СРАВНЕНИЕ УНИВЕРСАЛЬНЫХ ТЕОРИЙ ЧАСТИЧНО КОММУТАТИВНЫХ МЕТАБЕЛЕВЫХ ГРУПП

В. Я. Блощицын, Е. И. Тимошенко

Аннотация. Найдены необходимые и достаточные условия для совпадения универсальных теорий частично коммутативных групп метабелевых многообразий, определенных ациклическими графами.

 $DOI\,10.17377/smzh.2017.58.302$

Ключевые слова: метабелева группа, частично коммутативная группа, ациклический граф, универсальная теория.

Введение

Под графом всюду в дальнейшем будем понимать непустое конечное множество вершин, на котором задано бинарное отношение смежности. Таким образом, без дополнительных оговорок $\mathit{грa} \phi$ — это конечный неориентированный граф без петель и кратных ребер. Множество вершин графа Γ обозначим через $V(\Gamma)$, а множество ребер — через $E(\Gamma)$. Ребро (v_1, v_2) — это пара смежных вершин v_1 и v_2 графа.

Пусть \mathfrak{M} — некоторое многообразие групп, $F(\mathfrak{M})$ — свободная группа этого многообразия с базисом $X=\{x_1,\ldots,x_n\}$, Γ — граф, $V(\Gamma)=X$. Частично коммутативная группа из многообразия \mathfrak{M} с определяющим графом Γ — это фактор-группа $F(\mathfrak{M})/R$, где R — нормальная подгруппа из $F(\mathfrak{M})$, порожденная теми коммутаторами $[x_i,x_j]=x_i^{-1}x_j^{-1}x_ix_j$, для которых $(x_i,x_j)\in E(\Gamma)$. Частично коммутативная группа из многообразия \mathfrak{M} имеет представление

$$\langle x_1,\ldots,x_n \mid [x_i,x_j]=1, \text{ если } (x_i,x_j)\in E(\Gamma)\rangle$$

в многообразии $\mathfrak{M},$ т. е. она удовлетворяет всем тождествам многообразия $\mathfrak{M}.$

Пусть \mathfrak{A}_m — многообразие абелевых групп, экспонента которых делит натуральное число m, и $\mathfrak{A}_0=\mathfrak{A}$ — многообразие всех абелевых групп. Нас интересуют частично коммутативные группы многообразия $\mathfrak{A}_m\mathfrak{A}$. Обозначим свободную группу многообразия $\mathfrak{A}_m\mathfrak{A}$ через M(m), а частично коммутативную группу этого многообразия с определяющим графам Γ — через $M(m,\Gamma)$. Значит, M(0) — свободная метабелева группа, а $M(0,\Gamma)$ — частично коммутативная метабелева группа, которая в работах [1-3] обозначалась через S_Γ .

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 15–01–01485) и Министерства образования и науки (гос. задание № 2014/138, проект 1052).

Универсальной теорией или \forall -теорией группы G называется множество \forall -предложений групповой сигнатуры (без констант), истинных на группе G. Аналогично определяется \exists -теория группы G. Две группы G и H называются yниверсально эквивалентными, если их \forall -теории совпадают. Ясно, что \forall -теории групп G и H совпадают тогда и только тогда, когда совпадают их \exists -теории. Для обозначения универсальной эквивалентности используем запись $G \stackrel{\forall}{=} H$.

В [2] доказаны необходимые и достаточные условия для совпадения универсальных теорий двух групп S_{Γ} и S_{Δ} , определяющие графы которых Γ и Δ являются деревьями.

Чтобы сформулировать эту теорему, напомним, что вершина графа называется висячей, если ее степень равна единице.

Пусть $W = \{x_{i_1}, \dots, x_{i_n}\} \subseteq V(\Gamma)$ — множество всех висячих вершин графа Γ . Удалим из Γ все вершины W вместе с инцидентными им ребрами. Полученный граф обозначаем через Γ' .

Теорема А [2]. Пусть Γ и Δ — деревья, число вершин каждого из которых не менее трех. Тогда

$$S_{\Gamma} \stackrel{\forall}{=} S_{\Delta} \Leftrightarrow \Gamma' \simeq \Delta'.$$

Ограничение на количество вершин связано с тем, что для дерева Γ с двумя вершинами граф Γ' не определен, так как $V(\Gamma')=\varnothing$.

Заметим, что приведенная выше теорема неверна, если один из графов Γ или Δ содержит цикл. Соответствующий пример можно легко получить, используя теорему 4 из [3]. Возьмем, например,

$$V(\Gamma) = \{x_1, x_2, x_3\}, \quad E(\Gamma) = \{(x_1, x_2), (x_2, x_3)\}, \quad V(\Delta) = \{y_1, y_2, y_3, y_4\},$$
$$E(\Delta) = \{(y_1, y_2), (y_2, y_3), (y_3, y_4), (y_1, y_4), (y_2, y_4)\}.$$

Тогда $S_{\Gamma} \stackrel{\forall}{=} S_{\Delta}$, но $\Gamma' \not\simeq \Delta'$.

Основной результат работы — обобщение теоремы A в двух направлениях. Во-первых, в качестве определяющего графа рассматриваем лес, т. е. объединение конечного числа деревьев. Во-вторых, помимо многообразия всех мета-белевых групп рассматриваются частично коммутативные группы и в других многообразиях метабелевых групп.

Теорема В. Пусть Γ и Δ — леса, причем каждая компонента связности графов Γ и Δ содержит не менее трех вершин, p_0 обозначает простое число или 0. Тогда

$$M(p_0,\Gamma) \stackrel{\forall}{=} M(p_0,\Delta) \Leftrightarrow \Gamma' \simeq \Delta'.$$

Работа состоит из введения и трех параграфов. В § 1 приведены предварительные сведения, а также собраны утверждения, не требующие отдельных доказательств. Их доказательства практически совпадают с доказательствами соответствующих теорем из [1–3]. Если различия есть, мы указываем на них. В § 2 доказаны некоторые вспомогательные утверждения, в § 3 содержатся доказательство теоремы В.

§ 1. Предварительные сведения

1. Будем постоянно использовать следующее соглашение, что позволит избежать громоздких обозначений.

Пусть $\varphi:G\to G/R=H$ — естественный гомоморфизм группы G на фактор-группу H и g — некоторый элемент из G. За его образом gR сохраним обозначение g, поясняя при необходимости в тексте, что g рассматривается в H.

Например, вершины x_1, \ldots, x_n графа Γ являются не только элементами свободной группы M(m), но и группы $M(m,\Gamma)$ и также свободной абелевой группы $M(m,\Gamma)/M'(m,\Gamma)$, где $M'(m,\Gamma)$ — коммутант группы $M(m,\Gamma)$. Нужно лишь уточнять, в какой группе элементы x_i рассматриваются. Эти же элементы будут порождающими кольца коммутативных лорановых многочленов $\mathbb{Z}_m\big[x_1^{\pm 1},\ldots,x_n^{\pm 1}\big].$

2. Пусть G — разрешимая группа ступени 2. Ее коммутант G' — нетривиальная абелева группа. На нем сопряжениями действует группа $G: c \in G'$, $g \in G, c^g = g^{-1}cg$. Относительно этого действия коммутант G' является правым $\mathbb{Z}[G]$ -модулем. Так как G' действует на G' тождественно, фактически G' есть правый $\mathbb{Z}[G/G']$ -модуль.

Предположим, что $m \geq 0$ и $(G')^m = 1$. Тогда G' превращается в правый

Для $\gamma=l_1g_1+\cdots+l_sg_s,\ l_i\in\mathbb{Z}_m,\ g_i\in G/G',\ \mathrm{n}\ c\in G'$ положим $c^\gamma=(c^{l_1})^{g_1}\dots(c^{l_s})^{g_s}.$

3. Производные Фокса. Пусть $\{x_1,\ldots,x_n\}$ — базис свободной группы многообразия $\mathfrak{A}_m\mathfrak{A}, m \geq 0$, которую обозначили через M(m). Естественный гомоморфизм

$$\varphi: M(m) \to M(m)/M'(m)$$

продолжается до гомоморфизма групповых колец

$$\mathbb{Z}_m[M(m)] \to \mathbb{Z}_m[M(m)/M'(m)] = \mathbb{Z}_m\left[x_1^{\pm 1}, \dots, x_n^{\pm 1}\right].$$

Для $1 \leq i \leq n$ определим отображения

$$\partial_i^{(m)}: M(m) \to \mathbb{Z}_m\left[x_1^{\pm 1}, \dots, x_n^{\pm 1}\right]$$

следующим образом. Пусть $u, v \in M(m)$. Тогда полагаем

$$\partial_i^{(m)}(x_j)=\delta_{ij},$$
 где δ_{ij} — символ Кронекера, $\partial_i^{(m)}(uv)=\partial_i^{(m)}(u)\cdot arphi(v)+\partial_i^{(m)}(v).$

Определение корректно. Продолжим $\partial_i^{(m)}$ по линейности на кольцо $\mathbb{Z}_m[M(m)]$. Отображение $\partial_i^{(m)}$ называется дифференцированием Фокса. Результат применения дифференцирования к элементу кольца $\mathbb{Z}_m[M(m)]$ принято называть i-й правой производной Фокса от данного элемента.

Кроме правых производных Фокса определим обобщенные правые производные Фокса $D_i^{(m)}$. Они возникают в следующей ситуации.

Пусть A_1,\ldots,A_n — свободные абелевы группы, $M_m(A_1,\ldots,A_n)$ — их произведение в многообразии $\mathfrak{A}_m\mathfrak{A}$. Группа $M_m(A_1,\ldots,A_n)$ является фактор-группой свободного произведения $F = A_1 * \cdots * A_n$ по подгруппе $F''(F')^m$. Группы A_i вкладываются в группу $M_m(A_1,\ldots,A_n)$. Будем отождествлять группы A_i с их образами. Пусть $\varepsilon: \mathbb{Z}_m[M_m(A_1,\ldots,A_n)] \to \mathbb{Z}_m$ — отображение тривиализации. Обобщенные правые производные Фокса $D_i^{(m)},\ i=1,\ldots,n,$ являются отображениями

$$D_i^{(m)}: \mathbb{Z}_m[M_m(A_1,\ldots,A_n)] \to \mathbb{Z}_m[A_1 \times \cdots \times A_n],$$

которые корректно определены следующими условиями:

$$D_i^{(m)}(a_j)=0,\; ext{если}\; i
eq j,\; a_j\in A_j; \quad D_i^{(m)}(a_i)=a_i-1;$$
 $D_i^{(m)}(u+v)=D_i^{(m)}(u)+D_i^{(m)}(v), \quad D_i^{(m)}(uv)=D_i^{(m)}(u)v+arepsilon(u)D_i^{(m)}(v)$ для $u,v\in \mathbb{Z}_m[M_m(A_1,\ldots,A_n)].$

Заметим, что в последней формуле воспользовались соглашением для обозначения образа элемента v в кольце $\mathbb{Z}_m[A_1 \times \cdots \times A_n]$.

Для $\partial_i^{(0)}$ и $D_i^{(0)}$, как в [1–3], будем использовать обозначения ∂_i и D_i .

4. Вложение Магнуса. Пусть T_m — свободный правый модуль с базисом $\{t_1,\dots,t_n\}$ над кольцом $\mathbb{Z}_m\begin{bmatrix}x_1^{\pm 1},\dots,x_n^{\pm 1}\end{bmatrix}$. Группа M(m) ранга n вкладывается в группу матриц $\begin{pmatrix}B_m&0\\T_m&1\end{pmatrix}$, где B_m — свободная группа многообразия \mathfrak{A}_m с базисом $\{x_1,\dots,x_n\}$. Вложение задается отображением

$$x_i
ightarrow egin{pmatrix} x_i & 0 \ t_i & 1 \end{pmatrix}, \quad i=1,\dots n,$$

где x_i в левой части — элемент базиса группы M(m), а x_i в матрице — элемент базиса группы B_m . Это вложение называется вложением Магнуса. Для нас важно, что матрица

$$\begin{pmatrix} a & 0 \\ t_1\alpha_1 + \dots + t_n\alpha_n & 1 \end{pmatrix}, \quad \alpha_i \in \mathbb{Z}_m[x_1^{\pm 1}, \dots, x_n^{\pm 1}], \ a \in B_m,$$

лежит в образе группы M(m) тогда и только тогда, когда

$$\sum_{i=1}^{n} \alpha_i(x_i - 1) = a - 1$$

в кольце $\mathbb{Z}_m[x_1^{\pm 1},\ldots,x_n^{\pm 1}].$

Отметим, что элемент v из M(m) равен единице тогда и только тогда, когда $\partial_1^{(m)}(v)=\cdots=\partial_n^{(m)}(v)=0.$

Более подробную информацию о вложении Магнуса и производных Фокса, а также об обобщенном вложении Магнуса, которое принято называть вложением Шмелькина, можно найти в [4].

Из вложения Шмелькина следует, что элемент $v \in M_m(A_1, \ldots, A_n)$ равен единице тогда и только тогда, когда

$$D_1^{(m)}(v) = \dots = D_n^{(m)}(v) = 0.$$

5. Запись элементов. В [3] доказана теорема 1 об однозначной записи степеней элементов из коммутанта частично коммутативной метабелевой группы. Первый случай этой теоремы справедлив для группы $M(p,\Gamma),\,p$ — простое число. Сформулируем его как

Утверждение 1. Пусть Γ — граф, $V(\Gamma) = \{x_1, \dots, x_n\}$, $n \geq 2$, p_0 простое или 0 и c — элемент из коммутанта группы $M(p_0, \Gamma)$. Если $c^{(x_1-1)\dots(x_n-1)} \neq 1$, то в каждой компоненте связности Γ_i , $i=1,\dots,q$, графа Γ можно зафиксировать произвольную вершину z_i так, что для некоторого $\gamma \in \mathbb{Z}_m[x_1^{\pm 1},\dots,x_n^{\pm 1}]$

$$1 \neq c^{\gamma} = \prod_{1 \leq i < j \leq q} [z_i, z_j]^{\alpha_{ij}}, \quad \alpha_{ij} \in \mathbb{Z}_{p_0} [x_1^{\pm 1}, \dots, x_n^{\pm 1}],$$
 (1)

причем в запись элемента α_{ij} не входят зафиксированные вершины z_t при t < i. Кроме того, запись c^{γ} в виде (1) с указанными ограничениями на α_{ij} единственна для фиксированного множества вершин $Z = \{z_1, \ldots, z_q\}$.

Нетрудно также проверить, что доказательство теоремы 3 из [2] переносится на группы $M(p,\Gamma)$, p — простое число.

Пусть U(x) — множество вершин графа, смежных с вершиной x. Сформулируем обобщение теоремы 3 из [2] как

Утверждение 2. Пусть Γ — граф, $V(\Gamma)=\{x_1,\ldots,x_n\},\ n\geq 2,\ p_0$ простое или $0,\ c$ — неединичный элемент из коммутанта $M'(p_0,\Gamma)$. Если $c^{(x_1-1)\ldots(x_n-1)}=1$. то

- (1) найдется $\gamma \in \mathbb{Z}_m \left[x_1^{\pm 1}, \dots, x_n^{\pm 1} \right]$ такое, что $c^{\gamma} \neq 1$;
- (2) элемент c^{γ} принадлежит централизатору некоторой вершины $x_{i_0} \in V(\Gamma)$;
- (3) элемент c^{γ} можно записать в виде

$$c^{\gamma} = \prod [x_i, x_j]^{\alpha_{ij}}, \quad \alpha_{ij} \in \mathbb{Z}_m[x_1^{\pm 1}, \dots, x_n^{\pm 1}],$$
 (2)

где i < j, все вершины x_i и x_j лежат в $U(x_{i_0})$, элементы α_{ij} не зависят от x_{i_0} и тех элементов x_t из $U(x_{i_0})$, для которых t < i;

- (4) запись элемента c^{γ} в виде (2) с указанными ограничениями единственна.
- **6. Централизаторы элементов.** В [1] доказана теорема 4 о централизаторах вершин графа, определяющего частично коммутативную метабелеву группу. Эта теорема верна и для групп $M(p,\Gamma)$, где p любое простое число. Сформулируем обобщение указанной теоремы как

Утверждение 3. Пусть Γ — граф, $V(\Gamma) = \{x_1, \dots, x_n\}$, p_0 простое или 0. Элемент g из группы $M(p_0, \Gamma)$ лежит в централизаторе $C(x_1)$ вершины x_1 тогда и только тогда, когда

$$g = x_1^{l_1} \dots x_m^{l_m} \prod_{2 \le i < j \le m} [x_i, x_j]^{\alpha_{ij}},$$

где x_2, \ldots, x_m — все вершины, смежные с x_1, l_1, \ldots, l_m — целые числа, α_{ij} — любые элементы из $\mathbb{Z}_{p_0}\big[x_1^{\pm 1}, \ldots, x_n^{\pm 1}\big]$.

ДОКАЗАТЕЛЬСТВО этого утверждения отличается от доказательства теоремы 4 из [1] только тем, что обобщенные производные D_i нужно заменить на $D_i^{(p_0)}$.

Будем использовать теорему 2 из [2]. Ее доказательство без всяких изменений верно для групп $M(p,\Gamma)$. Поэтому справедливо

Утверждение 4. Пусть Γ — граф, $V(\Gamma) = \{x_1, \dots, x_n\}$, p_0 простое или 0 и $\mathscr{C}(g) = C(g) \cap M'(p_0, \Gamma)$ — централизатор элемента $g \in M(p_0, \Gamma)$ в коммутанте $M'(p_0, \Gamma)$. Тогда для любых $m \leq n, \ 1 \leq i_1 < \dots < i_m \leq n$ и ненулевых целых q_1, \dots, q_m имеет место

$$\mathscr{C}\left(x_{i_1}^{q_1}\dots x_{i_m}^{q_m}\right)=\mathscr{C}(x_{i_1})\cap\dots\cap\mathscr{C}(x_{i_m}).$$

7. Аннуляторы коммутаторов. Пусть c — элемент из $M'(p_0,\Gamma)$, где p_0 — простое число или 0. Аннулятором $\mathrm{Ann}(c)$ элемента c называется идеал кольца $\mathbb{Z}_{p_0}\big[x_1^{\pm 1},\dots,x_n^{\pm 1}\big]$, состоящий из элементов γ , для которых $c^{\gamma}=1$.

Определим для любых несмежных вершин x_i, x_j графа Γ идеал $\mathbb{A}_{i,j}^{\Gamma}$ кольца $\mathbb{Z}_{p_0}\big[x_1^{\pm 1}, \dots, x_n^{\pm 1}\big]$. Если вершины x_i и x_j лежат в разных компонентах связности

определяющего графа Γ , то полагаем $\mathbb{A}_{i,j}^{\Gamma}=0$. В противном случае рассмотрим все пути $\{x_i,x_{i1},\ldots,x_{im},x_j\}$ между вершинами x_i,x_j . Каждому пути поставим в соответствие элемент

$$(1-x_{i1})\dots(1-x_{im})$$

кольца $\mathbb{Z}_{p_0}[x_1^{\pm 1},\dots,x_n^{\pm 1}]$. Идеал $\mathbb{A}_{i,j}^{\Gamma}$ порожден всеми такими элементами.

Утверждение 5. Пусть Γ — граф, $V(\Gamma) = \{x_1, \dots, x_n\}$ и p_0 — простое число или 0. Если $1 \le i \ne j \le n$ и $(x_i, x_j) \notin E(\Gamma)$, то аннулятор коммутатора $[x_i, x_j]$ в группе $M(p_0, \Gamma)$ совпадает с $\mathbb{A}_{i,j}^{\Gamma}$.

8. Универсальная эквивалентность и дискриминируемость. Говорят, что группа G дискриминируемся группой H, если для любого конечного множества неединичных элементов $\{g_1,\ldots,g_n\}$ из G найдется гомоморфизм $\varphi:G\to H$ такой, что $\varphi(g_i)\neq 1$ для $i=1,\ldots,n$.

Отметим следующий простой, но полезный факт: если группа G дискриминируется группой H, а группа H — группой G, то универсальные теории групп G и H совпадают.

§ 2. Вспомогательные утверждения

Утверждение 6. Пусть Γ — лес, $V(\Gamma) = \{x_1, \dots, x_n\}$, $n \geq 2$, p_0 простое или 0 и $\mathscr{C}(g)$ — централизатор элемента g из $M(p_0, \Gamma)$ в коммутанте $M'(p_0, \Gamma)$. Тогда при $i \neq j$ имеет место равенство $\mathscr{C}(x_i x_j) = 1$.

Доказательство индукцией по числу ребер m графа Γ . Не уменьшая общности, положим $i=1,\ j=2.$ Если m=0, то $M(p_0,\Gamma)=M(p_0)$ — свободная группа многообразия $\mathfrak{A}_{p_0}\mathfrak{A}$. Пусть c— некоторый элемент из коммутанта, перестановочный с элементом $x_1x_2,$ т. е. $c^{1-x_1x_2}=1$ в группе $M(p_0)$. Вычислим производные Фокса $\partial_1^{(p_0)},\ldots,\partial_n^{(p_0)}$ от этого равенства. Получим в кольце $\mathbb{Z}_{p_0}\left[x_1^{\pm 1},\ldots,x_n^{\pm 1}\right]$ систему равенств

$$(1-x_1x_2)\partial_i^{(p_0)}c = 0, \quad i = 1, \dots, n.$$

Так как $\mathbb{Z}_{p_0}\big[x_1^{\pm 1},\dots,x_n^{\pm 1}\big]$ — область целостности, $\partial_i^{(p_0)}c=0$ в $\mathbb{Z}_{p_0}\big[x_1^{\pm 1},\dots,x_n^{\pm 1}\big]$. Значит, c=1 (см. § 1, п. 4).

Предположим, что утверждение справедливо для графа с (m-1)-м ребром. Если хотя бы одна из вершин x_1 или x_2 висячая, то по утверждению 3 имеем $\mathscr{C}(x_1)=1$ или $\mathscr{C}(x_2)=1$. Далее, по утверждению 4 получаем $\mathscr{C}(x_1x_2)=\mathscr{C}(x_1)\cap\mathscr{C}(x_2)=1$.

Предположим, что обе вершины x_1 и x_2 не висячие. Пусть x_3 — висячая вершина графа Γ . Так как $c^{1-x_1x_2}=1$ в $M(p_0,\Gamma)$, в группе $M(p_0)$ имеет место равенство

$$c^{1-x_1x_2} = [x_3, x_t]^{\beta_{3t}} \prod_{(x_r, x_q) \in E(\Gamma)} [x_r, x_q]^{\beta_{rq}},$$
(3)

где x_t — смежная с x_3 вершина, $r \neq 3$, $q \neq 3$, $\beta_{rq} \in \mathbb{Z}_{p_0}\left[x_1^{\pm 1}, \dots, x_n^{\pm 1}\right]$. Вычисляя производную $\partial_3^{(p_0)}$ от левой и правой частей равенства (3), получаем

$$(1 - x_1 x_2) \partial_3^{(p_0)} c = \beta_{3t} (1 - x_t), \tag{4}$$

откуда $\beta_{3t}=\beta_{3t}'(1-x_1x_2)$ для некоторого β_{3t}' из $\mathbb{Z}_{p_0}\big[x_1^{\pm 1},\dots,x_n^{\pm 1}\big]$. Из равенств (3) и (4) следует, что

$$\left(c[x_3, x_t]^{-\beta'_{3t}}\right)^{1-x_1x_2} = \prod_{(x_r, x_q) \in E(\Gamma)} [x_r, x_q]^{\beta_{rq}}, \quad r \neq 3, \ q \neq 3.$$
 (5)

Обозначим через Γ_3 граф, полученный из Γ удалением вершины x_3 и ребра (x_3, x_t) . Граф Γ_3 по-прежнему является лесом, но имеющим на одно ребро меньше, чем Γ . Равенство (5) означает, что в группе $M(p_0, \Gamma_3)$ имеет место включение

$$c[x_3, x_t]^{-\beta'_{3t}} \in \mathscr{C}(x_1 x_2).$$

По индуктивному предположению $c[x_3,x_t]^{-\beta'_{3t}}=1$ в $M(p_0,\Gamma_3)$. Значит, в группе $M(p_0)$ справедливо равенство

$$c[x_3,x_t]^{-\beta'_{3t}} = \prod_{(x_r,x_q) \in E(\Gamma_3)} [x_r,x_q]^{\gamma_{rq}},$$

где $\gamma_{rq} \in \mathbb{Z}_{p_0}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$. Отсюда

$$c = [x_3, x_t]^{\beta'_{3t}} \prod_{(x_r, x_q) \in E(\Gamma_3)} [x_r x_q]^{\gamma_{rq}},$$

т. е. c=1 в $M(p_0,\Gamma)$. Утверждение доказано.

Следствие 7. Пусть $\Gamma - лес$, $V(\Gamma) = \{x_1, \dots, x_n\}$, $n \geq 2$, p_0 простое или 0 и $\mathscr{C}(g)$ — централизатор элемента $g \in M(p_0, \Gamma)$ в коммутанте $M'(p_0, \Gamma)$. Тогда при $i \neq j$ имеем

$$\mathscr{C}(x_i) \cap \mathscr{C}(x_i) = 1.$$

Лемма 8. Пусть p_0 простое или $0, n \geq 2, l \in \mathbb{N}$. Определим эндоморфизмы ψ_l и φ_l кольца $\mathbb{Z}_{p_0}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$ следующим образом:

$$\psi_l = \{x_n \to x_{n-1}^{p^l}, \ x_i \to x_i \ \mathrm{при} \ i \neq n\},$$

$$arphi_l = ig\{ x_n
ightarrow x_{n-2}^{p^l} x_{n-1}^{p^l}, \ x_i
ightarrow x_i$$
 при $i
eq n ig\}.$

Если $0 \neq \alpha \in \mathbb{Z}_{p_0}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$, то существует $l_0 \in \mathbb{N}$ такое, что для всех $l > l_0$ элементы $\varphi_l(\alpha)$ и $\psi_l(\alpha)$ не равны 0.

Доказательство этой леммы совпадает с доказательством леммы 5 из [2].

Лемма 9. Пусть p_0 — простое число или $0, n \ge 2, l \in \mathbb{N}$ и φ_l — эндоморфизм, определенный в лемме 8. Предположим, что α, β — элементы из $\mathbb{Z}_{p_0}\big[x_1^{\pm 1},\ldots,x_n^{\pm 1}\big]$ и для любого l, большего некоторого l_0 , имеет место равенство

$$arphi_ligg(rac{x_{n-1}^{p^l}-1}{x_{n-1}-1}lpha+etaigg)=0.$$

Тогда $\alpha = \beta = 0$.

Доказательство для $p_0=0$ приведено в [2, лемма 6]. Предположим, что $p_0=p$ — простое число. Так как

$$\frac{x_{n-1}^{p^l} - 1}{x_{n-1} - 1} = \frac{(x_{n-1} - 1)^{p^l}}{x_{n-1} - 1} = (x_{n-1} - 1)^{p^l - 1},$$

получаем

$$(x_{n-1}-1)^{p^l-1}\alpha(x_1,\ldots,x_{n-1},x_{n-2}^{p^l}x_{n-1}^{p^l})+\beta(x_1,\ldots,x_{n-1},x_{n-2}^{p^l}x_{n-1}^{p^l})=0.$$
 (6)

К (6) применим эндоморфизм

$$\pi = \{x_{n-1} \to 1, \ x_i \to x_i \text{ при } i \neq n-1\}$$

кольца $\mathbb{Z}_{p_0}[x_1^{\pm 1},\ldots,x_n^{\pm 1}]$. Получим

$$\beta(x_1,\ldots,x_{n-2},1,x_{n-2}^{p^l})=0$$

для всех $l > l_0$. По лемме 8 имеем равенство

$$\beta(x_1,\ldots,x_{n-2},1,x_n)=0,$$

т. е. $\beta(x_1,\ldots,x_{n-2},x_{n-1},x_n)$ делится на $x_{n-1}-1$. Пусть

$$\beta(x_1,\ldots,x_n) = (x_{n-1}-1)\beta'(x_1,\ldots,x_n).$$

Из равенства (6) следует, что

$$(x_{n-1}-1)^{p^l-1}\alpha(x_1,\ldots,x_{n-1},x_{n-2}^{p^l}x_{n-1}^{p^l})+\beta'(x_1,\ldots,x_{n-1},x_{n-2}^{p^l}x_{n-1}^{p^l})(x_{n-1}-1)=0.$$

Отсюда

$$(x_{n-1}-1)^{p^l-2}\alpha(x_1,\ldots,x_{n-1},x_{n-2}^{p^l}x_{n-1}^{p^l})+\beta'(x_1,\ldots,x_{n-1},x_{n-2}^{p^l}x_{n-1}^{p^l})=0. \quad (7)$$

Повторяя для равенства (7) рассуждения, примененные к равенству (6), получаем, что β' делится на $x_{n-1}-1$. Тогда $\beta(x_1,\ldots,x_n)$ делится на $(x_{n-1}-1)^2$. Продолжая процесс, получим, что β делится на сколь угодно большие степени элемента $(x_{n-1}-1)$. Это возможно лишь при $\beta=0$. Но тогда и $\alpha=0$. Лемма доказана.

Лемма 10. Пусть p_0 — простое число или $0, n \geq 2, l \in \mathbb{N}$. Эндоморфизм φ_l определен, как в лемме 8. Предположим, что α, β, γ — элементы из $\mathbb{Z}_{p_0}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$, причем элемент β не зависит от x_{n-2} . Если для всех l, больших некоторого l_0 , имеет место

$$\varphi_l\left(\frac{x_{n-1}^{p^l} - 1}{x_{n-1} - 1}\alpha + x_{n-1}^{p^l} \frac{x_{n-2}^{p^l} - 1}{x_{n-2} - 1}\beta + \gamma\right) = 0,\tag{8}$$

то $\alpha = \beta = \gamma = 0$.

ДОКАЗАТЕЛЬСТВО. Для $p_0=0$ лемма доказана (см. [2, лемма 7]). Предположим, что $p_0=p$ — простое число. Применим к равенству (8) эндоморфизм π , определенный в лемме 9. Получим

$$(x_{n-2}-1)^{p^l}\beta(x_1,\ldots,x_{n-3},1,x_{n-2}^{p^l})+(x_{n-2}-1)\gamma(x_1,\ldots,x_{n-2},1,x_{n-2}^{p^l})=0.$$

Так как $(x_{n-2}-1)^{p^l}=x_{n-2}^{p^l}-1$, из леммы 8 следует, что

$$(x_n - 1)\beta(x_1, \dots, x_{n-3}, 1, x_n) + (x_{n-2} - 1)\gamma(x_1, \dots, x_{n-2}, 1, x_n) = 0.$$
 (9)

По условию β не зависит от x_{n-2} , значит, из равенства (9) следует равенство $\beta(x_1,\ldots,x_{n-3},1,x_n)=0$. Следовательно, элемент $\beta(x_1,\ldots,x_{n-3},x_{n-1},x_n)$ делится на $x_{n-1}-1$, т. е. $\beta=\beta'(x_{n-1}-1)$. Аналогично $\gamma=\gamma'(x_{n-1}-1)$. Получаем равенство (8), в котором β заменено на β' , а γ на γ' . Кроме того, $(x_{n-1}-1)^{p^l}$ нужно заменить на $(x_{n-1}-1)^{p^l-1}$. При $p^l-1>0$ заключаем, что β' и γ' делятся на $x_{n-1}-1$. Таким образом, элементы β и γ делятся на любую степень $(x_{n-1}-1)$. Отсюда следует, что $\beta=\gamma=0$ и, значит, $\alpha=0$. Лемма доказана.

Лемма 11. Пусть Γ — граф, $V(\Gamma) = \{x_1, \dots, x_n\}$, $n \geq 2$, p_0 — простое число или $0, l \neq 0, m \neq 0$ и c_1, c_2 — элементы из коммутанта $M'(p_0, \Gamma)$ группы $M(p_0, \Gamma)$. Если элементы $x_1^l c_1$ и $x_2^m c_2$ перестановочны, то элементы x_1 и x_2 также перестановочны.

Доказательство. При $p_0=0$ утверждение доказано в [2, лемма 4]. Однако это доказательство не проходит для группы $M(p,\Gamma),\ p$ простое, так как экспонента ее коммутанта больше 0. Поэтому приведем доказательство для случая, когда $p_0=p$ — простое число.

Итак, пусть $\left[x_1^lc_1,x_2^mc_2\right]=1$ в группе $M(p,\Gamma)$, но $(x_i,x_j)\notin E(\Gamma)$. Пусть ранг группы M(p) равен 2 и $\{x,y\}$ — ее базис. Существует гомоморфизм $\varphi:M(p,\Gamma)\to M(p)$, при котором $\varphi(x_1)=x,\ \varphi(x_2)=y,\ \varphi(x_i)=1$ при $i\neq 1,2$. Любой элемент c из коммутанта группы M(p) можно записать в виде $c=[x,y]^\gamma$, где γ — некоторый элемент из $\mathbb{Z}_p\big[x_1^{\pm 1},\dots,x_n^{\pm 1}\big]$. Поэтому найдутся элементы α и β из $\mathbb{Z}_{p_0}[x^{\pm 1},y^{\pm 1}]$ такие, что $c_1=[x,y]^\alpha,\ c_2=[x,y]^\beta$. Тогда

$$[x^{l}[x,y]^{\alpha},y^{m}[x,y]^{\beta}] = [x,y]^{\frac{x^{l}-1}{x-1}\cdot\frac{y^{m}-1}{y-1}-\alpha(1-y^{m})-\beta(x^{l}-1)} = 1.$$

Применяя к этому равенству обобщенную производную Фокса $D_1^{(p)}$, получим, что

$$\frac{x^{l}-1}{x-1} \cdot \frac{y^{m}-1}{y-1} - \alpha(1-y^{m}) - \beta(x^{l}-1) = 0.$$
 (10)

Значит, найдутся $\alpha', \beta' \in \mathbb{Z}_p[x^{\pm 1}, y^{\pm 1}]$ такие, что

$$lpha=lpha'rac{x^l-1}{x-1},\quad eta=eta'rac{y^m-1}{y-1}.$$

Подставляя выражения для α и β в равенство (10) и выполняя сокращение, находим

$$1 - \alpha'(1 - y) - \beta'(x - 1) = 0. \tag{11}$$

Применение к равенству (11) гомоморфизма тривиализации ε приводит к противоречию. Лемма доказана.

§ 3. Доказательство теоремы В

Висячую вершину графа Γ назовем *лишней*, если смежная с ней вершина имеет степень не менее трех.

Удалим из графа Γ все лишние вершины и инцидентные им ребра. Полученный граф обозначим через Γ^* .

Предположим, что $\Gamma' \simeq \Delta'$. Докажем, что $M(p_0, \Gamma) \stackrel{\forall}{=} M(p_0, \Delta)$. Достаточно установить, что удаление одной лишней вершины и инцидентного ей ребра из определяющего графа не меняют универсальной теории группы. Действительно, если это справедливо, то $M(p_0, \Gamma) \stackrel{\forall}{=} M(p_0, \Gamma^*)$ и $M(p_0, \Delta) \stackrel{\forall}{=} M(p_0, \Delta^*)$. Так как $\Gamma' \simeq \Delta'$, то $\Gamma^* \simeq \Delta^*$. Поэтому $M(p_0, \Gamma^*) \simeq M(p_0, \Delta^*)$. Значит, $M(p_0, \Gamma) \stackrel{\forall}{=} M(p_0, \Delta)$.

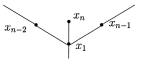
Пусть $V(\Gamma)=\{x_1,\ldots,x_n\}$, Γ_0 получается из Γ удалением одной лишней вершины и инцидентного ей ребра. Следовательно, $M(p_0,\Gamma_0)$ — подгруппа $M(p_0,\Gamma)$. Для совпадения универсальных теорий групп $M(p_0,\Gamma_0)$ и $M(p_0,\Gamma)$ осталось доказать, что $M(p_0,\Gamma)$ дискриминируется группой $M(p_0,\Gamma_0)$.

Пусть для определенности x_n — лишняя вершина в графе Γ , x_1 — смежная с ней вершина, а x_{n-2} , x_{n-1} смежны с x_1 (рис. 1).

Для любого $l \in \mathbb{N}$ рассмотрим ретракцию φ_l групп $M(p_0, \Gamma)$ на подгруппу $M(p_0, \Gamma_0)$:

$$\varphi_l = \{x_n \to x_{n-2}^{p^l} x_{n-1}^{p^l}, \ x_i \to x_i \text{ при } i \neq n \}.$$

Заметим, что φ_l индуцирует эндоморфизм коль- рис. 1 ца $\mathbb{Z}_{p_0}[x_1^{\pm 1},\dots,x_n^{\pm 1}]$, который в леммах 8–10 обозначен также через φ_l .



Пусть c — произвольный неединичный элемент из группы $M(p_0,\Gamma)$. Покажем, что существует натуральное число l_0 , зависящее только от элемента c, такое, что для всех $l>l_0$ образ $\varphi_l(c)$ элемента c в группе $M(p_0,\Gamma_0)$ не равен единице.

Если $c \notin M'(p_0, \Gamma)$, то

$$c = x_1^{r_1} \dots x_n^{r_n} d, \quad r_i \in \mathbb{Z}, \ d \in M'(p_0, \Gamma),$$

причем хотя бы одно из чисел r_i не равно нулю. Если $r_n=0$, то

$$\varphi_l(c) = x_1^{r_1} \dots x_{n-1}^{r_{n-1}} \varphi_l(d) \neq 1$$

при любом l. Если $r_n \neq 0$, то существование l_0 с требуемым свойством очевидно. Пусть $1 \neq c \in M'(p_0, \Gamma)$. Возможны два случая в зависимости от того, равен элемент $c^{(x_1-1)...(x_n-1)}$ единице или нет.

Случай 1:
$$c^{(x_1-1)...(x_n-1)} \neq 1$$
.

Тогда по утверждению 1 найдется элемент γ из кольца $\mathbb{Z}_{p_0}[x_1^{\pm 1},\dots,x_n^{\pm 1}]$ такой, что, во-первых, $c^{\gamma} \neq 1$ и, во-вторых, в каждой компоненте связности $\Gamma_i, i=1,\dots,q$, графа Γ можно зафиксировать произвольную вершину z_i так, что элемент c^{γ} можно представить в виде

$$c^{\gamma} = \prod_{1 \le i < j \le q} [z_i, z_j]^{\alpha_{ij}}, \quad \alpha_{ij} \in \mathbb{Z}_{p_0}[x_1^{\pm 1}, \dots, x_n^{\pm 1}],$$

причем в запись элемента α_{ij} не входят z_t при t < i.

Можно считать, что x_n принадлежит дереву Γ_1 . Выберем в качестве z_1 вершину x_1 . Так как x_n также лежит в Γ_1 , то $x_n \neq z_i$, $i = 1, \ldots, q$. Поэтому

$$arphi_l(c^\gamma) = \prod_{1 \leq i < j \leq q} [z_i, z_j]^{arphi_l(lpha_{ij})}.$$

Если $\alpha_{ij} \neq 0$, то по лемме 8 найдется $l_0 \in \mathbb{N}$ такое, что $\varphi_l(\alpha_{ij}) \neq 0$ для всех $l > l_0$. Проверим, что для ненулевых α_{ij} все элементы $\varphi_l(\alpha_{ij})$ удовлетворяют требованиям на вхождения z_1, \ldots, z_q , сформулированным в утверждении 1. Действительно, $\varphi_l(\alpha_{ij})$ получается из α_{ij} заменой x_n на $x_{n-2}^{p^l}x_{n-1}^{p^l}$. Вершины x_{n-2}, x_{n-1} не принадлежат множеству зафиксированных вершин $\{z_1, \ldots, z_q\}$, так как первая компонента представлена вершиной x_1 , а x_{n-2}, x_{n-1} принадлежат Γ_1 . Поэтому в записи $\varphi_l(\alpha_{ij})$ не могут появиться вершины из множества $\{z_1, \ldots, z_q\}$, которые не встречались ранее в записи α_{ij} . Таким образом, запись элемента c^{γ} удовлетворяет всем условиям на показатели $\varphi_l(\alpha_{ij})$. Поскольку $c \neq 1$, хотя бы один показатель α_{ij} не равен 0. Значит, по утверждению 1 $\varphi_l(c^{\gamma}) \neq 1$ при достаточно больших l. Тем более $\varphi_l(c) \neq 1$.

Случай 2:
$$c^{(x_1-1)...(x_n-1)}=1$$
.

По утверждению 2 найдется элемент $\gamma \in \mathbb{Z}_{p_0}\left[x_1^{\pm 1},\dots,x_n^{\pm 1}\right]$ такой, что c^{γ} обладает всеми свойствами, указанными в этом утверждении. Дальнейшее доказательство дискриминируемости группы $M(p_0,\Gamma)$ группой $M(p_0,\Gamma_0)$ совпадает

с доказательством второй части теоремы 4 из [2], только ссылки на леммы 5-7 из [2] нужно заменить ссылками на леммы 8-10 из данной работы.

Докажем, что из универсальной эквивалентности групп $M(p_0,\Gamma)$ и $M(p_0,\Delta)$ следует изоморфизм графов Γ' и Δ' .

Случай 1. Хотя бы одно из множеств $V(\Gamma)\setminus V(\Gamma')$ или $V(\Delta)\setminus V(\Delta')$ одно-элементно.

Это условие равносильно тому, что хотя бы один из графов Γ или Δ является звездой.

Из теоремы 4 в [2] следует, что если Γ и Δ — деревья и частично коммутативные метабелевы группы $S_{\Gamma}=M(0,\Gamma)$ и $S_{\Delta}=M(0,\Delta)$ универсально эквивалентны, то $\Gamma'\simeq\Delta'$. Доказательство этой части теоремы 4 остается без изменения, если заменить $M(0,\Gamma)$ на $M(p,\Gamma)$, а $M(0,\Delta)$ на $M(p,\Delta)$, где p — любое простое число. Таким образом, если Γ и Δ — деревья, то из $M(p_0,\Gamma)\stackrel{\forall}{=} M(p_0,\Delta)$ следует $\Gamma'\simeq\Delta'$.

Поэтому предположим, что Γ — звезда, а Δ не дерево (рис. 2).

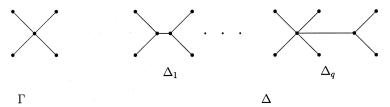


Рис. 2

Пусть Δ_i , $i=1,\ldots,q$, — компоненты связности леса Δ , $q\geq 2$.

Предположим, что Δ_1 не звезда. Тогда в Δ_1 существует линейный подграф на четырех вершинах, например $y_1,\,y_2,\,y_3,\,y_4,\,$ т. е. $[y_1,y_2]=[y_2,y_3]=[y_3,y_4]=1,$ $[y_i,y_j]\neq 1,\,$ если $1\leq i\neq j\leq 4$ и |i-j|>1.

Из утверждения 5 об аннуляторах коммутаторов вершин графа следует, что в группе $M(p_0, \Delta)$ существует строго убывающая цепочка из трех централизаторов в коммутанте. Например,

$$\mathscr{C}([y_1,y_3]) \overset{[y_2,y_4]}{>} \mathscr{C}([y_1,y_3],y_2) \overset{[y_1,y_3]}{>} \mathscr{C}([y_1,y_3],y_2,y_1).$$

Легко понять, что строго убывающей цепочки централизаторов в коммутанте длины 3 в группе $M(p_0,\Gamma)$ не существует. Кроме того, коммутанты групп $M(p_0,\Gamma)$ и $M(p_0,\Delta)$ выделяются некоторой общей для этих групп \exists -формулой. Следовательно, группы $M(p_0,\Gamma)$ и $M(p_0,\Delta)$ не универсально эквивалентны.

Осталось разобрать случай, когда все Δ_i являются звездами (рис. 3).

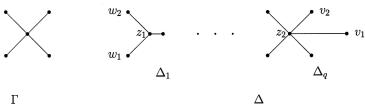


Рис. 3

На группе $M(p_0, \Delta)$ справедливо предложение

$$\exists z_1, z_2, v_1, v_2, w_1, w_2([z_1, z_2] \neq 1 \land [w_1, w_2, z_1] = 1 \land [v_1, v_2, z_1] \neq 1 \land [w_1, w_2, z_2] \neq 1 \land [v_1, v_2, z_1] \neq 1).$$
 (12)

Чтобы убедиться в истинности предложения (12) на группе $M(p_0, \Delta)$, надо взять в качестве $z_1, z_2, v_1, v_2, w_1, w_2$ элементы, указанные на рис. 3, и использовать утверждение 5.

Однако это предложение ложно на группе $M(p_0,\Gamma)$. Действительно, если в группе $M(p_0,\Gamma)$ элемент z_1 не перестановочен с элементом $[v_1,v_2]$, то z_1 не принадлежит коммутанту $M'(p_0,\Gamma)$. Аналогично $z_2 \notin M'(p_0,\Gamma)$. Но z_1 перестановочен с коммутатором $[w_1,w_2]$, который не равен 1. Значит, $z_1=z^{l_1}c_1$, $c_1\in M'(p_0,\Gamma)$, $l_1\neq 0$. Аналогично $z_2=z^{l_2}c_2$, $c_2\in M'(p_0,\Gamma)$, $l_2\neq 0$. Но тогда $[z_1,z_2]=1$, так как z — центральный элемент группы $M(p_0,\Gamma)$. Это противоречит истинности предложения (12) на группе $M(p_0,\Gamma)$, а именно $[z_1,z_2]\neq 1$. Итак q=1, т. е. Δ — звезда. Следовательно, $\Gamma'\simeq \Delta'$.

Случай 2. Γ и Δ не звезды.

Пусть $\{x_1,\ldots,x_{n_1}\}=V(\Gamma)\setminus V(\Gamma')$. Ясно, что $n_1\geq 2$. Рассмотрим предложение

$$\exists g_1, \dots, g_{n_1}, u_1, \dots, u_{n_1}, v_1, \dots, v_{n_1} \left(\bigwedge_{i=1}^{n_1} [u_i, v_i, g_i] = 1 \right) \land \bigwedge_{1 \le i \ne j \le n_1} [u_i, v_i, g_j] \ne 1 \land \bigwedge_{\{(x_i, x_j) \in \Gamma, 1 \le i < j \le n_1\}} [g_i, g_j,] = 1 \right).$$
(13)

Это предложение истинно на группе $M(p_0,\Gamma)$. В качестве g_i нужно взять вершины $x_i \in V(\Gamma) \setminus V(\Gamma')$, в качестве u_i и v_i — любые различные смежные с x_i вершины. Так как x_i — не висячая вершина, u_i и v_i найдутся.

Из следствия 7 получаем $[u_i,v_i,x_j]\neq 1$ при $i\neq j$. Значит, предложение (13) истинно на $M(p_0,\Gamma)$. Поэтому оно должно быть истинным на $M(p_0,\Delta)$. Пусть $u_i,\,v_i,\,g_i$ — элементы из $M(p_0,\Delta)$, удовлетворяющие предложению (13). Из того, что $[u_i,v_i,g_i]=1$ и $[u_i,v_i,g_j]\neq 1$ (так как $n_1>1$, такое неравенство обязательно есть в формуле (13)), а также из утверждений 3, 4 и 6 получаем,

$$g_i = y_{i\pi}^{l_i} d_i, \quad l_i \neq 0, \ d_i \in M'(p_0, \Delta), \ y_{i\pi} \in V(\Delta) \setminus V(\Delta').$$

Поскольку $[g_i, g_j] = 1$, то $[y_{i\pi}, y_{j\pi}] = 1$ (лемма 11).

Таким образом, отображение $\pi: x_i \to y_{i\pi}$ задает гомоморфизм графов $\Gamma' \to \Delta'$. Существует также и обратный гомоморфизм $\Delta' \to \Gamma'$. Значит, $\Gamma' \simeq \Delta'$. Теорема доказана.

ЛИТЕРАТУРА

- **1.** Гупта Ч. К., Тимошенко Е. И. Частично коммутативные метабелевы группы: централизаторы и элементарная эквивалентность // Алгебра и логика. 2009. Т. 48, № 3. С. 309–341.
- Тимошенко Е. И. Универсальная эквивалентность частично коммутативных метабелевых групп // Алгебра и логика. 2010. Т. 49, № 2. С. 263–290.
- Гупта Ч. К., Тимошенко Е. И. Универсальные теории частично коммутативных метабелевых групп // Алгебра и логика. 2011. Т. 50, № 1. С. 3–25.

4. *Романовский Н. С.* О вложении Шмелькина для абстрактных и проконечных групп // Алгебра и логика. 1999. Т. 38, № 5. С. 598–612.

Статья поступила 11 апреля 2016 г.

Блощицын Виталий Яковлевич Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 blosh@math.nsc.ru

Тимошенко Евгений Иосифович Новосибирский гос. технический университет, кафедра алгебры и математической логики, пр. К. Маркса, 20, Новосибирск 630092 algebra@nstu.ru