пусть γ_* — минимум норм коэффициентов формы g,k — степень формы g, и если $a\in F^\times$, $v(a)=\gamma$, то $vf(a^{-1},a,\ldots,a)\geq \gamma_*+k\gamma$. Отсюда следует и последнее заключение леммы. \square

Если F не является алгебраически замкнутым, то существует собственное конечное алгебраическое расширение $F_0 > F$. Тогда любая нормическая форма по любому базису F_0 над F не представляет нуля и F. (Если

$$[F_0:F]=n, \quad F_0=\sum_{i< n}F_{lpha_i}, \quad \sigma_0,\ldots,\sigma_n:F_0 o \widetilde{F},$$

все F — вложения F_0 в \widetilde{F} , то $\prod_i \sigma_i (\sum_j x_j \alpha_j)$ — нормическая форма базиса $\alpha_0, \dots, \alpha_n$.) Отсюда и из леммы сразу следует заключение предложения. \square

Замечание. Если $\mathbb F$ алгебраически замкнуто, то для любого многочлена $f \in F[\bar x] \setminus F$ существуют $\bar a \in F$ такие, что $f(\bar a) = 0$, т. е. $\omega \in V_f^*$ и ω наибольший в V_f^* (если $f \in F$, то $V_f^* = \{vf\}$). Итак, алгебраически замкнутое поле является экстремальным.

Предложение 8 показывает, что предложение 2 из работы [1] неверно. Впервые на это автору указал С. Старченко, идея контрпримера которого и была использована в доказательстве леммы 3.

ЛИТЕРАТУРА

- 1. *Ершов Ю. Л.* Экстремальные нормированные поля // Алгебра и логика. 2004. Т. 43, № 5. С. 582–588.
- 2. Ершов Ю. Л. Кратно нормированные поля. Новосибирск: Научная книга, 2000.

Статья поступила 25 февраля 2009 г.

Ершов Юрий Леонидович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 ershov@math.nsc.ru