О ГРУППАХ С ФРОБЕНИУСОВЫМИ ЭЛЕМЕНТАМИ

А. М. Попов, А. И. Созутов

Аннотация. Найдены условия, при которых теоретико-множественное объединение ядер двупорожденных фробениусовых подгрупп группы G с фиксированным циклическим дополнением порядка 3n является нормальной в G подгруппой.

Ключевые слова: группа Фробениуса, система фробениусовых подгрупп, H-фробениусов элемент.

В работе исследуются группы с H-фробениусовым элементом a порядка, кратного 3.

Элемент a группы G называется H-фробениусовым, если H — собственная подгруппа в G и все подгруппы вида $L_g = \langle a, a^g \rangle$, где $g \in G \setminus H$, являются группами Фробениуса с дополнениями, содержащими элемент a. Если при этом дополнения всех групп L_g совпадают с $\langle a \rangle$, то элемент a называется $uu\kappa nuuecku$ H-фробениусовым, а при условии $H = N_G(\langle a \rangle)$ — фробениусовым [1,2]. Такие системы фробениусовых подгрупп появляются естественно в исследованиях групп с различными условиями конечности, факторизуемости, точной 2-транзитивности и др. Конечные группы с фробениусовым элементом порядка > 2 изучались Фишером [3,4] и Ашбахером [5]. Произвольные группы G с циклически H-фробениусовым элементом a простого нечетного порядка рассмотрены B. Π . Шунковым [6], а в случае |a| > 2 — A. M. Созутовым [7]. B этих работах доказано, что нормальные замыкания $\langle a^G \rangle$ и $\langle a^H \rangle$ циклически H-фробениусова элемента a являются группами Фробениуса с дополнением $\langle a \rangle$.

Пусть G — группа с H-фробениусовым элементом a порядка > 2. Основная задача наших исследований сформулирована в вопросе 10.61 из [8]: является ли объединение всех ядер фробениусовых подгрупп с дополнением $\langle a \rangle$ подгруппой группы G?

Положительный ответ на этот вопрос известен в случае |a|=2n [9], а также в случае, когда $|a|\notin\{3,5\}$ и элемент a конечен в G [10]. При этом в первом случае в доказательстве существенно использовались абелевость ядер фробениусовых подгрупп L_g и единственность инволюции в дополнении, во втором — конечность всех подгрупп L_q $(g\in G)$.

Как известно, ядро конечной группы Фробениуса нильпотентно, а подгруппа дополнения, порожденная всеми элементами простых порядков, либо циклическая, либо изоморфна прямому произведению холловской циклической подгруппы на одну из групп $SL_2(3)$, $SL_2(5)$ (это объясняет исключительность

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 15–01–04897а).

случая $|a| \in \{3,5\}$). Каждая подгруппа конечной группы Фробениуса, порожденная парой сопряженных элементов, выбранных из разных дополнений, снова фробениусова. В бесконечной группе Фробениуса указанные свойства не обязаны выполняться. Как доказано в [11], каждая группа изоморфно вложима в ядро подходящей группы Фробениуса с циклическим дополнением, и согласно [12,13] периодическая группа Фробениуса с абелевым ядром не обязана быть локально конечной. Поэтому полное решение вопроса 10.61 из [8] в настоящий момент представляется авторам проблематичным. Но для случаев, когда порядок элемента a кратен 3 или 5, прогноз более оптимистичен в связи с явным прогрессом в изучении групп и дополнений Фробениуса, порожденных элементами малых порядков (см., например, [14–21]). Так, А. Х. Журтовым, В. Д. Мазуровым и В. А. Чуркиным найден ряд перспективных для поставленной задачи условий, при которых группа Фробениуса, порожденная элементами малых порядков, конечна. Работа опирается на эти результаты.

Напомним, что неединичный элемент b группы X называется конечным b X, если для любого $x \in X$ подгруппа $\langle b, b^x \rangle$ конечна.

Теорема. Пусть a-H-фробениусов элемент группы G, |a|=3n>3, b-9лемент порядка 3 из $\langle a \rangle$ и выполнено хотя бы одно из следующих условий:

- (1) множество $b^{-1} \cdot b^H$ состоит из периодических элементов и n кратно 3;
- (2) подгруппа $\langle a \rangle$ содержит конечный в H 3'-элемент.

Тогда объединение F всех ядер фробениусовых подгрупп c дополнением $\langle a \rangle$ является нормальной в G локально конечной нильпотентной подгруппой и G=FH.

Необходимо отметить, что вопрос 10.61 в случае |a|=3 остается пока нерешенным даже при дополнительном условии конечности группы G.

1. Определения и основные используемые результаты

Определение 1. Неединичная собственная подгруппа H группы G называется обособленной в G, если $H \cap H^g = 1$ для любого элемента $g \in G \setminus H$; (G, H) в этом случае называется парой Фробениуса.

Определение 2. Группа G называется группой Фробениуса (фробениусовой группой) c неинвариантным множителем (дополнением) H и ядром (инвариантным множителем) F, если 1) (G,H) — пара Фробениуса; 2) $F \triangleleft G$ и $G = F \searrow H$; 3) $G \searrow F^\# = \bigcup H^g$.

Отметим также следующее свойство (см. эквивалентное определение 2.1 в [2]).

Предложение 1. Группа $G = F \setminus H$ тогда и только тогда есть группа Фробениуса c ядром F и дополнением H, когда подгруппа H обособлена в G и каждый неединичный элемент из G содержится либо в F, либо точно в одной подгруппе, сопряженной c H.

Как доказал В. В. Блудов [11], каждая группа изоморфна некоторой подгруппе ядра подходящей группы Фробениуса, и для любой правоупорядоченной группы H существуют группы Фробениуса с дополнением H. Дополнения могут быть также периодическими не локально конечными группами [12, 13]. Так, например, следующее предложение вытекает из теоремы 3.1 в [12] и теоремы 5.1 в [2].

Предложение 2. Пусть n, k, q — натуральные числа, q — простое число, $(q,k)=1, \pi(n)\subseteq \pi(k)$, число n нечетно и $n\geq 665$. Тогда для любого натурального $m\geq 2$ существует бесконечная m-порожденная группа Фробениуса, ядро F которой — элементарная абелева q-группа, а дополнение H — бесконечная m-порожденная группа периода nk c циклическим локально конечным радикалом порядка k.

Очевидно, что в группе $G=F \leftthreetimes H$ из предложения 2 любой неединичный элемент $a \in H$ является H-фробениусовым. Если при этом элемент a выбран за пределами локально конечного радикала группы H, то нетрудно убедиться, что среди подгрупп $L_g = \langle a, a^g \rangle \; (g \in G \setminus H)$ есть бесконечные группы Фробениуса с не локально конечным дополнением $H_q = H \cap L_q$.

Значительный прогресс был достигнут в изучении групп и дополнений Фробениуса, порожденных элементами малых порядков [15–19]. Особенно интересен по контрасту с предыдущими примерами результат А. Х. Журтова о конечности группы Фробениуса, порожденной двумя элементами порядка ≤ 4 .

Предложение 3 (теорема Журтова). Пусть G — группа Фробениуса, порожденная двумя элементами, порядки которых не превосходят 4. Тогда G конечна и ядро группы G абелево.

Предложение 4 (теорема Мазурова — Чуркина [18]). Нормальное замыкание элемента x порядка 3 в группе G, свободно действующей на абелевой группе, конечно при условии, что любой коммутатор [x,g] $(g \in G)$ имеет конечный порядок.

Предложение 5 [2, лемма 1.1]. Конечная группа G, порожденная элементами простых порядков и действующая свободно на абелевой группе, изоморфна одной из следующих групп: 1) циклической группе Z_m ; 2) прямому произведению $Z_m \times SL_2(5)$, где Z_m — циклическая $\{2,3,5\}'$ -группа; 3) прямому произведению $Z_m \times SL_2(3)$, где Z_m — циклическая $\{2,3\}'$ -группа.

Предложение 6 (теорема Горчакова [22]). Если $G = F \setminus H$, подгруппа H локально конечна и обособлена в G, а F локально нильпотентна, то G в том и только том случае является группой Фробениуса с ядром F и дополнением H, когда $F = \pi(H)$ -полная группа.

Приведем также основные результаты работ [7, 9], используемые далее.

Предложение 7 [7]. Если G — группа c циклически H-фробениусовым элементом a и |a| > 2, то $\langle a^G \rangle = F \leftthreetimes \langle a \rangle$ — группа Фробениуса c дополнением $\langle a \rangle$ и $G = F \leftthreetimes N_G(\langle a \rangle)$.

Предложение 8 [9]. Если группа G содержит H-фробениусов элемент a четного порядка > 2, то $G = F \setminus C_G(i)$, где F — периодическая абелева подгруппа и i — инволюция из $\langle a \rangle$. В частности, F совпадает c объединением всех ядер фробениусовых подгрупп группы G c дополнением $\langle a \rangle$ и G = FH.

2. Некоторые свойства групп Фробениуса

Нам понадобится ряд свойств групп Фробениуса. В предложениях 9–13 $G=F \leftthreetimes H$ — группа Фробениуса с ядром F и дополнением H.

Предложение 9 [2, лемма 2.1]. Пусть $a \in H^{\#}$ и $L = F \leftthreetimes \langle a \rangle$. Тогда (1) Отображение $f \to [a,f]$ биективно на F.

- (2) L группа Фробениуса c неинвариантным множителем $\langle a \rangle$ и ядром F.
- (3) Если $L=B\leftthreetimes\langle v\rangle$ и $N_L(\langle v\rangle)=\langle v\rangle$, то B=F и $\langle v\rangle=\langle a^c\rangle$ для подходящего $c\in F.$
- (4) Если $b \in L$ и $M = \langle a, a^b \rangle$ группа Фробениуса c дополнением $\langle v \rangle$, то $M \cap F$ ядро группы M, подгруппы $\langle a \rangle$, $\langle v \rangle$ и $\langle a^b \rangle$ сопряжены в M и $M = \langle a, b \rangle$.

Предложение 10 [2, леммы 2.1, 2.2]. Любая нормальная в G подгруппа либо содержит ядро F, либо содержится в F. Для любой собственной подгруппы K дополнения H подгруппа $F \leftthreetimes K$ — группа Фробениуса c ядром F и дополнением K.

Предложение 11 [2, лемма 2.5]. Если подгруппа R нормальна в G и собственно содержится в F и $R \leftthreetimes H$ является группой Фробениуса c дополнением H и ядром R, то G/R — группа Фробениуса c ядром F/R и дополнением HR/R.

Предложения 12–14 хорошо известны.

Предложение 12 [2, леммы 2.3, 2.4]. Если H содержит инволюцию i, то она единственна в H, $f^i = f^{-1}$ для любого элемента $f \in F$ и F — абелева группа. Если b — элемент порядка 3 из H, то для любого элемента $f \in F$ подгруппа $\langle f^{F\langle b \rangle} \rangle$ абелева, а ядро F нильпотентно класса нильпотентности ≤ 2 .

Предложение 13. *Если ядро* F нильпотентно, то пересечение $\pi(H) \cap \pi(F)$ пусто.

Предложение 14. Если (G, H) — пара Фробениуса и группа G локально конечна, то G является группой Фробениуса c нильпотентным ядром F и дополнением H.

Следующее предложение дополняет предложение 11.

Предложение 15. Пусть H, F, R — собственные подгруппы группы $G, F < R, F \triangleleft G$ и $R \triangleleft G$. Если подгруппа FH является группой Фробениуса c ядром F и дополнением H, а фактор-группа G/F — группой Фробениуса c ядром R/F и дополнением HF/F, то G — группа Фробениуса c ядром R и дополнением H.

Доказательство. Из равенств $FH = F \times H$, $G/F = (R/F) \times (FH/F)$ и обособленности подгруппы FH/F в G/F следует равенство $G = R \times H$ (условие 2 определения 2). Если $g \in G$ и $H \cap H^g \neq 1$, то $(FH)^{Fg} \cap FH \neq F$ и ввиду условий заключаем, что $g \in FH$ и затем $g \in H$. Следовательно, подгруппа H обособлена в G (условие 1 определения 2). Наконец, в силу предложения 1 элемент $g \in G \setminus R$ содержится в смежном классе gF, сопряженном в фактор-группе G/F с подходящим смежным классом hF ($h \in H$), каждый элемент которого сопряжен в $F \times H$ с элементом из H. Стало быть, условие 3 определения 2 также выполнено, и предложение доказано.

В связи с предложением 15 и вопросами 6.55, 13.54 из [8] сформулируем следующий

Вопрос. Существует ли периодическая группа Фробениуса, дополнение которой является группой Фробениуса?

Предложение 16. Конечно порожденная группа Фробениуса с локально нильпотентным ядром и локально конечным дополнением конечна.

Доказательство. Пусть $G = F \leftthreetimes H$ — контрпример. Понятно, что неинвариантный множитель H в G конечен, по теореме 7.2.8 из [23] ядро F — конечно порожденная группа и ввиду условия группа F нильпотентна. Поскольку

нильпотентная периодическая группа локально конечна, F — бесконечная не периодическая группа. По теореме 16.2.7 из [24] все элементы конечных порядков из F составляют характеристическую подгруппу T — периодическую часть группы F. Если $T \neq 1$, то понятно, что $T \triangleright H$ — локально конечная группа Фробениуса и по предложению 11 G/T является группой Фробениуса с ядром F/T и дополнением HT/T, удовлетворяющей всем условиям предложения. Поэтому далее считаем, что T=1 и F — группа без кручения. Пусть Z_k — предпоследний член верхнего центрального ряда группы F. По упражнению 16.2.10 из [24] фактор-группа F/Z_k является абелевой группой без кручения и в силу конечной порожденности F и теоремы 8.1.2 из [24] F/Z_k — прямое произведение бесконечных циклических подгрупп. Пусть $\langle fZ_k \rangle$ — один из этих множителей и f — его прообраз в F. Тогда для любого натурального числа p>1 уравнение $x^p=f$ неразрешимо в F, в частности, это верно и для $p\in\pi(H)$. Однако последнее противоречит предложению 6. Следовательно, предложение верно.

3. Доказательство теоремы

Пусть далее G — группа, H — ее собственная подгруппа, a — H-фробениусов элемент и $\langle b \rangle$ — подгруппа порядка 3 из $\langle a \rangle$.

Лемма 1. Для любого неединичного $c \in \langle a \rangle$ выполняется включение

$$N_G(\langle c \rangle) < H.$$

Доказательство. Пусть $g \in N_G(\langle c \rangle) \setminus H$, тогда $L_g = \langle a, a^g \rangle \leq C_G(\langle c \rangle)$ и в L_g нет обособленных подгрупп. Значит, L_g не является группой Фробениуса (определения 1, 2); противоречие, доказывающее лемму.

Для элемента $g \in G \setminus H$ через L_g условимся обозначать подгруппу $\langle a, a^g \rangle = F_g \leftthreetimes H_g$, которая по условиям теоремы является группой Фробениуса с ядром F_g и дополнением H_g , в котором содержится элемент a.

Лемма 2. Ядро F_g группы L_g нильпотентно класса нильпотентности ≤ 2 . Подгруппа $\langle a^g \rangle$ содержится в некотором дополнении H_g^f , где $f \in F_g$.

Доказательство. По условию $a \in H_g$, по предложению 1 $\langle a \rangle \leq H_g$. В силу предложения 12 группа F_g нильпотентна класса нильпотентности ≤ 2 . По теореме 16.2.7 из [24] все элементы конечных порядков из F составляют характеристическую подгруппу T_g , и ввиду теоремы Шмидта и предложения 14 $T_g \leftthreetimes \langle b \rangle$ — локально конечная группа Фробениуса с дополнением $\langle b \rangle$ и ядром T_g , не содержащим 3-элементов (предложение 13). Следовательно, $a^g \notin F_g$, и $\langle a^g \rangle \leq H_g^f$ согласно предложению 1 для подходящего неединичного элемента $f \in F_g$. Лемма доказана.

Лемма 3. Для каждого элемента $g \in G \setminus H$ пересечение $a^G \cap H \cap H^g$ пусто и $F_q \not \leq H$.

Доказательство. Пусть $g \in G \setminus H$ и $a^g \in H$. По условию $L_g = \langle a, a^g \rangle$ является группой Фробениуса с ядром F_g и дополнением $K, a \in K$. По лемме 2 $a^g \in K^f$ для подходящего элемента $f \in F_g$. По предположению $f \in H$, значит, $gf^{-1} \notin H$, и по условию $L = \langle a, a^{gf^{-1}} \rangle = R \leftthreetimes T$ — группа Фробениуса с ядром R и дополнением T, при этом $a \in T$ и $L \le K$. По предложению $10 \ M = F_g \leftthreetimes R$ — группа Фробениуса с ядром F_g и дополнением R, и согласно определениям 2 и $1 \ N_M(R) = R$. По предложению $15 \ (F_g \leftthreetimes R) \leftthreetimes T$ — группа Фробениуса с

ядром M и дополнением $\langle T \rangle$. По предложению 12 подгруппа M нильпотентна, в частности, $N_M(R) \neq R$; противоречие. Значит, $a^g \notin H$, и лемма верна.

Лемма 4. Для каждого элемента $g \in G \setminus H$ ядро F_g является периодической группой.

Доказательство. В силу леммы 3 множество $F_g \setminus H$ непусто, и пусть $c \in F_g \setminus H$. Ввиду условия и предложения 9 $L_c = \langle a, a^c \rangle = F_c \times \langle a \rangle$ — группа Фробениуса с ядром $F_c = F_g \cap L_c$ и дополнением $\langle a \rangle$. По лемме 2 подгруппа F_c нильпотентна, и по предложению 16 подгруппа L_c конечна. Следовательно, $|c| < \infty$, и каждый элемент из $F_q \setminus H$ имеет конечный порядок.

Пусть $s \in F_g \cap H$, $c \in F_g \setminus H$. Тогда $sc \in F_g \setminus H$ и по доказанному выше порядок элемента sc конечен. Поскольку подгруппа F_g нильпотентна по лемме 2, в силу теоремы 16.2.7 из [24] порядок элемента s также конечен. Лемма доказана.

Лемма 5. $H_g = \langle a, a^{gf} \rangle$ для единственного элемента $f \in F_g$, при этом $H_g \leq H$.

Доказательство. Существование точно одного элемента $f \in F_g$, для которого подгруппа $H_g = \langle a, a^{gf} \rangle$ — дополнение в L_g , следует из леммы 2 и определения 2.

Допустим, что $H_g \nleq H$. Тогда $gf \notin H$ и по условию H_g — группа Фробениуса с ядром R и дополнением T, при этом $a \in T$. По предложению 13 $M = F_g \leftthreetimes R$ — группа Фробениуса с ядром F_g и дополнением R, в частности, $N_M(R) = R$. По предложению 15 $(F_g \diagdown R) \leftthreetimes T$ также является группой Фробениуса с дополнением T и ядром M. По предложению 12 группа M нильпотентна, значит, $N_M(R) \not= R$. Полученное противоречие означает, что $H_g \le H$, и лемма доказана.

Лемма 6. В случае, когда $\langle a \rangle$ содержит конечный в H 3'-элемент, теорема верна.

Доказательство. Пусть x — конечный в H 3'-элемент. Если |x|=2m, то теорема верна в силу предложения 8. Поэтому, не ограничивая общности, будем считать, что порядок элемента x есть простое число p>3. Пусть $g\in G\setminus H$, $X_g=\langle x,x^g\rangle$. Тогда $X_g\leq L_g,\,x\in H_g$. Ввиду лемм 2 и 4 подгруппа H_g действует свободно на периодической абелевой группе $Z(F_g)$, при этом $H_g\leq H$ по лемме 5. Для произвольного элемента $y\in x^{H_g}$ подгруппа $Y=\langle x,y\rangle$ по условию конечна и $Y=\langle x\rangle$ в силу предложения 5. Стало быть, подгруппа $\langle x\rangle$ нормальна в H_g , и ввиду предложения 5 $X_g\cap H_g=\langle x\rangle$. Применяя леммы 2 и 4 и предложение 14, заключаем, что X_g — конечная группа Фробениуса с ядром $F_g\cap X_g$ и дополнением $\langle x\rangle$, значит, x — циклически H-фробениусов элемент в G. По предложению 7 $\langle x^G\rangle=F \times \langle x\rangle$ — группа Фробениуса с ядром F и дополнением $\langle x\rangle$ и $G=F \times N_G(\langle x\rangle)$.

Если $g \in F \setminus H$, то ввиду предложения 9 и доказанного выше $g \in F_g$, поэтому $F \setminus H$ совпадает с объединением всех множеств $F_g \setminus H$ ($g \in G \setminus H$). Рассмотрим группу $G_1 = F \leftthreetimes \langle a \rangle$. Поскольку для $g \in G_1 \setminus H$ имеем $g = a^k f$, где $f \in F_g$, в силу предложений 10 и 9 $L_g = \langle a, a^g \rangle = \langle a, a^f \rangle = \langle a, f \rangle$, поэтому L_g — конечная группа Фробениуса с дополнением $H_g = \langle a \rangle$. Значит, a является циклически H_1 -фробениусовым элементом группы G_1 , где $H_1 = G_1 \cap H$. По предложению 7 $G_1 = \langle a^{G_1} \rangle = F_1 \leftthreetimes \langle a \rangle$ — группа Фробениуса с ядром F_1 и дополнением $\langle a \rangle$. Учитывая, что $F \setminus H = F_1 \setminus H$, приходим к выводу, что $F_1 = F$.

По предложению 12 ядро F нильпотентно класса нильпотентности ≤ 2 , и так же, как в лемме 4, заключаем, что группа F локально конечна. Понятно, что F совпадает с объединением ядер всех фробениусовых подгрупп с дополнением $\langle a \rangle$ в группе G и G = FH. Лемма доказана.

Лемма 7. Если множество $b^{-1}b^H$ состоит из элементов конечного порядка, то для любого $g \in G \setminus H$ подгруппа $B_g = \langle b^{H_g} \rangle$ конечна и изоморфна одной из групп Z_3 , $SL_2(3)$, $SL_2(5)$. В частности, b — конечный H-фробениусов элемент группы G.

Доказательство. Ввиду лемм 2 и 4 подгруппа H_g действует свободно на периодической абелевой группе $Z(F_g)$. В силу предложения 4 подгруппа $B_g = \langle b^{H_g} \rangle$ конечна. По предложению 5 B_g либо совпадает с подгруппой $\langle b \rangle$, либо изоморфна одной из групп $SL_2(3), SL_2(5)$. При этом понятно, что $b^g \in F_g \times B_g$ и ввиду лемм 2, 4 и предложений 3, 14 подгруппа $M_g = \langle b, b^g \rangle$ является конечной группой Фробениуса с абелевым ядром. Лемма доказана.

Завершим доказательство теоремы. Согласно лемме 6 достаточно рассмотреть случай, когда $b^{-1} \cdot b^H$ состоит из периодических элементов. В силу леммы 7 для любого $g \in G \setminus H$ подгруппа $B_g = \langle b^{H_g} \rangle$ конечна и изоморфна одной из групп $Z_3, SL_2(3), SL_2(5)$. Поскольку по условию n кратно 3, а группы $SL_2(3), SL_2(5)$ не обладают автоморфизмом порядка 9, то $B_g = \langle b \rangle$. Это означает, что b — циклически H-фробениусов элемент группы G. По предложению 7 $\langle b^G \rangle = F \times \langle b \rangle$ — группа Фробениуса с дополнением $\langle b \rangle$ и $G = F \times N_G(\langle b \rangle)$. Так же, как и в доказательстве лемм 4 и 6, устанавливаются нильпотентность и локальная конечность группы F. Очевидно, что ядра всех фробениусовых подгрупп с дополнением $\langle a \rangle$ из G содержатся в $F, F \not\leq H$ ввиду леммы 3, значит, для группы $G_1 = F \times \langle a \rangle$, ее собственной подгруппы $H_1 = H \cap G_1$ и элемента a выполняются все условия теоремы. Учитывая локальную конечность и нильпотентность подгруппы F, легко показать, что a — циклически H_1 -фробениусов элемент группа G_1 . По предложению 7 $G_1 = F_1 \times N_{G_1}(\langle a \rangle)$ и $\langle a_1^{G_1} \rangle = F_1 \times \langle a \rangle$ — группа Фробениуса с дополнением $\langle a \rangle$. Поскольку $N_{G_1}(\langle a \rangle) = \langle a \rangle$, то $F_1 = F$, и теорема доказана.

ЛИТЕРАТУРА

- 1. Созутов А. И. О группах с классом фробениу
сово-абелевых элементов // Алгебра и логика. 1995. Т. 34, № 5. С. 531–549.
- **2.** Попов А. М., Созутов А. И., Шунков В. П. Группы с системами фробениусовых подгрупп. Красноярск: Изд-во КГТУ, 2004.
- 3. Fischer B. F-Gruppen endlicher Ordnung // Arch. Math. 1965. Bd 16. S. 330–336.
- 4. Fischer B. Frobeniusautomorphismen endlicher Gruppen // Math. Ann. 1966. Bd 163. S. 273–298
- Aschbacher M. A characterisation of certain Frobenius groups // Ill. J. Math. 1974. V. 18, N 3. P. 418–426.
- Шунков В. П. Об одном признаке непростоты групп // Алгебра и логика. 1975. Т. 14, № 5. С. 576–603.
- Созутов А. И. О группах с фробениусовыми парами сопряженных элементов // Алгебра и логика. 1977. Т. 16, № 2. С. 204–212.
- Коуровская тетрадь. Нерешенные вопросы теории групп. 14-е изд. Новосибирск: Ин-т математики, 1999.
- Попов А. М., Созутов А. И. О группах с H-фробениусовым элементом четного порядка // Алгебра и логика. 2005. Т. 44, № 1. С. 70–80.
- 10. Попов А. М. О строении группы с конечным H-фробениусовым элементом // Алгебра и логика. 2004. Т. 43, № 2. С. 220–228.
- **11.** Блудов В. В. О группах Фробениуса // Сиб. мат. журн. 1997. Т. 38, \mathbb{N} 6. С. 1219–1221.

- 12. Созутов А. И. О строении неинвариантного множителя в некоторых группах Фробениуса // Сиб. мат. журн. 1994. Т. 35, № 4. С. 893–901.
- 13. Журтов А. Х., Лыткина Д. В., Мазуров В. Д., Созутов А. И. О периодических группах, свободно действующих на абелевых группах // Тр. Ин-та математики и механики УрО РАН. 2013. Т. 19, № 3. С. 136–143.
- 14. Gupta N. D., Mazurov V. D. On groups with small orders of elements // Bull. Austral. Math. Soc. 1999. V. 60. P. 197–205.
- **15.** *Журтов А. Х.* О регулярных автоморфизмах порядка 3 и парах Фробениуса // Сиб. мат. журн. 2000. Т. 41, № 2. С. 329–338.
- 16. Журтов А. Х. Группы Фробениуса, порожденные двумя элементами порядка 3 // Сиб. мат. журн. 2001. Т. 42, № 4. С. 533–537.
- **17.** *Мазуров В. Д.*, *Чуркин В. А.* О группе, свободно действующей на абелевой группе // Сиб. мат. журн. 2001. Т. 42, N 4. С. 888–891.
- 18. Мазуров В. Д., Чуркин В. А. О свободном действии группы на абелевой группе // Сиб. мат. журн. 2002. Т. 43, № 3. С. 600–608.
- 19. $Mazurov\ V$. A new proof of Zassenhaus theorem on finite groups of fixed-point-free automorphisms // J. Algebra. 2003. V. 263, N 1. P. 1–7.
- 20. *Журтов А. Х.*, *Мазуров В. Д.* О группах Фробениуса, порожденных квадратичными элементами // Алгебра и логика. 2003. Т. 42, № 3. С. 271–292.
- Jabara E. Fixed point free actions of groups of exponent 5 // J. Aust. Math. Soc. 2004. V. 77. P. 297–304.
- 22. Горчаков Ю. М. О бесконечных группах Фробениуса // Алгебра и логика. 1965. Т. 4, № 1. С. 15–29.
- **23.** *Холл М.* Теория групп. М.: Изд-во иностр. лит., 1962.
- 24. Каргаполов М. И., Мерзляков Ю. И. Основы теории групп. М.: Наука, 1977.

Статья поступила 2 апреля 2014 г.

Попов Алексей Михайлович

Сибирский гос. аэрокосмический университет,

пр. Газеты «Красноярский рабочий», 31, Красноярск 660014 vm_popov@sibsau.ru

Созутов Анатолий Ильич

Сибирский федеральный университет,

пр. Свободный, 79, Красноярск 660041;

Сибирский гос. аэрокосмический университет,

пр. Газеты «Красноярский рабочий», 31, Красноярск 660014

sozutov_ai@mail.ru