ПРЕДСТАВЛЕНИЕ ФУНКЦИИ ГРИНА ВНЕШНЕЙ ЗАДАЧИ НЕЙМАНА ДЛЯ ОПЕРАТОРА ЛАПЛАСА

М. А. Садыбеков, Б. Т. Торебек, Б. Х. Турметов

Аннотация. Дано представление функции Грина классической задачи Неймана для внешности единичного шара произвольной размерности. Показано, что функция Грина может быть выражена в терминах элементарных функций, и выписан ее явный вид.

 $DOI\,10.17377/smzh.2017.58.119$

Ключевые слова: уравнение Пуассона, оператор Лапласа, внешняя задача Неймана, фундаментальное решение, функция Грина.

1. Введение

Пусть $D=\{x\in\mathbb{R}^n:|x|>1\}$ — внешность единичного шара, $S=\{x\in\mathbb{R}^n:|x|=1\}$ — единичная сфера, $n\geq 3$. Рассмотрим в D внешнюю задачу Неймана для уравнения Пуассона

$$-\Delta u(x) \equiv \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}} u(x) = f(x), \quad x \in D;$$

$$\frac{\partial u}{\partial r}(x) = \psi(x), \quad x \in S; \quad \lim_{r \to \infty} |u(x)| = 0.$$
(1)

Здесь и далее $\frac{\partial}{\partial r}$ — производная по радиусу r=|x|.

Хорошо известно, что решение внешней задачи Неймана (1) единственно и существует. Как и для задач Дирихле (внутренней и внешней), несложно обосновать возможность интегрального представления решения внешней задачи Неймана с помощью функции Грина $G_N(x,y)$ по формуле

$$u(x)=\int\limits_{\Omega}G_{N}(x,y)f(y)\,dy+\int\limits_{\Omega}G_{N}(x,y)\psi(y)\,dS_{y}. \hspace{1cm} (2)$$

Пусть $\omega_n = \frac{2\pi^{n/2}}{\Gamma(n/2)}$ — площадь единичной сферы в \mathbb{R}^n , а

$$\varepsilon(x-y) = \begin{cases} -\ln|x-y|, & n=2, \\ \frac{1}{n-2}|x-y|^{2-n}, & n \ge 3. \end{cases}$$
 (3)

Работа выполнена при финансовой поддержке грантового финансирования Комитета науки МОН РК по проекту № 0824/ $\Gamma\Phi4$.

— главное фундаментальное решение уравнения Лапласа.

Под функцией Грина задачи Неймана (1) понимают функцию, имеющую представление

$$G_N(x,y) = \frac{1}{\omega_n} \{ \varepsilon(x-y) + g(x,y) \}, \tag{4}$$

где g(x,y) — гармоническая в D функция. При этом должно выполняться краевое условие

$$\frac{\partial G_N}{\partial \rho}(x,y) = 0$$
 при всех $y \in S$, (5)

$$G_N(x,y) \to 0 \quad \text{при } \rho \to \infty.$$
 (6)

Здесь обозначено $\rho = |y|$.

Хотя внешняя задача Неймана корректна и определение ее функции Грина введено в математической литературе, признано, что ее нахождение в явном виде требует довольно сложных построений [1, гл. XXI, $\S 6; 2$]. Для внешности единичного шара из \mathbb{R}^n функция Грина задачи Неймана известна в явном виде только для случаев n=2 и n=3:

$$G_N(x,y) = rac{1}{2\pi} igg[\ln rac{|x||y|}{|x-y|} + \ln rac{|x||y|}{|x|y| - rac{y}{|y|}|} igg], \quad n = 2,$$
 (7)

$$G_N(x,y) = rac{1}{4\pi} igg[|x-y|^{-1} + igg| x|y| - rac{y}{|y|} igg|^{-1} + \ln rac{|x||y| - (x,y)}{1 - (x,y) + |x|y| - rac{y}{|y|}} igg], \quad n = 3, \ (8)$$

где (x,y) — скалярное произведение в \mathbb{R}^n векторов x и y.

Отметим, что в последнее время возобновился интерес к построению в явном виде функций Грина классических задач. В [3] в двумерном круге построены функции Грина бигармонических задач Дирихле, Неймана и Робена. Аналогичные исследования по построению явного вида функции Грина в секторе для неоднородных бигармонических и тригармонических функций проводились в [4, 5]. В [6] построена в явном виде функция Грина задачи Неймана для уравнения Пуассона в полупространстве \mathbb{R}^n_+ , в [7–10] — в явном виде функция Грина задачи Робена в круге. Заметим также, что построению в явном виде функции Грина задачи Дирихле для полигармонического уравнения в многомерном шаре посвящены работы [11–14].

Известно, что функция Грина задачи Дирихле (внутренней и внешней) для единичного шара произвольной размерности имеет следующий вид:

$$G_D(x,y) = \frac{1}{\omega_n} \left\{ \varepsilon(x-y) - \varepsilon \left(x|y| - \frac{y}{|y|} \right) \right\}. \tag{9}$$

Для внешней задачи Неймана для единичного круга функция Грина представляется в виде (7), а для внутренней задачи в круге

$$G_N(x,y) = -rac{1}{2\pi}igg\{ \ln|x-y| + \ln\left|x|y| - rac{y}{|y|}
ight| igg\} + \mathrm{const}\,.$$

В общем случае функция

$$G_{NR}(x,y) = \varepsilon(x-y) + \varepsilon\left(x|y| - \frac{y}{|y|}\right)$$
 (10)

не удовлетворяет условию Неймана. Например, в случае n=3 из формулы (8) видно, что функция (10) не является функцией Грина задачи (1).

Непосредственным вычислением легко убедиться, что функция (10) является функцией Грина частного случая внешней задачи Робена:

$$-\Delta u(x) = f, \quad x \in D,$$

$$rac{\partial u}{\partial r}(x)+rac{n-2}{2}u(x)=\psi(x),\,\,x\in S,\quad \lim_{r o\infty}|u(x)|=0.$$

В настоящей работе дается представление в явном виде функции Грина задачи Неймана (1) для внешности единичного шара произвольной размерности. Показано, что она может быть выражена в элементарных функциях, и выписан ее явный вид. Это представление дает возможность получить в явном виде ядро Неймана.

Отметим, что в [15] авторами дан явный вид функции Грина внутренней задачи Неймана для многомерного шара.

2. Вспомогательные результаты

В этом разделе приведем некоторые необходимые в дальнейшем вспомогательные утверждения. Следующая лемма доказана в [16].

Лемма 1. Для фундаментального решения (3) оператора Лапласа при $n \ge 3$ имеет место представление

$$\varepsilon(x-y) = \sum_{k=0}^{\infty} \frac{|y|^k |x|^{-(k+n-2)}}{2k+n-2} \sum_{i=1}^{k_k} H_k^{(i)} \left(\frac{x}{|x|}\right) H_k^{(i)} \left(\frac{y}{|y|}\right) \quad \text{при } |x| > |y|, \qquad (11)$$

где $H_k^{(i)}(\cdot)$ — полная система однородных гармонических полиномов степени k, обладающих свойством ортонормированности:

$$rac{1}{\omega_n}\int\limits_S H_k^{(i)}(x)H_m^{(j)}(x)\,dS_x=\delta_{ij}\delta_{km},$$

а h_k — количество этих полиномов.

Число h_k определяется по формуле (см. [17, гл. 11, § 11.2, формула (2)]) $h_k = [(2k+n-2)(k+n-3)!]/[k!(n-2)!].$

Введем в рассмотрение функцию

$$\varepsilon_1(x,y) = (n-2) \int_1^\infty \varepsilon \left(sx|y| - \frac{y}{|y|} \right) \frac{ds}{s} \equiv \int_1^\infty \left| sx|y| - \frac{y}{|y|} \right|^{2-n} \frac{ds}{s}. \tag{12}$$

Лемма 2. Пусть $n \geq 3$. Тогда для функции $\varepsilon_1(x,y)$, заданной равенством (12), имеют место представления в элементарных функциях:

$$\varepsilon_1(x,y) = \ln \frac{1 - (x,y) + \left| x|y| - \frac{y}{|y|} \right|}{|x||y| - (x,y)}, \quad n = 3,$$
(A)

$$\varepsilon_{1}(x,y) = \ln \frac{\left| x|y| - \frac{y}{|y|} \right|}{|x||y|} + \frac{(x,y)}{\sqrt{|x|^{2}|y|^{2} - (x,y)^{2}}} \operatorname{arcctg} \frac{|x|^{2}|y|^{2} - (x,y)}{\sqrt{|x|^{2}|y|^{2} - (x,y)^{2}}}, \quad n = 4,$$
(B)

$$\varepsilon_{1}(x,y) = \ln \frac{1 - (x,y) + \left| x|y| - \frac{y}{|y|} \right|}{|x||y| - (x,y)} - \sum_{k=0}^{m-1} \frac{1}{2k+1} \frac{1}{|x|y| - \frac{y}{|y|}|^{2k+1}} \\
+ \frac{|x||y|(x,y)}{(|x|^{2}|y|^{2} - (x,y)^{2})} + \frac{2|x|^{3}|y|^{3}(x,y)}{3(|x|^{2}|y|^{2} - (x,y)^{2})^{2}} \\
- \sum_{k=0}^{m-1} \sum_{i=0}^{k} \frac{k!(2k-2i-1)!!}{(k-i)!(2k+1)!!} \frac{2^{i}|x|^{2i}|y|^{2i}(x,y)(|x|^{2}|y|^{2} - (x,y))}{(|x|^{2}|y|^{2} - (x,y)^{2})^{i+1}|x|y| - \frac{y}{|y|}} (C)$$

при $n \geq 5$, n = 2m + 1, $m \geq 2$,

$$\varepsilon_{1}(x,y) = \ln \frac{\left|x|y| - \frac{y}{|y|}\right|}{|x||y|} + \sum_{k=1}^{m-1} \frac{1}{2k|x|y| - \frac{y}{|y|}|^{2k}} \\
+ \operatorname{arcctg} \frac{\left|x|^{2}|y|^{2} - (x,y)}{\sqrt{|x|^{2}|y|^{2} - (x,y)^{2}}} \sum_{k=0}^{m-1} \frac{(x,y)(2k-1)!!|x|^{2k}|y|^{2k}}{2^{k}k!(|x|^{2}|y|^{2} - (x,y)^{2})^{k+\frac{1}{2}}} \\
- \sum_{k=1}^{m-1} \sum_{i=0}^{k-1} \frac{|x|^{2i+2}|y|^{2i+2} - (x,y)}{2^{i+1}(|x|^{2}|y|^{2} - (x,y)^{2})^{i+1}} \frac{(x,y)(k-i-1)!(2k-1)!!}{k!(2k-2i-1)!!|x|y| - \frac{y}{|y|}|^{2i+2}} \quad (D)$$

при $n \ge 6$, n = 2m + 2, $m \ge 2$.

Здесь в обозначениях принято, что 0! = 1, (-1)!! = 1.

Доказательство. Учитывая, что

$$\left| sx|y| - \frac{y}{|y|} \right| = \sqrt{1 - 2(x,y)s + |x|^2|y|^2s^2},$$

доказательство леммы легко можно свести к вычислению интегралов вида

$$\int_{1}^{\infty} s^{-1} R(s)^{\frac{2-n}{2}} ds,$$

где $R(s) = 1 - 2(x,y)s + |x|^2|y|^2s^2$, с использованием формул из [18].

3. Основной результат работы

Теорема 1. Для функции Грина $G_N(x,y)$ задачи Неймана (1) при $n\geq 3$ имеет место представление

$$G_N(x,y) = \frac{1}{\omega_n} \left[\varepsilon(x-y) + \varepsilon \left(x|y| - \frac{y}{|y|} \right) - \varepsilon_1(x,y) \right], \tag{13}$$

где функция $\varepsilon_1(x,y)$ задается выражением (12) и явно выражается в элементарных функциях формулами (A)–(D) из леммы 2.

Легко видеть, что при n=3 из (13) получаем ранее известное представление функции Грина (8). Для $n\geq 4$ результат теоремы новый.

Доказательство. Функцию Грина $G_N(x,y)$ будем искать в виде (4), где g(x,y) — пока неизвестная регулярная гармоническая в D функция. Построим ее таким образом, чтобы выполнялось условие (5). Функция g(x,y) должна удовлетворять условию

$$\frac{\partial}{\partial \rho}g(x,y) + \frac{\partial}{\partial \rho}\varepsilon(x-y) = 0$$
 при всех $y \in S$, (14)

$$g(x,y) + \varepsilon(x-y) \to 0$$
 при $\rho \to \infty$.

Применяя методику, использованную в [1, гл. XXI, \S 6] при построении функции Грина трехмерной задачи Неймана, функцию g(x,y) ищем в виде

$$g(x,y) = \sum_{k=0}^{\infty} \frac{b_k}{|x|^{k+n-2}|y|^{k+n-2}} \sum_{i=1}^{h_k} H_k^{(i)} \left(\frac{x}{|x|}\right) H_k^{(i)} \left(\frac{y}{|y|}\right), \tag{15}$$

где b_k — неизвестные коэффициенты. Из (11) и (15) для любых $r<\rho$ вычисляем

$$\frac{\partial}{\partial \rho} \varepsilon(x-y) = \sum_{k=1}^{\infty} \frac{k}{2k+n-2} \frac{\rho^k}{r^{k+n-2}} \sum_{i=1}^{h_k} H_k^{(i)} \left(\frac{x}{|x|}\right) H_k^{(i)} \left(\frac{y}{|y|}\right),$$

$$\frac{\partial}{\partial \rho} g(x,y) = -\sum_{k=0}^{\infty} \frac{(k+n-2)b_k}{|x|^{k+n-2}|y|^{k+n-3}} \sum_{i=1}^{h_k} H_k^{(i)} \left(\frac{x}{|x|}\right) H_k^{(i)} \left(\frac{y}{|y|}\right).$$

Подставляя найденное при $\rho = 1$ в (14), получим

$$b_0=0,\quad b_k=rac{k}{(2k+n-2)(k+n-2)}=rac{1}{2k+n-2}igg(1-rac{n-2}{k+n-2}igg),\,\,k\geq 1.$$

Для однообразия дальнейших записей коэффициент b_0 можно представить в виде

$$b_0 = 0 = \frac{1}{n-2} - \frac{1}{n-2}.$$

Подставляя найденные коэффициенты в (15), имеем

$$g(x,y) = \sum_{k=0}^{\infty} \frac{(|x||y|)^{-(k+n-2)}}{2k+n-2} \sum_{i=1}^{h_k} H_k^{(i)} \left(\frac{x}{|x|}\right) H_k^{(i)} \left(\frac{y}{|y|}\right)$$
$$-\sum_{k=0}^{\infty} \frac{n-2}{(k+n-2)} \frac{(|x||y|)^{-(k+n-2)}}{(2k+n-2)} \sum_{i=1}^{h_k} H_k^{(i)} \left(\frac{x}{|x|}\right) H_k^{(i)} \left(\frac{y}{|y|}\right) \equiv g_1(x,y) - g_2(x,y).$$

Первая сумма дает нам функцию

$$g_1(x,y) = \varepsilon \left(x|y| - rac{y}{|y|}
ight).$$

Для второй суммы, используя равенство

$$\frac{1}{k+n-2} = \int_{1}^{\infty} s^{-(k+n-2)-1} \, ds,$$

приходим к выражению

$$g_2(x,y) = (n-2) \int\limits_1^\infty \left[\sum_{k=0}^\infty \frac{(s|x||y|)^{-(k+n-2)}}{2k+n-2} \sum_{i=1}^{h_k} H_k^{(i)} \left(\frac{x}{|x|}\right) H_k^{(i)} \left(\frac{y}{|y|}\right) \right] \frac{ds}{s}.$$

Отсюда с учетом представления (11) имеем

$$g_2(x,y) = \int\limits_1^\infty arepsilon \left(sx|y| - rac{y}{|y|}
ight) rac{ds}{s},$$

т. е. получаем (12). Теорема доказана.

4. Представление ядра Неймана

В заключение отметим, что решение внешней задачи Дирихле для уравнения Лапласа ($f \equiv 0$) представляется в виде интеграла Пуассона

$$u(x) = \int\limits_S P(x,y) arphi(y) \, ds_y,$$

где P(x,y) — ядро Пуассона, которое находится с помощью функции Грина внешней задачи Дирихле по формуле

$$P(x,y) = -rac{\partial}{\partial
ho} G_D(x,y)$$
 при $x \in D, \ y \in S.$

Аналогичное представление имеет место для решения внешней задачи Неймана (1) для уравнения Лапласа ($f \equiv 0$):

$$u(x) = rac{1}{\omega_n} \int\limits_S N(x,y) \psi(y) \, ds_y,$$

где N(x,y) — ядро Неймана, которое находится с помощью функции Грина внешней задачи Неймана по формуле

$$N(x,y) = \omega_n G_N(x,y)$$
 при $x \in D, y \in S$.

В [2] рассмотрен метод построения явного вида функции N(x,y) для внешности многомерной единичной сферы. Показано, что ядро Неймана может быть выражено в элементарных функциях, и приведен явный вид ядра Неймана при n=3. Из представления (13) функции Грина и формулы (A) в случае n=3, полагая |y|=1, находим

$$N(x,y) = 2|x-y|^{-1} + \ln rac{1-(x,y)+|x-y|}{|x|-(x,y)}.$$

Это равенство полностью совпадает с формулой (11) из [2].

Приведем вид ядра Неймана N(x,y) при n=4, получаемый из (13) и представления (В). Из (13) при |y|=1 следует, что

$$\begin{split} N(x,y) &= \varepsilon(x-y) + \varepsilon(x-y) - \varepsilon_1(x,y) = 2\varepsilon(x-y) - \varepsilon_1(x,y) \\ &= \frac{1}{|x-y|^2} + \ln\frac{|x|}{|x-y|} - \frac{(x,y)}{\sqrt{|x|^2 - (x,y)^2}} \operatorname{arcctg} \frac{\sqrt{|x|^2 - (x,y)^2}}{1 - (x,y)}. \end{split}$$

ЛИТЕРАТУРА

- 1. Кошляков Н. С., Глинер Э. Б., Смирнов М. М. Уравнения в частных производных математической физики. М.: Высш. школа, 1970.
- Лифанов И. К. Сингулярное интегральное уравнение первого рода задачи Неймана // Дифференц. уравнения. 1988. Т. 24, № 1. С. 110–115.
- 3. Begehr H. Biharmonic Green functions // Matematiche. 2006. V. LXI, Fasc. II. P. 395-405.
- 4. Ying Wang, Liuqing Ye. Biharmonic Green function and biharmonic Neumann function in a sector // Complex Variables Elliptic Equ. 2013. V. 58, N 1. P. 7–22.
- Ying Wang. Tri-harmonic boundary value problems in a sector // Complex Variables Elliptic Equ. 2014. V. 59, N 5. P. 732–749.
- **6.** Constantin E., Pavel N. H. Green function of the Laplacian for the Neumann problem in \mathbb{R}^n_+ // Libertas Math. 2010. V. XXX. P. 57–69.

- Begehr H., Vaitekhovich T. Some harmonic Robin functions in the complex plane // Adv. Pure Appl. Math. 2010. V. 1, N 1. P. 19–34.
- Begehr H., Vaitekhovich T. Modified harmonic Robin function // Complex Variables Elliptic Equ. 2013. V. 58, N 4. P. 483–496.
- Sadybekov M. A., Torebek B. T., Turmetov B. Kh. On an explicit form of the Green function of the third boundary value problem for the Poisson equation in a circle // AIP Conf. Proc. 2014. V. 1611. P. 255–260.
- 10. Sadybekov M. A., Torebek B. T., Turmetov B. Kh. On an explicit form of the Green function of the Robin problem for the Laplace operator in a circle // Adv. Pure Appl. Math. 2015. V. 6, N 3. P. 163–172.
- Кальменов Т. Ш., Кошанов Б. Д., Немченко М. Ю. Представление функции Грина задачи Дирихле для полигармонических уравнении в шаре // Докл. АН. 2008. Т. 421, № 3. С. 305–307.
- 12. Кальменов Т. Ш., Кошанов Б. Д. Представление функции Грина задачи Дирихле для полигармонических уравнений в шаре // Сиб. мат. журн. 2008. Т. 49, № 3. С. 305–307.
- 13. Кальменов Т. Ш., Сураган Д. О новом методе построения функции Грина задачи Дирихле для полигармонического уравнения // Дифференц. уравнения. 2012. Т. 48, № 3. С. 435–438.
- **14.** Карачик В. В. Функция Грина задачи Дирихле для полигармонического уравнения в шаре при полиномиальных данных // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2014. Т. 14, N 4. С. 550–558.
- Sadybekov M. A., Torebek B. T., Turmetov B. K. Representation of Green's function of the Neumann problem for a multi-dimensional ball // Complex Variables Elliptic Equ. 2015. doi: 10.1080/17476933.2015.1064402.
- Karachik V. V. On One set of orthogonal harmonic polynomials // Proc. Amer. Math. Soc. 1998. V. 126, N 12. P. 3513–3519.
- 17. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Функции Бесселя, функции параболического цилиндра, ортогональные многочлены. Сер. Справочная математическая библиотека.. М.: Наука, 1966. Т. 2.
- **18.** Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. М.: Физматгиз, 1963.

Статья поступила 8 июля 2015 г.

Садыбеков Махмуд Абдысаметович

Институт математики и математического моделирования,

ул. Пушкина, 125, Алматы 050010, Казахстан

makhmud-s@mail.ru

Торебек Берикбол Тиллабайулы

Институт математики и математического моделирования,

Казахский национальный университет им. аль-Фараби,

ул. Пушкина, 125, Алматы 050010, Казахстан

Турметов Батиркан Худайберганович

Международный Казахско-турецкий университет им. А. Ясави,

пр. Б. Саттарханова, 29, Туркестан 161200, Казахстан