КОНЕЧНЫЕ π -ГРУППЫ С НОРМАЛЬНЫМИ ИНЪЕКТОРАМИ **Н.** Т. Воробьев, А. В. Марцинкевич

Аннотация. Пусть \mathbb{P} — множество всех простых чисел и $\varnothing \neq \pi \subseteq \mathbb{P}$. Класс Фиттинга $\mathfrak{F} \neq (1)$ называют *пормальным* в классе \mathfrak{S}_{π} всех конечных разрешимых π -групп или π -пормальным, если $\mathfrak{F} \subseteq \mathfrak{S}_{\pi}$ и для любой $G \in \mathfrak{S}_{\pi}$ ее \mathfrak{F} -инъекторы являются нормальными подгруппами G. Изучаются свойства π -нормальных классов Фиттинга: в терминах операторов Локетта доказан критерий π -нормальности произведения классов Фиттинга. π -Нормальный класс Фиттинга называется пормальным, если $\pi = \mathbb{P}$. Решетка всех разрешимых нормальных классов Фиттинга является подрешеткой решетки всех разрешимых классов Фиттинга, хотя вопрос о модулярности решетки всех разрешимых классов Фиттинга открыт (см. [1, вопрос 14.47]). Получено положительное решение аналога этого вопроса для случая π -нормальных классов Фиттинга.

 $DOI\,10.17377/smzh.2015.56.406$

Ключевые слова: класс Фиттинга, π -нормальный класс Фиттинга, произведение классов Фиттинга, решеточное объединение классов Фиттинга.

1. Введение

Все рассматриваемые группы в настоящей работе конечны и разрешимы, если не оговорено противное. Класс групп \mathfrak{F} называется классом Фиттинга, если он замкнут относительно нормальных подгрупп и произведений нормальных \mathfrak{F} -подгрупп. Если \mathfrak{F} — непустой класс Фиттинга, то подгруппу $G_{\mathfrak{F}}$ группы G называют \mathfrak{F} -радикалом группы G, если она является наибольшей из нормальных подгрупп группы G, принадлежащих \mathfrak{F} .

В теории классов групп известна теорема Гашюца — Фишера — Хартли [2] о том, что в любой группе для каждого класса Фиттинга $\mathfrak F$ существуют $\mathfrak F$ -инъекторы и любые два из них сопряжены. При этом подгруппа V группы G называется $\mathfrak F$ -инъектором G, если $V\cap N$ является $\mathfrak F$ -максимальной подгруппой N для любой субнормальной подгруппы N группы G. Заметим, что если $\mathfrak F = \mathfrak G_\pi$ — класс всех π -групп (в частности, $\mathfrak F = \mathfrak N_p$ — класс всех p-групп), то $\mathfrak F$ -инъектор группы — это в точности холлова π -подгруппа (силова p-подгруппа) группы G, поэтому следствием из указанной теоремы в [2] является фундаментальная теорема Холла [3] (в частности, теорема Силова [4] в разрешимом случае).

Многие результаты по исследованию структуры классов Фиттинга и характеризации \mathfrak{F} -инъекторов и \mathfrak{F} -радикалов групп связаны с изучением свойств нормальных классов Фиттинга (см. [5, X–XI]). Основополагающей для исследований в этом направлении является работа Блессеноля — Гашюца [6], в которой построен ряд нетривиальных примеров нормальных классов Фиттинга, каждый

из которых не является формацией, и доказано, что пересечение любого множества неединичных нормальных классов Фиттинга является неединичным нормальным классом Фиттинга. Кроме того, позднее Гашюцом [7] были найдены приложения нормальных классов Фиттинга для описания свойств разрешимых радикалов произвольных конечных групп. Напомним, что класс Фиттинга $\mathfrak F$ называют нормальным [6], если для каждой группы G ее $\mathfrak F$ -инъекторы являются нормальными подгруппами G.

Алгебра разрешимых нормальных классов Фиттинга стала изучаться в 70-е гг. прошлого столетия благодаря результатам Косси [8], Бейдельмана [9], Хаука [10], Кусака [11] и Лауша [12]. В частности, Косси [8] было установлено, что произведение двух любых нормальных классов Фиттинга является нормальным классом Фиттинга, а из результатов Кусака [11] следует, что класс Фиттинга, порожденный объединением двух нормальных классов Фиттинга, — нормальный класс Фиттинга. Более того, Лаушем [12] было доказано, что решетка всех нормальных классов Фиттинга обладает свойством модулярности.

Естественное обобщение понятия нормальности класса Фиттинга предложено в [5, X.3.7] (см. также [6,9,13]). Пусть \mathbb{P} — множество всех простых чисел и $\varnothing \neq \pi \subseteq \mathbb{P}$. Класс Фиттинга $\mathfrak{F} \neq (1)$ называют нормальным в классе \mathfrak{S}_{π} всех π -групп или просто π -нормальным (обозначают $\mathfrak{F} \unlhd \mathfrak{S}_{\pi}$), если $\mathfrak{F} \subseteq \mathfrak{S}_{\pi}$ и для любой π -группы G ее \mathfrak{F} -инъекторы являются нормальными подгруппами G. Заметим, что π -нормальный класс Фиттинга является нормальным в случае $\pi = \mathbb{P}$.

В связи с этим представляет интерес задача изучения свойств π -нормальных классов Фиттинга, в частности, их произведений и решеток. В настоящей работе для характеризации произведений π -нормальных классов Фиттинга будем использовать операторы Локетта [14] * и ". Напомним, что для каждого непустого класса Фиттинга \mathfrak{F} через \mathfrak{F}^* обозначают наименьший из классов Фиттинга, содержащий \mathfrak{F} , такой, что для всех групп G и H справедливо равенство $(G\times H)_{\mathfrak{F}^*}=G_{\mathfrak{F}^*}\times H_{\mathfrak{F}^*}$. Класс \mathfrak{F}_* определяется как пересечение всех таких классов Фиттинга \mathfrak{X} , для которых $\mathfrak{F}^* = \mathfrak{X}^*$. В частности, если $\mathfrak{F} = \mathfrak{S}$ — класс всех разрешимых групп, то \mathfrak{F}_* — наименьший нормальный класс Фиттинга. Его обозначают через \mathfrak{S}_* . Произведением классов Фиттинга \mathfrak{F} и \mathfrak{H} называют класс групп $\mathfrak{Fh} = (G: G/G_{\mathfrak{F}} \in \mathfrak{H})$. Хорошо известно, что произведение классов Фиттинга является классом Фиттинга и операция умножения классов Фиттинга ассоциативна [5, IX.1.12(a),(c)]. В разд. 3 расширяем результаты Хаука [10] о характеризации нормальных произведений классов Фиттинга на случай их π -нормальности. В частности, показано (теорема 3.1), что если $\mathfrak F$ и $\mathfrak H$ — классы Фиттинга π -групп, то их произведение $\mathfrak{FF} - \pi$ -нормальный класс Фиттинга в точности тогда, когда $\mathfrak{F}^*\mathfrak{H}^*=\mathfrak{S}_\pi$.

Основной результат работы содержится в разд. 4, где изучается решетка всех π -нормальных классов Фиттинга. Ориентиром для таких исследований является вопрос о том, верно ли, что решетка всех разрешимых классов Фиттинга конечных групп модулярна (см. [1, вопрос 14.47]). Положительное решение этого вопроса для случая разрешимых нормальных классов Фиттинга вытекает из результата Лауша [12] о том, что решетка всех разрешимых нормальных классов Фиттинга изоморфна решетке подгрупп некоторой бесконечной абелевой группы (группы Лауша) (определение группы Лауша см. в [5, определение X.4.2(а)]). Нами доказано, что решетка всех π -нормальных классов Фиттинга модулярна. Заметим при этом, что доказательство свойства модулярности

такой решетки альтернативно доказательству Лауша [12] и базируется лишь на описании структуры решеточного объединения классов Фиттинга в терминах групп, факторизуемых радикалами.

В определениях и обозначениях мы следуем [5].

2. Предварительные сведения

Для характеризации произведений π -нормальных классов Фиттинга будем использовать известные свойства \mathfrak{F} -радикала группы, которые приведем в качестве лемм.

Лемма 2.1 [5, IX.1.1(a)]. Пусть \mathfrak{F} — непустой класс Фиттинга и G — группа. Если $N \leq \subseteq G$, то $N_{\mathfrak{F}} = N \cap G_{\mathfrak{F}}$.

Лемма 2.2 [5, IX.1.12(b)]. Пусть \mathfrak{F} и \mathfrak{H} — непустые классы Фиттинга. Для любой группы G справедливо равенство $(G/G_{\mathfrak{F}})_{\mathfrak{H}} = G_{\mathfrak{F}\mathfrak{H}}/G_{\mathfrak{F}}$.

Пусть \mathfrak{X} и \mathfrak{F} — непустые классы Фиттинга, через $\mathfrak{X}/\mathfrak{F}$ обозначают класс групп $(G/G_{\mathfrak{F}}:G\in\mathfrak{X})$ [5, X.3.4(b)].

Напомним, что если \mathfrak{X} — некоторый класс групп, то через S обозначают отображение, которое сопоставляет каждому классу групп \mathfrak{X} класс $S\mathfrak{X} = (G: G \leq H$ для некоторой группы $H \in \mathfrak{X}$).

Лемма 2.3 [15]. Пусть $\emptyset \neq \pi \subseteq \mathbb{P}$ и \mathfrak{F} — нетривиальный класс Фиттинга. Для того чтобы $\mathfrak{F} \trianglelefteq \mathfrak{S}_{\pi}$, необходимо и достаточно, чтобы $S(\mathfrak{S}_{\pi}/\mathfrak{F}) \neq \mathfrak{S}_{\pi}$.

Будем использовать также свойства π -нормальных классов Фиттинга и операторов Локетта, которые были получены ранее в [16].

Лемма 2.4 [16, теорема 4.2(d)]. Пусть $\emptyset \neq \pi \subseteq \mathbb{P}$. Если хотя бы один из классов Фиттинга $\mathfrak F$ или $\mathfrak H$ нормален в $\mathfrak S_\pi$, то их произведение является π -нормальным классом Фиттинга.

Лемма 2.5 [16, теорема 4.2(a),(b)]. Пусть $\emptyset \neq \pi \subseteq \mathbb{P}$. Если \mathfrak{F} и \mathfrak{H} — классы Фиттинга π -групп, то справедливы следующие утверждения:

- (a) $\mathfrak{Fh} \leq \mathfrak{S}_{\pi}$ тогда и только тогда, когда $\mathfrak{Fh}^* \leq \mathfrak{S}_{\pi}$;
- $(b) \ \mathfrak{F}^*\mathfrak{H} \unlhd \mathfrak{S}_\pi$ тогда и только тогда, когда $\mathfrak{F}^*\mathfrak{H}^* = \mathfrak{S}_\pi.$

Класс групп называют формацией, если он замкнут относительно гомоморфных образов и конечных подпрямых произведений. Если \mathfrak{F} — непустая формация, то \mathfrak{F} -корадикалом $G^{\mathfrak{F}}$ группы G называется пересечение всех нормальных подгрупп группы G, фактор-группы по которым принадлежат \mathfrak{F} . Заметим, что если $\mathfrak{F}=\mathfrak{A}$ — формация всех абелевых групп, то $G^{\mathfrak{A}}=G'$ — коммутант группы G.

Используемые в дальнейшем известные свойства операторов Локетта [14] * и $_{\ast}$ представляет

Лемма 2.6 [5]. Пусть \mathfrak{F} и \mathfrak{H} — непустые классы Фиттинга. Тогда справедливы следующие утверждения:

- (1) [5, X.1.8(b)] если $\mathfrak{F} \subseteq \mathfrak{H}$ то, $\mathfrak{F}^* \subseteq \mathfrak{H}^*$;
- (2) [5, X.1.15] имеет место $(\mathfrak{F}_*)_* = \mathfrak{F}_* = (\mathfrak{F}^*)_* \subseteq \mathfrak{F} \subseteq \mathfrak{F}^* = (\mathfrak{F}_*)^* \subseteq \mathfrak{F}_*\mathfrak{A};$
- (3) [5, X.1.18] если $\mathfrak{F} \subseteq \mathfrak{H}$, то $\mathfrak{F}_* \subseteq \mathfrak{F} \cap \mathfrak{H}_*$;
- (4) [5, X.3.12] если π некоторое непустое множество простых чисел такое, что $\mathfrak{FG}_{\pi} = \mathfrak{F}$, то $\mathfrak{F} \cap \mathfrak{G}_{*} \subseteq \mathfrak{F}_{*}\mathfrak{G}_{\pi'}$.

Через $G \wr H$ будем обозначать регулярное сплетение групп G и H, через G^{\natural} — базисную группу $G \wr H$. В следующих леммах приведем свойства сплетений, которые будем использовать.

Лемма 2.7 [5, A.18.8(a),(b)]. Пусть G и X — неединичные группы, $W = X \wr G$. Тогда справедливы следующие утверждения:

- (1) если $H \leq G$, то $X^{\natural}H \cong (X^{|G:H|}) \wr H$;
- (2) если $N exttt{ riangle} W$ и $N \cap X^{\natural} = 1$, то N = 1.

Лемма 2.8 [5, X.2.1(a)]. Пусть \mathfrak{F} — класс Локетта и G — группа. Если $G \notin \mathfrak{F}$, то $(G \wr H)_{\mathfrak{F}} = (G_{\mathfrak{F}})^{\natural}$ для всех групп H.

Лемма 2.9 [5, X.2.4]. Пусть \mathfrak{F} — класс Фиттинга, G — группа и H — нильпотентная группа. Если существует натуральное число m такое, что $G^m \wr H \in \mathfrak{F}$, то $G^n \wr H \in \mathfrak{F}^*$ для любого $n \in \mathbb{N}$.

Для характеризации произведений π -нормальных классов Фиттинга будем использовать критерий π -нормальности класса Фиттинга, который представляет

Лемма 2.10 [5, X.3.7]. Пусть π — некоторое непустое множество простых чисел. Если \mathfrak{F} — непустой класс Фиттинга такой, что $\mathfrak{F} \subseteq \mathfrak{S}_{\pi}$, то следующие утверждения эквивалентны:

- (a) $\mathfrak{F} \subseteq \mathfrak{S}_{\pi}$;
- (b) для каждого простого числа $p \in \pi$ и группы $G \in \mathfrak{F}$ существует натуральное число n такое, что $G^n \wr Z_p \in \mathfrak{F}$;
 - (c) $\mathfrak{F}^* = \mathfrak{S}_{\pi}$;
 - (d) $G/G_{\mathfrak{F}}$ является абелевой группой для всех групп G из $\mathfrak{S}_{\pi}.$

3. π -Нормальные произведения

Напомним, что группу G называют комонолитической, если в G имеется такая нормальная подгруппа M (комонолит группы G), что G/M — простая группа и $N \leq M$ для любой собственной нормальной подгруппы N группы G. Произведение $\mathfrak{F}\mathfrak{H}$ классов Фиттинга \mathfrak{F} и \mathfrak{H} назовем π -нормальным, если $\mathfrak{F}\mathfrak{H}$ — π -нормальный класс Фиттинга. Характеризацию π -нормальных произведений классов Фиттинга описывает

Теорема 3.1. Пусть $\emptyset \neq \pi \subseteq \mathbb{P}$, \mathfrak{F} и \mathfrak{H} — классы Фиттинга π -групп. Тогда следующие утверждения эквивалентны:

- (a) $\mathfrak{FH} \subseteq \mathfrak{S}_{\pi}$;
- (b) $\mathfrak{F}\mathfrak{H}^* \subseteq \mathfrak{S}_{\pi}$;
- (c) $\mathfrak{F}^*\mathfrak{H} \subseteq \mathfrak{S}_{\pi}$;
- (d) $\mathfrak{F}^*\mathfrak{H}^* = \mathfrak{S}_{\pi}$;
- (e) существует множество простых чисел $\sigma\subseteq\pi$ такое, что $\mathfrak{F}^*\mathfrak{S}_\sigma=\mathfrak{F}^*$ и $\mathfrak{S}_\sigma\mathfrak{H}^*=\mathfrak{S}_\pi.$

Доказательство. Эквивалентность утверждений (a) и (b), утверждений (c) и (d) следует по лемме 2.5. Установим эквивалентность утверждений (b) и (e).

(b) \Rightarrow (e) Пусть $\mathfrak{F}\mathfrak{H}^* \leq \mathfrak{S}_\pi$ и $\sigma = \{p \in \pi : \mathfrak{F}^*\mathfrak{N}_p = \mathfrak{F}^*\}$. Покажем, что $\mathfrak{F}^*\mathfrak{S}_\sigma = \mathfrak{F}^*$ и $\mathfrak{S}_\sigma\mathfrak{H}^* = \mathfrak{S}_\pi$. Очевидно, что $\mathfrak{F}^* \subseteq \mathfrak{F}^*\mathfrak{S}_\sigma$. Докажем обратное включение. Пусть G — группа минимального порядка из класса $\mathfrak{F}^*\mathfrak{S}_\sigma \setminus \mathfrak{F}^*$. Тогда по индукции группа G комонолитична с комонолитом $M = G_{\mathfrak{F}^*}$. По определению множества σ в случае $p \in \sigma$, очевидно, имеет место $G \in \mathfrak{F}^*\mathfrak{N}_p = \mathfrak{F}^*$, что невозможно.

Пусть $p \notin \sigma$. Тогда $G/M \in \mathfrak{N}_p \cap \mathfrak{S}_\sigma = (1)$, где (1) — класс единичных групп. В этом случае G = M и $G \in \mathfrak{F}^*$, что противоречит выбору группы G.

Теперь установим справедливость равенства $\mathfrak{S}_{\sigma}\mathfrak{H}^* = \mathfrak{S}_{\pi}$. Пусть $\sigma = \pi$. Тогда из условия $\mathfrak{H} \subseteq \mathfrak{S}_{\pi}$ по утверждению (1) леммы 2.6 следует, что $\mathfrak{H}^* \subseteq (\mathfrak{S}_{\pi})^*$. Так как \mathfrak{S}_{π} — класс Локетта, $(\mathfrak{S}_{\pi})^* = \mathfrak{S}_{\pi}$ и $\mathfrak{H}^* \subseteq \mathfrak{S}_{\pi}$. Следовательно, в данном случае $\mathfrak{S}_{\sigma}\mathfrak{H}^* = \mathfrak{S}_{\pi}\mathfrak{H}^* = \mathfrak{S}_{\pi}$.

Рассмотрим случай $\sigma \neq \pi$. Очевидно, что $\mathfrak{S}_{\sigma}\mathfrak{H}^* \subseteq \mathfrak{S}_{\pi}$. Докажем обратное включение $\mathfrak{S}_{\pi} \subseteq \mathfrak{S}_{\sigma}\mathfrak{H}^*$. Пусть H — группа минимального порядка из класса $\mathfrak{S}_{\pi} \setminus \mathfrak{S}_{\sigma}\mathfrak{H}^*$. Если $O_{\sigma}(H) \neq 1$, то по индукции $H/O_{\sigma}(H) \in \mathfrak{S}_{\sigma}\mathfrak{H}^*$. Стало быть, $H \in \mathfrak{S}_{\sigma}(\mathfrak{S}_{\sigma}\mathfrak{H}^*)$. Отсюда ввиду ассоциативности операции умножения классов Фиттинга $H \in \mathfrak{S}_{\sigma}\mathfrak{H}^*$, что противоречит выбору группы H.

Пусть $O_{\sigma}(H)=1$. Покажем, что в этом случае $H\notin \mathfrak{H}^*$. Действительно, если предположить что $H\in \mathfrak{H}^*$, то $H=H/H_{\mathfrak{S}_{\sigma}}\in \mathfrak{H}^*$ и $H\in \mathfrak{S}_{\sigma}\mathfrak{H}^*$, что противоречит выбору группы H.

Пусть R — неединичная π -группа и $W = H \wr R$. Докажем, что $O_{\sigma}(W) = 1$. Предположим, что $O_{\sigma}(W) \neq 1$. Пусть H^{\natural} — базисная группа W. Так как $O_{\sigma}(H) = 1$ и \mathfrak{S}_{σ} — класс Локетта, то $O_{\sigma}(H^{\natural}) = H^{\natural}_{\mathfrak{S}_{\sigma}} \times H^{\natural}_{\mathfrak{S}_{\sigma}} \times \cdots \times H^{\natural}_{\mathfrak{S}_{\sigma}}$. Отсюда по лемме $2.1 \ O_{\sigma}(W) \cap H^{\natural} = O_{\sigma}(H^{\natural}) = 1$. Следовательно, по утверждению (2) леммы 2.7 имеем $O_{\sigma}(W) = 1$. Так как $H \notin \mathfrak{H}^{*}$, по лемме 2.8 получаем $W_{\mathfrak{H}^{*}} = (H \wr R)_{\mathfrak{H}^{*}} = (H_{\mathfrak{H}^{*}})^{\natural}$ и фактор-группа $W/W_{\mathfrak{H}^{*}}$ не является абелевой группой.

Пусть $\mathrm{Soc}(W) = \prod_{N_i \triangleleft W} N_i$ — цоколь группы W и $\sigma(\mathrm{Soc}(W)) = \{p_1, \dots, p_m\}.$

Так как $O_{\sigma}(W)$ — наибольшая из нормальных σ -подгрупп группы W, то $O_{\sigma}(W)$ > N_i для любого $i \in \{1, 2, \ldots, m\}$. Ввиду того, что $N_i \neq 1$, получаем $O_{\sigma}(W) \neq 1$. Полученное противоречие доказывает, что $\{p_1, \ldots, p_m\} \subseteq \sigma^* = \pi \setminus \sigma$. Следовательно, $\sigma^* = \{p \in \pi : \mathfrak{F}^*\mathfrak{N}_p \neq \mathfrak{F}^*\}$ и $\mathfrak{F}^*\mathfrak{N}_{p_i} \neq \mathfrak{F}^*$ для любого $i \in \{1, 2, \ldots, m\}$. По следствию [5, X.2.14] существует группа $G \in \mathfrak{F}$ такая, что $G \wr P_i \notin \mathfrak{F}^*$ для всех $i \in \{1, 2, \ldots, m\}$ и для всех p_i -групп $P_i \neq 1$.

Пусть $W_1 = G \wr W$. Тогда $W_1 = G^{\natural} \leftthreetimes W$. Так как $G \in \mathfrak{F}$ и \mathfrak{F} — класс Фиттинга, $G^{\natural} \in \mathfrak{F}$. Стало быть, $G^{\natural} \leq (W_1)_{\mathfrak{F}}$.

Рассмотрим два следующих случая.

Случай 1. $G^{\natural} < (W_1)_{\mathfrak{F}}$.

По определению \mathfrak{F} -радикала группы W и $G^{\natural} < (W_1)_{\mathfrak{F}}$ следует существование такой нормальной подгруппы $N \in \mathfrak{F}$, что $G^{\natural}N \leq (W_1)_{\mathfrak{F}}$. В качестве N возьмем минимальную нормальную подгруппу группы W_1 . По утверждению (1) леммы 2.7 имеем $G^{\natural}N \cong G^{|W:N|} \wr N$. Следовательно, $G^{|W:N|} \wr N \in \mathfrak{F}$, и N — нильпотентная группа. Значит, по лемме 2.9 имеем $G \wr N \in \mathfrak{F}^*$. Это противоречит предположению о том, что $G \wr P_i \notin \mathfrak{F}^*$ для всех $i \in \{1,2,\ldots,m\}$ и для всех p_i -групп $P_i \neq 1$. Итак, в данном случае импликация (b) \Rightarrow (e) верна.

Остается принять

Случай 2. $G^{\natural} = (W_1)_{\mathfrak{F}}$.

Так как $W_1 = G^{\natural} \leftthreetimes W$, то $W_1/G^{\natural} \cong W$ и $G^{\natural} \cap W = 1$. Следовательно, ввиду изоморфизмов $W_1/(W_1)_{\mathfrak{F}} \cong W$, $(W_1/(W_1)_{\mathfrak{F}})/((W_1)_{\mathfrak{F}\mathfrak{H}^*}/(W_1)_{\mathfrak{F}}) \cong W_1/(W_1)_{\mathfrak{F}\mathfrak{H}^*}$ с учетом леммы 2.2 и изоморфизма $(W_1)_{\mathfrak{F}\mathfrak{H}^*}/(W_1)_{\mathfrak{F}} \cong (W_1/(W_1)_{\mathfrak{F}})_{\mathfrak{H}^*} \cong W_{\mathfrak{H}^*}$ получаем $(W_1/(W_1)_{\mathfrak{F}})/((W_1)_{\mathfrak{F}\mathfrak{H}^*}/(W_1)_{\mathfrak{F}}) \cong W_1/(W_1)_{\mathfrak{F}\mathfrak{H}^*} \cong W/(W)_{\mathfrak{H}^*}$. Как установлено выше, $W/W_{\mathfrak{H}^*} \notin \mathfrak{A}$. Поэтому по лемме 2.10 (импликация (d) \Rightarrow (a)) произведение $\mathfrak{F}\mathfrak{H}^*$ не π -нормально. Это завершает доказательство равенства $\mathfrak{S}_{\sigma}\mathfrak{H}^* = \mathfrak{S}_{\pi}$. Импликация (b) \Rightarrow (e) доказана.

(e) \Rightarrow (b) Пусть существует непустое множество простых чисел σ из π такое, что $\mathfrak{F}^*\mathfrak{S}_{\sigma}=\mathfrak{F}^*$ и $\mathfrak{S}_{\sigma}\mathfrak{H}^*=\mathfrak{S}_{\pi}$. Докажем, что $\mathfrak{F}\mathfrak{H}^* \trianglelefteq \mathfrak{S}_{\pi}$.

Если $\sigma^* = \pi \setminus \sigma$ — пустое множество, то $\sigma = \pi \setminus \sigma^* = \pi$. Следовательно, $\mathfrak{S}_{\sigma} = \mathfrak{S}_{\pi}$ и $\mathfrak{F}^*\mathfrak{S}_{\pi} = \mathfrak{F}^* = \mathfrak{S}_{\pi}$. По лемме 2.10 (импликация (c) \Rightarrow (a)) $\mathfrak{F} - \pi$ -нормальный класс Фиттинга. Значит, по лемме 2.4 $\mathfrak{F}\mathfrak{H}^* \leq \mathfrak{S}_{\pi}$.

Пусть $\sigma^* = \pi \setminus \sigma \neq \emptyset$. Тогда $\mathfrak{S}_{\sigma} \neq \mathfrak{S}_{\pi}$. Покажем, что $(\mathfrak{F}\mathfrak{H}^*)\mathfrak{S}_{\sigma} = \mathfrak{S}_{\pi}$.

Предположим от противного, что $\mathfrak{S}_{\pi} \setminus (\mathfrak{F}\mathfrak{H}^*)\mathfrak{S}_{\sigma}$ — непустой класс. Пусть G — группа минимального порядка из класса $\mathfrak{S}_{\pi} \setminus (\mathfrak{F}\mathfrak{H}^*)\mathfrak{S}_{\sigma}$. Тогда группа G комонолитична с комонолитом $M = G_{(\mathfrak{F}\mathfrak{H}^*)\mathfrak{S}_{\sigma}}$ и $G/M \cong Z_p$.

Пусть $p \in \sigma$. Тогда $G/M = G/G_{(\mathfrak{FH}^*)\mathfrak{S}_{\sigma}} \in \mathfrak{N}_p \subseteq \mathfrak{S}_{\sigma}$. Ввиду ассоциативности операции умножения классов Фиттинга $G \in (\mathfrak{FH}^*)\mathfrak{S}_{\sigma}\mathfrak{S}_{\sigma} = (\mathfrak{FH}^*)\mathfrak{S}_{\sigma}$. Полученное противоречие доказывает, что $(\mathfrak{FH}^*)\mathfrak{S}_{\sigma} = \mathfrak{S}_{\pi}$.

Предположим, что $p \in \sigma^* = \pi \setminus \sigma \subseteq \sigma'$. Заметим, что $G/G' \cong Z_{p^n}$ для некоторого $p \in \sigma'$. Так как по утверждению (2) леммы 2.6 $\mathfrak{S}_\pi \subseteq (\mathfrak{S}_\pi)_*\mathfrak{A}$, то $G/G_{(\mathfrak{S}_\pi)_*}$ абелева. Следовательно, для любой группы G имеем $G' \subseteq G_{(\mathfrak{S}_\pi)_*}$.

Покажем, что

$$G_{\mathfrak{F}^*}/(G_{\mathfrak{F}^*}\cap G_{(\mathfrak{S}_{\pi})_+})=G_{\mathfrak{F}^*}/G_{\mathfrak{F}^*\cap(\mathfrak{S}_{\pi})_+}\in\mathfrak{S}_{\sigma'}.$$

Поскольку $G_{\mathfrak{F}^*}/G_{\mathfrak{F}^*\cap(\mathfrak{S}_\pi)_*}\cong G_{(\mathfrak{S}_\pi)_*}G_{\mathfrak{F}^*}/G_{(\mathfrak{S}_\pi)_*},\ G_{(\mathfrak{S}_\pi)_*}G_{\mathfrak{F}^*}/G'\leq G/G'\cong Z_{p^n}\in \mathfrak{N}_p\subseteq \mathfrak{S}_{\sigma'}$ и формация $\mathfrak{S}_{\sigma'}$ наследственна, то $G_{(\mathfrak{S}_\pi)_*}G_{\mathfrak{F}^*}/G'\in \mathfrak{S}_{\sigma'}$. Таким образом, $G_{\mathfrak{F}^*}/G_{\mathfrak{F}^*\cap(\mathfrak{S}_\pi)_*}\in \mathfrak{S}_{\sigma'}$ ввиду изоморфизма $(G_{(\mathfrak{S}_\pi)_*}G_{\mathfrak{F}^*}/G')/(G_{(\mathfrak{S}_\pi)_*}/G')\cong G_{\mathfrak{F}^*}/G_{\mathfrak{F}^*\cap(\mathfrak{S}_\pi)_*}$.

Учитывая утверждения (2) и (3) леммы 2.6, получаем

$$\mathfrak{F}^* \cap (\mathfrak{S}_{\pi})_* \subseteq (\mathfrak{F}^*)_* \mathfrak{S}_{\sigma'} = \mathfrak{F}_* \mathfrak{S}_{\sigma'}.$$

Отсюда $G_{\mathfrak{F}^*\cap(\mathfrak{S}_\pi)_*}\in\mathfrak{F}_*\mathfrak{S}_{\sigma'}$. Значит, $G_{\mathfrak{F}^*\cap(\mathfrak{S}_\pi)_*}/(G_{\mathfrak{F}^*\cap(\mathfrak{S}_\pi)_*})_{\mathfrak{F}_*}\in\mathfrak{S}_{\sigma'}$. Так как $\mathfrak{F}\subseteq\mathfrak{S}_\pi$, то $\mathfrak{F}_*\subseteq(\mathfrak{S}_\pi)_*$ по утверждению (3) леммы 2.6. Значит, $G_{\mathfrak{F}^*\cap(\mathfrak{S}_\pi)_*\cap\mathfrak{F}_*}=G_{\mathfrak{F}^*}$ и $G_{\mathfrak{F}^*\cap(\mathfrak{S}_\pi)_*}/G_{\mathfrak{F}^*\cap(\mathfrak{S}_\pi)_*\cap\mathfrak{F}_*}=G_{\mathfrak{F}^*\cap(\mathfrak{S}_\pi)_*}/G_{\mathfrak{F}_*}\in\mathfrak{S}_{\sigma'}$.

Ввиду изоморфизма $(G_{\mathfrak{F}^*}/G_{\mathfrak{F}_*})/(G_{\mathfrak{F}^*\cap(\mathfrak{S}_{\pi})_*}/G_{\mathfrak{F}_*})\cong G_{\mathfrak{F}^*}/G_{\mathfrak{F}^*\cap(\mathfrak{S}_{\pi})_*}$ группа $G_{\mathfrak{F}^*}/G_{\mathfrak{F}^*\cap(\mathfrak{S}_{\pi})_*}$ принадлежит $\mathfrak{S}_{\sigma'}$. Следовательно, $(G_{\mathfrak{F}^*}/G_{\mathfrak{F}_*})\in (\mathfrak{S}_{\sigma'})^2=\mathfrak{S}_{\sigma'}$. Поскольку $\mathfrak{S}_{\sigma'}$ — формация, $(G_{\mathfrak{F}^*}/G_{\mathfrak{F}_*})/(G_{\mathfrak{F}}/G_{\mathfrak{F}_*})\cong G_{\mathfrak{F}^*}/G_{\mathfrak{F}}\in \mathfrak{S}_{\sigma'}$.

С учетом условия $\mathfrak{F}^*\mathfrak{S}_{\sigma}=\mathfrak{F}^*$ и леммы 2.2 имеем $G_{\mathfrak{F}^*\mathfrak{S}_{\sigma}}/G_{\mathfrak{F}^*}=(G/G_{\mathfrak{F}^*})_{\mathfrak{S}_{\sigma}}$ и заключаем, что σ -радикал группы $G/G_{\mathfrak{F}^*}$ — единичная группа. По утверждению (2) леммы 2.6 $\mathfrak{F}\mathfrak{S}_{\sigma}\subseteq\mathfrak{F}^*\mathfrak{S}_{\sigma}=\mathfrak{F}^*$. Следовательно, $G_{\mathfrak{F}\mathfrak{S}_{\sigma}}\leq G_{\mathfrak{F}^*}$. Тогда $G_{\mathfrak{F}\mathfrak{S}_{\sigma}}/G_{\mathfrak{F}}\leq G_{\mathfrak{F}^*}/G_{\mathfrak{F}}\in\mathfrak{S}_{\sigma'}$ и ввиду наследственности формации $\mathfrak{S}_{\sigma'}$ σ -радикал группы $G/G_{\mathfrak{F}}$ является σ' -группой. Стало быть, $(G/G_{\mathfrak{F}})_{\mathfrak{S}_{\sigma}}=1$.

Так как $G \in \mathfrak{S}_{\pi}$, то $G/G_{\mathfrak{F}} \in \mathfrak{S}_{\pi} = \mathfrak{S}_{\sigma}\mathfrak{H}^*$ и $(G/G_{\mathfrak{F}})/(G/G_{\mathfrak{F}})_{\mathfrak{S}_{\sigma}} \in \mathfrak{H}^*$. Значит, $G/G_{\mathfrak{F}} \in \mathfrak{H}^*$ и $G \in \mathfrak{F}\mathfrak{H}^* \subseteq (\mathfrak{F}\mathfrak{H}^*)\mathfrak{S}_{\sigma}$. Полученное противоречие доказывает равенство $(\mathfrak{F}\mathfrak{H}^*)\mathfrak{S}_{\sigma} = \mathfrak{S}_{\pi}$. Итак, $G/G_{\mathfrak{F}\mathfrak{H}^*} \in \mathfrak{S}_{\sigma}$ и $G \in \mathfrak{S}_{\pi}$. Следовательно, $\mathfrak{S}_{\pi}/\mathfrak{F}\mathfrak{H}^* = (G/G_{\mathfrak{F}\mathfrak{H}^*} : G \in \mathfrak{S}_{\pi}) \subseteq \mathfrak{S}_{\sigma}$. Поскольку $S(\mathfrak{S}_{\pi}/\mathfrak{F}\mathfrak{H}^*) \subseteq S(\mathfrak{S}_{\sigma}) = \mathfrak{S}_{\sigma} \neq \mathfrak{S}_{\pi}$, по лемме 2.3 класс $\mathfrak{F}\mathfrak{H}^*$ нормален в \mathfrak{S}_{π} . Импликация $(e) \Rightarrow (b)$ доказана.

(e) \Rightarrow (d) Пусть существует непустое множество простых чисел $\sigma \subseteq \pi$ такое, что $\mathfrak{F}^*\mathfrak{S}_{\sigma} = \mathfrak{F}^*$ и $\mathfrak{S}_{\sigma}\mathfrak{H}^* = \mathfrak{S}_{\pi}$. Так как по утверждению (1) леммы 2.6 из $\mathfrak{F} \subseteq \mathfrak{S}_{\pi}$ следует $\mathfrak{F}^* \subseteq (\mathfrak{S}_{\pi})^* = \mathfrak{S}_{\pi}$, то $\mathfrak{F}^*\mathfrak{H}^* = (\mathfrak{F}^*\mathfrak{S}_{\sigma})\mathfrak{H}^* = \mathfrak{F}^*(\mathfrak{S}_{\sigma}\mathfrak{H}^*) = \mathfrak{F}^*\mathfrak{S}_{\pi} = \mathfrak{S}_{\pi}$ и импликация (e) \Rightarrow (d) доказана.

Заметим, что $(\mathfrak{F}^*)^* = \mathfrak{F}^*$ и $(\mathfrak{H}^*)^* = \mathfrak{H}^*$, поэтому (e) и (d) сформулированы для классов Локетта \mathfrak{F}^* и \mathfrak{H}^* . Как установлено выше, (e) \Leftrightarrow (b). Следовательно, утверждение (b) справедливо для классов Локетта и обращается в утверждение (d). Итак, (d) \Rightarrow (e). Теорема доказана.

4. Модулярность решетки \mathfrak{E}_{π} -нормальных классов Фиттинга

В настоящем разделе не предполагаем, что рассматриваемые группы разрешимы.

Напомним, что решеточным объединением $\mathfrak{F} \vee \mathfrak{H}$ классов Фиттинга \mathfrak{F} и \mathfrak{H} [11] называют класс Фиттинга, порожденный объединением \mathfrak{F} и \mathfrak{H} .

Через Sn будем обозначать оператор, который сопоставляет каждому классу групп \mathfrak{X} класс групп Sn $\mathfrak{X} = (G: G \leq d)$ H для некоторой группы $H \in \mathfrak{X}$).

Лемма 4.1. Пусть $\mathfrak X$ и $\mathfrak Y$ — классы Фиттинга. Если $\mathfrak X\subseteq \mathfrak Y^*$, то $\mathfrak X\vee \mathfrak Y=\operatorname{Sn}(G:G=G_{\mathfrak X}G_{\mathfrak Y}).$

Доказательство. Докажем, что $\mathfrak{X} \vee \mathfrak{Y} \subseteq \operatorname{Sn}(G:G=G_{\mathfrak{X}}G_{\mathfrak{Y}})$. Пусть $X \in \mathfrak{X} \vee \mathfrak{Y}$. Покажем, что $X \in \operatorname{Sn}(G:G=G_{\mathfrak{X}}G_{\mathfrak{Y}})$. Так как по условию $\mathfrak{X} \subseteq \mathfrak{Y}^*$, то $X \in \mathfrak{X} \vee \mathfrak{Y} \subseteq \mathfrak{X} \vee \mathfrak{Y}^* \subseteq \mathfrak{Y}^*$. По определению оператора * группа $X \in \mathfrak{Y}^* = (G:(G \times G)_{\mathfrak{Y}})$ входит подпрямо в $(G \times G)$). Значит, $X \subseteq (X \times X)_{\mathfrak{Y}}K$, где $K \in \mathfrak{X}$. Следовательно, $X \subseteq X_{\mathfrak{Y}}X_{\mathfrak{X}}$ и $X \in \operatorname{Sn}(G:G=G_{\mathfrak{X}}G_{\mathfrak{Y}})$.

Докажем обратное включение: $Sn(G:G=G_{\mathfrak{X}}G_{\mathfrak{Y}})\subseteq \mathfrak{X}\vee \mathfrak{Y}$. Пусть $Y\in (G:G=G_{\mathfrak{X}}G_{\mathfrak{Y}})$. Покажем, что $Y\in \mathfrak{X}\vee \mathfrak{Y}$. Заметим, что $Y_{\mathfrak{X}}\in \mathfrak{X}\subseteq \mathfrak{X}\vee \mathfrak{Y}$ и $Y_{\mathfrak{Y}}\in \mathfrak{Y}\subseteq \mathfrak{X}\vee \mathfrak{Y}$. Стало быть, $Y=Y_{\mathfrak{X}}Y_{\mathfrak{Y}}\in \mathfrak{X}\vee \mathfrak{Y}$, $(G:G=G_{\mathfrak{X}}G_{\mathfrak{Y}})\subseteq \mathfrak{X}\vee \mathfrak{Y}$ и $Sn(G:G=G_{\mathfrak{X}}G_{\mathfrak{Y}})\subseteq Sn(\mathfrak{X}\vee \mathfrak{Y})=\mathfrak{X}\vee \mathfrak{Y}$. Лемма доказана.

Учитывая равносильность (a) \Leftrightarrow (c) из леммы 2.10, введем

Определение 4.2. Пусть $\emptyset \neq \pi \subseteq \mathbb{P}$. Класс Фиттинга \mathfrak{F} назовем \mathfrak{E}_{π} -нормальным или нормальным в классе \mathfrak{E}_{π} всех конечных π -групп, если $\mathfrak{F}^* = \mathfrak{E}_{\pi}$.

В случае, когда $\pi = \mathbb{P}$, \mathfrak{E}_{π} -нормальный класс Фиттинга назовем *нормальным*. В универсуме \mathfrak{S} всех конечных разрешимых групп по лемме 2.10 условие $\mathfrak{F}^* = \mathfrak{S}_{\pi}$ эквивалентно тому, что $\mathfrak{F} \unlhd \mathfrak{S}_{\pi}$. Заметим также, что решетка всех нормальных классов Фиттинга является подрешеткой решетки всех классов Фиттинга.

По теореме Лауша [12] решетка всех разрешимых нормальных классов Фиттинга модулярна, хотя вопрос о модулярности решетки всех разрешимых классов Фиттинга остается открытым (см. [1, вопрос 14.47]). Аналог этого вопроса для π -нормальных классов Фиттинга положительно решает

Теорема 4.3. Решетка всех \mathfrak{E}_{π} -нормальных классов Фиттинга модулярна.

Доказательство. Пусть $\mathfrak{X},\mathfrak{Y}$ и $\mathfrak{F}-\pi$ -нормальные классы Фиттинга, причем $\mathfrak{X}\subseteq\mathfrak{F}$. Покажем, что $\mathfrak{X}\vee(\mathfrak{Y}\cap\mathfrak{F})\subseteq(\mathfrak{X}\vee\mathfrak{Y})\cap\mathfrak{F}$. По определению решеточного объединения $\mathfrak{X}\subseteq\mathfrak{X}\vee\mathfrak{Y}$. По условию теоремы $\mathfrak{X}\subseteq\mathfrak{F}$. Следовательно, $\mathfrak{X}\subseteq(\mathfrak{X}\vee\mathfrak{Y})\cap\mathfrak{F}$. Так как $\mathfrak{Y}\cap\mathfrak{F}\subseteq\mathfrak{F}$ и $\mathfrak{Y}\cap\mathfrak{F}\subseteq\mathfrak{X}\vee\mathfrak{Y}$, то $\mathfrak{Y}\cap\mathfrak{F}\subseteq(\mathfrak{X}\vee\mathfrak{Y})\cap\mathfrak{F}$. Следовательно, по определению операции решеточного объединения получаем $\mathfrak{X}\vee(\mathfrak{Y}\cap\mathfrak{F})\subseteq(\mathfrak{X}\vee\mathfrak{Y})\cap\mathfrak{F}$.

Докажем обратное включение $(\mathfrak{X} \vee \mathfrak{Y}) \cap \mathfrak{F} \subseteq \mathfrak{X} \vee (\mathfrak{Y} \cap \mathfrak{F})$.

Поскольку \mathfrak{X} и $\mathfrak{Y}-\mathfrak{E}_{\pi}$ -нормальные классы Фиттинга, $\mathfrak{X}\subseteq\mathfrak{Y}^*$. Следовательно, по лемме 4.1 справедливо равенство

$$\mathfrak{X} \vee \mathfrak{Y} = \operatorname{Sn}(G : G = G_{\mathfrak{X}}G_{\mathfrak{Y}}). \tag{1}$$

Пусть $K \in \mathfrak{X} \vee (\mathfrak{Y} \cap \mathfrak{F})$. Ввиду (1) существует группа $G = G_{\mathfrak{X}}G_{\mathfrak{Y}}$ такая, что $K \leq d \leq G$. Так как $K \in \mathfrak{F}$, то $K \leq d \leq G$. Очевидно, из условия $\mathfrak{X} \subseteq \mathfrak{F}$ следует $G_{\mathfrak{X}} \subseteq G_{\mathfrak{F}}$. Тогда, учитывая тождество Дедекинда, имеем $K \leq d \leq G_{\mathfrak{F}} = G \cap G_{\mathfrak{F}} = G \cap G_{\mathfrak{F}}$

 $G_{\mathfrak{X}}G_{\mathfrak{Y}}\cap G_{\mathfrak{F}}=G_{\mathfrak{X}}(G_{\mathfrak{Y}}\cap G_{\mathfrak{F}})=G_{\mathfrak{X}}G_{\mathfrak{Y}\cap\mathfrak{F}}.$ Следовательно, $K\in\mathfrak{X}\vee(\mathfrak{Y}\cap\mathfrak{F})$ и $(\mathfrak{X}\vee\mathfrak{Y})\cap\mathfrak{F}\subseteq\mathfrak{X}\vee(\mathfrak{Y}\cap\mathfrak{F})$. Теорема доказана.

Следствие 4.4. Решетка всех нормальных классов Фиттинга модулярна.

Следствие 4.5 [12]. Решетка всех разрешимых нормальных классов Фиттинга модулярна.

ЛИТЕРАТУРА

- 1. *Коуровская тетрадь*. Нерешенные вопросы теории групп. 18-е изд., доп. Новосибирск: Ин-т математики СО РАН, 2014.
- Fischer B., Gaschütz W., Hartley B. Injektoren endlicher auflösbarer Gruppen // Math. Z. 1967. Bd 102, Heft 5. S. 337–339.
- 3. Hall Ph. A note on soluble groups // J. London Math. Soc. 1928. V. 3. P. 98–105.
- 4. Sylow M. L. Théorèmes sur les groupes de substitutions // Math. Ann. 1872. V. 5. P. 584–594.
- 5. Doerk K., Hawkes T. Finite soluble groups. Berlin; New York: Walter de Gruyter, 1992.
- Blessenohl D., Gaschütz W. Über normale Schunk- und Fittingklassen // Math. Z. 1970. Bd 118, Heft 1. S. 1–8.
- Gaschütz W. Zwei Bemerkungen über normale Fittingklassen // J. Algebra. 1974. V. 30. P. 277–278.
- 8. Cossey J. Products of Fitting classes // Math. Z. 1975. Bd 141. S. 289–295.
- Beidleman J. C. On products and normal Fitting classes // Arch. Math. (Basel). 1977. V. 28. P. 347–356.
- 10. Hauck P. On products of Fitting classes // J. London Math. Soc. 1979. V. 20, N 3. P. 423-434.
- 11. Cusack E. The join of two Fitting classes // Math. Z. 1979. Bd 167. S. 37–47.
- 12. Lausch H. On normal Fitting classes // Math. Z. 1973. Bd 130, Heft 1. S. 67–72.
- **13.** Савельева Н. В., Воробьев Н. Т. Максимальные подклассы локальных классов Фиттинга // Сиб. мат. журн. 2008. Т. 49, № 6. С. 1411–1419.
- 14. Lockett F. P. The Fitting class \mathfrak{F}^* // Math. Z. 1974. Bd 137, Heft 2. S. 131–136.
- 15. Савельева Н. В., Воробьев Н. Т. Максимальные по сильному π -вложению классы Фиттинга // Изв. Гомель. гос. ун-та им. Ф. Скорины. 2008. Т. 47, № 2. С. 157–168.
- 16. Турковская А. В., Воробьев Н. Т. Об операторах Локетта и произведениях π -нормальных классов Фиттинга // Веснік Віцебскага дзяржаўнага універсітэта імя П. М. Машэрава. 2011. Т. 64, № 4. С. 6–11.

Статья поступила 15 июля 2014 г.

Воробьев Николай Тимофеевич, Марцинкевич Анна Веславовна Витебский гос. университет им. П. М. Машерова, Московский пр., 33, Витебск 210038, Беларусь hanna-t@mail.ru