НОВАЯ ХАРАКТЕРИЗАЦИЯ ПРОСТОЙ ГРУППЫ $A_1(p^n)$

Л. Ли, Г. Чень

Аннотация. Доказано, что простая группа $A_1(p^n)$ однозначно определяется множеством порядков максимальных абелевых подгрупп группы $A_1(p^n)$.

Ключевые слова: простая группа, максимальная абелева подгруппа, порядковая компонента.

Пусть G — конечная группа и $\pi(G)$ — множество всех простых делителей ее порядка. Обозначим граф простых чисел группы G через $\Gamma(G)$, число компонент графа простых чисел группы G — через $t(\Gamma(G))$, множества вершин компонент графа простых чисел группы G — через $\pi_i(G)$ $(1 \le i \le t(\Gamma(G)))$, и множество порядков максимальных абелевых подгрупп группы G — через M(G).

Как было установлено в ряде работ, некоторые простые группы однозначно определяются множеством порядков их максимальных абелевых подгрупп. Например, в [1] доказано, что если G — одна из групп $Sz(2^{2m+1})$, A_n ($n \leq 10$) или является K_3 -группой, М-группой или Ј-группой, то G однозначно задается множеством порядков своих максимальных абелевых подгрупп. В [2] доказано, что любая знакопеременная группа, граф простых чисел которой имеет три компоненты связности, однозначно задается множеством порядков своих максимальных абелевых подгрупп, а в [3] показано, что подобным свойством обладает и любая спорадическая простая группа. В настоящей работе мы продолжаем исследования в данном направлении и показываем, что простая группа $A_1(p^n)$ однозначно определяется множеством порядков своих максимальных абелевых подгрупп.

Лемма 1 [1]. Пусть G, A — конечные группы. Если M(G) = M(A), то $\{\pi_i(G) \mid 1 \leq i \leq t(\Gamma(G))\} = \{\pi_i(G) \mid 1 \leq i \leq t(\Gamma(A))\}$. В частности, $\pi(G) = \pi(A)$.

Лемма 2. Если G — конечная группа c несвязным графом простых чисел, то выполнено одно из следующих утверждений:

- (a) G группа Фробениуса или двойная группа Фробениуса;
- (б) в G есть нормальный ряд $1 \le H \le K \le G$ такой, что H и G/K являются π_1 -группами, H нильпотентна, K/H неабелева простая группа и |G/K| | $|\operatorname{Aut}(K/H)|$.

This work was supported by NSFC (Grant N 11171364, 11001226); Graduate-Innovation Funds of SWU (ky2009013). Guiyun Chen is the corresponding author.

Лемма 3 [4]. Пусть G — конечная группа и N — неабелева простая группа. Если $t(\Gamma(G)) \ge 2$, M(G) = M(N) и в G есть нормальный ряд $1 \le H \le K \le G$ такой, что H, G/K являются π_1 -группами, а K/H — неабелева простая группа, то выполнены следующие утверждения:

- (1) нечетные компоненты группы N совпадают c некоторыми нечетными компонентами группы K/H и, более того, $t(\Gamma(K/H)) \ge t(\Gamma(G))$;
 - (2) если H = 1, то $G/K \le Out(K)$.

Лемма 4 [4]. Пусть G — конечная группа, $t(\Gamma(G)) \ge 2$ и $N \le G$. Если N является π_1 -группой и a_1, a_2, \ldots, a_r — нечетные порядковые компоненты группы G, то $a_1 \cdot a_2 \cdot \ldots \cdot a_r$ делит |N| - 1.

Теорема 5. Пусть G — конечная группа. Если $M(G) = M(A_1(p^n))$, то $G \cong A_1(p^n)$, где p — простое число и $p^n > 3$.

Доказательство. Пусть $T = A_1(p^n), p^n > 3$. Если p = 2, то заключение теоремы следует из [1]. Таким образом, можно считать, что p > 3.

Из табл. 1 по лемме 1 заключаем, что $\pi_1(G)=\pi(p^n\pm 1),\ \pi_2(G)=\{p\},\ \pi_3(G)=\pi((p^n\mp 1)/2).$ Следовательно, t(G)=3, и по лемме 2 в G есть нормальный ряд $1 \le H \le K \le G$ такой, что H и $G/K-\pi_1$ -группы, H нильпотентна и K/H— неабелева простая группа.

Шаг 1. Покажем, что H=1.

Пусть $H \neq 1$ и M — силовская подгруппа группы H. Группа H нильпотентна, поэтому $1 \neq Z(M)$ char H, и так как $H \trianglelefteq G$, получаем, что $Z(M) \trianglelefteq G$. С одной стороны, $(p^n(p^n \mp 1)/2) \mid |Z(M)| - 1$ по лемме 4, поэтому $|Z(M)| \ge (p^{2n} \mp p^n + 2)/2$. С другой стороны, в силу включения $\pi(H) \subseteq \pi_1(G)$, равенства M(G) = M(T) и табл. 2 выполнено неравенство $|Z(M)| \le p^n \pm 1$. Значит, $p^n \pm 1 \ge (p^{2n} \mp p^n + 2)/2$, что невозможно. Таким образом, H = 1.

Шаг 2. Покажем, что $K = A_1(p^n), p^n > 3$.

Поскольку H=1, из леммы 3 и равенства $t(\Gamma(G))=3$ следует, что $t(\Gamma(K))\geq 3$ и что нечетные порядковые компоненты группы T совпадают с некоторыми порядковыми компонентами группы K. Далее мы рассматриваем различные возможности для группы K, следуя табл. 1–3.

Случай 1. Покажем, что K не может быть изоморфна группе $E_8(p')$.

Если $K \cong E_8(p'), p' \equiv 0, 1, 4 \pmod{5}$, то множества нечетных порядковых компонент групп K и T — это множества $\{p'^8+p'^7-p'^5-p'^4-p'^3+p'+1, p'^8-p'^4+1, p'^8-p'^6+p'^4-p'^2+1, p'^8-p'^7+p'^5-p'^4+p'^3-p'+1\}$ и $\{p^n, (p^n\mp 1)/2\}$ соответственно. Получаем следующую систему уравнений:

$$p^n=p'^8+p'^7-p'^5-p'^4-p'^3+p'+1,\ p'^8-p'^4+1$$
 или $p'^8-p'^6+p'^4-p'^2+1;\ (p^n\mp 1)/2=p'^8-p'^4+1,\ p'^8-p'^6+p'^4-p'^2+1$ или $p'^8-p'^7+p'^5-p'^4+p'^3-p'+1.$

Но эта система не имеет решений; противоречие. Рассуждая подобным образом, можно также показать, что $K \not\cong E_8(p'), p' \equiv 2, 3 \pmod{5}$.

Случай 2. Группа K не может быть изоморфна спорадической простой группе.

Подслучай 1. Утверждение верно, если $4 \mid p^n + 1$.

При данном условии множество нечетных порядковых компонент группы T равно $\{p^n,(p^n-1)/2\}.$

Если $K\cong M_{11}$, то множество нечетных порядковых компонент группы K равно $\{11,5\}$, откуда следует, что $p^n=11$. Из равенств $|T|=2^2\cdot 3\cdot 5\cdot 11$ и M(G)=

Группа orcmp1 orcmp2orcmp3 orcmp4 $A_1(q), \ 4 \mid q+1$ q+1(q-1)/2 $A_1(q), \ 4 \mid q-1$ q-1(q+1)/2q $A_1(q), \ 2 \mid q$ q+1q-1 $A_p, p, p-2$ простые $3 \cdot 4 \cdot \ldots \cdot (p-3)(p-1)$ p-2 $3^{6m}(3^{2m}-1)^2$ $3^{2m} + 3^m + 1$ $3^{2m} - 3^m + 1$ $G_2(3^m)$ $^{2}G_{2}(p), p = 3^{2m+1}$ $p + (3p)^{1/2} + 1$ $p - (3p)^{1/2} + 1$ $p^3(p^2-1)$ $3^{p(p-1)}(3^{p-1}-1)$. $(3^{p-1}+1)/2$ $^{2}D_{p}(3),$ $(3^p + 1)/4$ $\prod^{p-1} (3^{2i} - 1)$ $p = 2^n + 1, n \ge 2$ $2^{p(p+1)}(2^p-1)$. $2^{p+1} + 1$ $^{2}D_{p+1}(2),$ $2^{p} + 1$ $\prod^{p-1} (2^{2i} - 1)$ $p = 2^n - 1, n \ge 2$ $p^{24}(p^6-1)^2(p^4-1)^2$ $F_4(p), 2 \mid p$ $p^4 + 1$ $p^4 - p^2 + 1$ $\overline{p^{12}(p-1)(p^2+1)}$. $p^2 + (2p^3)^{1/2} +$ $p^2 - (2p^3)^{1/2} +$ ${}^{2}F_{4}(p),$ $p = 2^{2m+1}, m > 1$ $p + (2p)^{1/2} + 1$ $p - (2p)^{1/2} + 1$ $(p^3+1)(p^4-1)$ $2^{63} \cdot 3^{11} \cdot 5^2 \cdot 7^3 \cdot 11$ $E_7(2)$ $13 \cdot 17 \cdot 19 \cdot 31 \cdot 43$ $2^{23} \cdot 3^{63} \cdot 5^2 \cdot 7^3 \cdot 11^2 \cdot$ $E_7(3)$ 1093 757 $13^3 \cdot 19 \cdot 37 \cdot 41 \cdot 61 \cdot$ $73 \cdot 547$ $\overline{2^{15} \cdot 3^9} \cdot 5$ $^{2}A_{5}(2)$ 11 p-1 $^{2}B_{2}(p), p = 2^{2m+1}$ $p + (2p)^{\frac{1}{2}} + 1$ $p-(2p)^{\frac{1}{2}}+1$ $A_{2}(4)$ 7 $2^{36} \cdot 3^9 \cdot 5^2 \cdot 7^2 \cdot 11$ $^{2}E_{6}(2)$ 19 17 13

Таблица 1. Простые группы лиева типа G с условием $t(\Gamma(G)) \geq 3$ и их порядковые компоненты

M(T) заключаем, что $9 \nmid |G|$. Однако $9 \mid |K|$; противоречие. Аналогичные рассуждения показывают, что $K \not\cong M_{23}, \ M_{24}$ и Co_2 .

Если $K\cong M_{22}$, то множество нечетных порядковых компонент группы K равно $\{11,7,5\}$. Получаем уравнение $p^n=11$ или $p^n=7$. Если $p^n=11$, то $9\nmid |G|$, так как $|T|=2^2\cdot 3\cdot 5\cdot 11$ и M(G)=M(T). Но $9\mid |K|$; противоречие. Если же $p^n=7$, то $(p^n-1)/2=3\not\in\{11,7,5\}$; противоречие.

Если $K\cong F'_{24}$, то множество нечетных порядковых компонент группы K равно $\{29,23,17\}$. Значит, p^n равно 29 или 23. По условию $4\mid p^n+1$, поэтому $p^n=23$. Но в этом случае $(p^n-1)/2=11\not\in\{29,23,17\}$; противоречие. Используя аналогичные рассуждения, мы можем показать, что K не изоморфна ни одной из оставшихся спорадических простых групп.

Подслучай 2. Утверждение выполнено, если $4 \mid p^n - 1$.

При этом условии множество нечетных порядковых компонент группы T равно $\{p^n,(p^n+1)/2\}.$

Поскольку нечетные порядковые компоненты группы T совпадают с некоторыми порядковыми компонентами группы K и $4 \mid p^n-1$, группа K изоморфна F'_{24} , J_4 , Suz или Ly.

Если $K\cong F'_{24}$, тогда множество нечетных порядковых компонент группы K равно $\{29,23,17\}$. Значит, p^n равно 29 или 23. Но $4\mid p^n-1$, поэтому $p^n=29$. Следовательно, $(p^n+1)/2=15\not\in\{29,23,17\}$; противоречие. По аналогичным соображениям $K\not\cong J_4$, Suz и Ly.

Таблица 2. Спорадические простые группы G с условием $t(\Gamma(G)) \geq 3$ и их порядковые компоненты

J_3	$2^7 \cdot 3^5 \cdot 5$	19	17			
HS	$2^9 \cdot 3^2 \cdot 5^3$	11	7			
Suz	$2^{13}\cdot 3^7\cdot 5^2\cdot 7$	13	11			
F_{23}	$2^{18} \cdot 3^{13} \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$	23	17			
B	$2^{41} \cdot 3^{31} \cdot 5^6 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$	47	31			
Th	$2^{15} \cdot 3^{10} \cdot 5^3 \cdot 7^2 \cdot 13$	31	19			
M_{11}	$2^4 \cdot 3^2$	11	5			
M_{23}	$2^7 \cdot 3^2 \cdot 5 \cdot 7$	23	11			
M_{22}	$2^7 \cdot 3^2$	11	7	5		
J_1	$2^3 \cdot 3 \cdot 5$	19	11	7		
J_4	$2^{21}\cdot 3^3\cdot 5\cdot 7\cdot 11^3$	43	37	31	29	23
ON	$2^9 \cdot 3^4 \cdot 5 \cdot 7^3$	31	19	11		
Ly	$2^8 \cdot 3^7 \cdot 5^6 \cdot 7 \cdot 11$	67	37	31		
F'_{24}	$2^{21} \cdot 3^{16} \cdot 5^2 \cdot 7^3 \cdot 11 \cdot 13$	29	23	17		
M	$2^{46} \cdot 3^{30} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 47$	71	59	41		
M_{24}	$2^{10} \cdot 3^3 \cdot 5 \cdot 7$	23	11			
CO_2	$2^{18}\cdot 3^6\cdot 5^3\cdot 7$	23	11			

Таблица 3. Порядковые компоненты группы $E_8(p)$

Группа	$E_8(p), \ p \equiv 0, 1, 4 \pmod{5}$	
orcmp1	$p^{120}(p^{18}-1)(p^{14}-1)(p^{12}-1)^2(p^{10}-1)^2(p^8-1)^2(p^4+p^2+1)$	
orcmp2	$p^8 + p^7 - p^5 - p^4 - p^3 + p + 1$	
orcmp3	$p^8 - p^4 + 1$	
orcmp4	$p^8 - p^6 + p^4 - p^2 + 1$	
orcmp5	$p^8 - p^7 + p^5 - p^4 + p^3 - p + 1$	
Группа	$E_8(p), \ p \equiv 2, 3 \pmod{5}$	
orcmp1	$p^{120}(p^{20}-1)(p^{18}-1)(p^{14}-1)^2(p^{12}-1)(p^{10}-1)(p^8-1)(p^4+1)(p^4+p^2+1)$	
orcmp2	$p^8 + p^7 - p^5 - p^4 - p^3 + p + 1$	
orcmp3	p^8-p^4+1	
orcmp4	$p^8 - p^7 + p^5 - p^4 + p^3 - p + 1$	

Случай 3. Группа K не может быть изоморфна ни одной простой группе лиева типа, кроме группы T.

Подслучай 1. Утверждение выполнено, если $4 \mid p^n + 1$.

Множество нечетных порядковых компонент группы T равно $\{p^n, (p^n-1)/2\}.$

Поскольку нечетные порядковые компоненты группы T совпадают с некоторыми порядковыми компонентами группы K и $4\mid p^n+1$, сразу получаем, что $K\not\cong E_7(3),\ ^2F_4(p'),\ p'=2^{2m+1},\ F_4(p'),\ 2\mid p',\ ^2D_{p+1}(2),\ p=2^n-1,\ n\geq 2$ и $A_1(p'^m),\ 4\nmid p'^m+1.$

Если $K\cong A_2(4)$, то множество нечетных порядковых компонент группы K равно $\{9,7,5\}$. Получаем, что p^n равно 9 или 7. По условию $4\mid p^n+1$, поэтому $p^n=7$, откуда следует, что $(p^n-1)/2=3\not\in\{9,7,5\}$; противоречие. Рассуждая подобным образом, можно показать, что $K\ncong^2E_6(2)$, $^2B_2(p')$, $p'=2^{2m+1}$, $^2A_5(2)$ и $E_7(2)$.

Если $K\cong {}^2D_{p'}(3),\ p'=2^n+1,\ n\geq 2,$ то множество нечетных порядковых компонент группы K равно $\{(3^p+1)/4,\ (3^{p-1}+1)/2\}$. Получаем систему уравнений

$$p^n = (3^p + 1)/4, \quad (p^n - 1)/2 = (3^{p-1} + 1)/2.$$

Легко видеть, что эта система не имеет решений; противоречие. Используя подобные рассуждения, так же доказываем, что $K \not\cong A_{p'}$, где p', p'-2— простые числа

Если $K\cong^2 G_2(p'),\ p'=3^{2m+1},$ то множество нечетных порядковых компонент группы K равно $\{p'+(3p')^{1/2}+1,\ p'-(3p')^{1/2}+1.$ Получаем систему уравнений

$$p^n = (3^{p'} + 1)/4, \quad (p^n - 1)/2 = (3^{p'-1} + 1)/2.$$

Легко видеть, что эта система не имеет решений; противоречие. По тем же соображениям $K \not\cong G_2(3^m)$.

Подслучай 2. Утверждение верно, если $4 \mid p^n - 1$.

Множество нечетных порядковых компонент T равно $\{p^n, (p^n+1)/2\}$.

Поскольку нечетные порядковые компоненты группы T совпадают с некоторыми порядковыми компонентами группы K и $4 \mid p^n - 1$, заключаем, что $K \not\cong^2 A_5(2)$ и $A_1(p'^m)$, $4 \nmid p'^m - 1$.

Если $K\cong {}^2D_{p'+1}(2),\ p'=2^n-1,\ n\geq 2,$ то множество нечетных порядковых компонент группы K равно $\{2^{p'+1}+1,2^{p'}+1\}$. Значит, $p^n=2^{p'+1}+1$. Следовательно, $p^n-1=2^{p'+1},$ откуда вытекает, что $|\pi_1(T)|=1.$ Но $|\pi_1(K)|\geq 2;$ противоречие.

Если $K \cong {}^2B_2(p'), p'=2^m+1$, то множество нечетных порядковых компонент группы K равно $\{p'+(2p')^{1/2}+1,p'-1,p'-(2p')^{1/2}+1\}$. Получаем, что $p^n=p'+(2p')^{1/2}+1$ или p'-1; $(p^n+1)/2=p'-1$ или $p'-(2p')^{1/2}+1$.

По условию $4 \mid p^n-1$, поэтому $p^n=p'+(2p')^{1/2}+1$. Значит, $(p^n+1)/2=p'/2+(2p')^{1/2}/2=2^{2m}+2^m \not\in \{p'-1,p'-(2p')^{1/2}+1\}$; противоречие. Аналогичным образом можно показать, что $K\not\cong E_7(3),\,^2E_6(2),E_7(2)$ и $^2A_2(4)$.

Если $K\cong {}^2F_4(p'),\, p'=2^{2m}+1,\, m\geq 1,\,$ то множество нечетных порядковых компонент группы K равно $\{p'^2+(2p'^3)^{1/2}+p'+(2p')^{1/2}+1,\,\,p'^2-(2p'^3)^{1/2}+p'-(2p')^{1/2}+1\}.$ Получаем систему уравнений

$$p^n = p'^2 + (2p'^3)^{1/2} + p' + (2p')^{1/2} + 1,$$
 $(p^n + 1)/2 = p'^2 - (2p'^3)^{1/2} + p' - (2p')^{1/2} + 1.$

Можно показать, что эта система не имеет решений; противоречие. Используя подобные рассуждения, проверяем, что $K\not\cong F_4(p'),\ 2\mid p',\ ^2D_{p'}(3),\ p'=2^n+1,\ n\geq 2$ и $^2G_2(p'),\ p'=3^{2m+1}.$

Если $K \cong A_{p'}$, то p' и p'-2 — простые числа.

Поскольку $A_1(5)\cong A_5$, можно считать, что $p'\geq 7$. В силу того, что множество нечетных порядковых компонент группы K равно $\{p',\ p'-2\}$, получаем систему уравнений $p^n=p'$ и $(p^n+1)/2=p'-2$. Эта система имеет решение $p^n=p'=5$; противоречие.

Шаг 3. Докажем, что $G \cong A_1(p^n)$.

Из условия $C_G(K)=1$ следует, что $K ext{ } extstyle G extstyle Aut(K)$. Поскольку $K\cong A_1(p^n)$, каждый элемент группы $\operatorname{Out}(K)$ — это произведение полевого автоморфизма, порядок которого делит n, и диагонального автоморфизма, порядок которого делит 2. Так как любой полевой автоморфизм ρ централизует элементы группы $A_1(p)$ и $\{2, p\} \subseteq \pi(A_1(p))$, число $|\rho|$ соединено с 2 и p, а это противоречит тому, что $p \in \pi_2(A_1(p^n))$. Поскольку порядок диагонального автоморфизма группы $A_1(p^n)$ равен 2, если некоторый диагональный автоморфизм $\varphi \neq 1$ действует на G, то нормализатор силовской p-подгруппы K в K имеет порядок $p^n(p^n-1)$ и, значит, G содержит элемент порядка p^n-1 ; противоречие. Теорема доказана. \square

ЛИТЕРАТУРА

- 1. Wang L. H. Characterization of some classes of finite simple groups. Thesis for master of science. Southwest China Normal Univ., 2000.
- Чень Г. Характеризация знакопеременных групп с помощью множества порядков их максимальных абелевых групп // Сиб. мат. журн. 2006. Т. 47, № 3. С. 718–720.
- Хань Ч., Чэнь Г., Го С. Характеризационная теорема для спорадических групп // Сиб. мат. журн. 2008. Т. 49, № 6. С. 1430–1440.
- Chen G. Y. A new characterization of sporadic simple groups // Algebra Colloq. 1996. V. 3. P. 49–58.

 $\it Cmamья$ поступила 5 ноября 2009 г., окончательный вариант — 21 сентября 2011 г.

Li Lili (Ли Лили)
Mathematics and Computer Science College,
Zhanjiang Normal University,
524048 Zhanjiang, China
hljsys1982@126.com
Chen Guiyun (Чень Гуйюнь)
School of Mathematics and Statistics,
Southwest University,
400715 Chongqing, China
gychen1963@163.com