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τ-DISTANCE IN A GENERAL TOPOLOGICAL SPACE

(X, τ) WITH APPLICATION TO FIXED POINT THEORY
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Abstract. The main purpose of this paper is to define the notion of a τ -distance
function in a general topological space (X, τ). As application, we get a generalization
of the well known Banach’s fixed point theorem.
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1. Introduction

It is well known that the Banach contraction principle is a fundamental result
in fixed point theory, which has been used and extended In many different direc-
tions ([2],[3],[4],[6],[9]). On the other hand, it has been observed ([3],[5]) that the
distance function used in metric theorems proofs need not satisfy the triangular
inequality nor d(x, x) = 0 for all x. Motivated by this fact, we define the concept
of a τ -distance function in a general topological space (X, τ) and we prove that
symmetrizable topological spaces ([5]) and F-type topological spaces introduced in
1996 by Fang [4] (recall that metric spaces, Hausdorff topological vector spaces and
Menger probabilistic metric space are all a special case of F-type topological spaces)
possess such functions. finally, we give a fixed point theorem for contractive maps
in a general topological space (X, τ) with a τ -distance which gives the Banach’s
fixed point theorem in a new setting and also gives a generalization of jachymski’s
fixed point result [3] established in a semi-metric case.

Department of Mathematics and Informatics, University Hassan-II Mohammedia,
Casablanca , Morocco
E-mail Address: d.elmoutawakil@math.net
c©2003 Cameron University

Typeset by AMS-TEX

1



2 SOUTHWEST JOURNAL OF PURE AND APPLIED MATHEMATICS

2. τ-distance

Let (X, τ) be a topological space and p : X×X −→ IR+ be a function. For any
ε > 0 and any x ∈ X , let Bp(x, ε) = {y ∈ X : p(x, y) < ε}.

Definition 2.1. The function p is said to be a τ -distance if for each x ∈ X and
any neighborhood V of x, there exists ε > 0 with Bp(x, ε) ⊂ V .

Example 2.1. Let X = {0; 1; 3} and τ = {∅;X ; {0; 1}}. Consider the function
p : X ×X −→ IR+ defined by

p(x, y) =







y, x 6= 1

1

2
y, x = 1.

We have, p(1; 3) = 3

2
6= p(3; 1) = 1. Thus, p us not symmetric. Moreover, we have

p(0; 3) = 3 > p(0; 1) + p(1; 3) =
5

2

which implies that p fails the triangular inequality. However, the function p is a
τ -distance.

Example 2.2. Let X = IR+ and τ = {X, ∅}. It is well known that the space
(X, τ) is not metrizable. Consider the function p defined on X×X by p(x, y) = x
for all x, y ∈ X . It is easy to see that the function p is a τ -distance.

Example 2.3. In [5], Hicks established several important common fixed point
theorems for general contractive selfmappings of a symmetrizable (resp. semi-
metrizable) topological spaces. Recall that a symmetric on a set X is a nonnegative
real valued function d defined on X ×X by

(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x)

A symmetric function d on a set X is a semi-metric if for each x ∈ X and each
ε > 0, Bd(x, ε) = {y ∈ X : d(x, y) ≤ ε} is a neighborhood of x in the topology τd

defined as follows

τd = {U ⊆ X/ ∀x ∈ U, Bd(x, ε) ⊂ U, forsome ε > 0}

A topological space X is said to be symmetrizable (semi-metrizable) if its topology
is induced by a symmetric (semi-metric) on X . Moreover, Hicks [5] proved that
very general probabilistic structures admit a compatible symmetric or semi-metric.
For further details on semi-metric spaces (resp. probabilistic metric spaces), see,
for example, [8] (resp. [7]). Each symmetric function d on a nonempty set X is a
τd-distance on X where the topology τd is defined as follows: U ∈ τd if ∀x ∈ U ,
Bd(x, ε) ⊂ U, for some ε > 0.

Example 2.4. Let X = [0,+∞[ and d(x, y) = |x− y| the usual metric. Consider
the function p : X ×X −→ IR+ defined by

p(x, y) = e|x−y|, ∀x, y ∈ X

It is easy to see that the function p is a τ -distance on X where τ is the usual
topology since ∀x ∈ X, Bp(x, ε) ⊂ Bd(x, ε), ε > 0. Moreover, (X, p) is not a
symmetric space since for all x ∈ X , p(x, x) = 1.
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Example 2.5 - Topological spaces of type (EL).

Definition 2.2. A topological space (X, τ) is said to be of type (EL) if for each
x ∈ X , there exists a neighborhood base Fx = {Ux(λ, t)/λ ∈ D, t > 0}, where
D = (D,≺) denotes a directed set, such that X = ∪t>0Ux(λ, t), ∀λ ∈ D, ∀x ∈ X .

remark 2.1. In [4], Fang introduced the concept of F-type topological space and
gave a characterization of the kind of spaces. The usual metric spaces, Hausdorff
topological vector spaces, and Menger probabilistic metric spaces are all the special
cases of F-type topological Spaces. Furtheremore, Fang established a fixed point
theorem in F-type topological spaces which extends Caristi’s theorem [2]. We recall
the concept of this space as given in [4]

Definition [4]. A topological space (X, θ) is said to be F-type topological space
if it is Hausdorff and for each x ∈ X , there exists a neighborhood base Fx =
{Ux(λ, t)/λ ∈ D, t > 0}, where D = (D,≺) denotes a directed set, such that

(1) If y ∈ Ux(λ, t), then x ∈ Uy(λ, t),
(2) Ux(λ, t) ⊂ Ux(µ, s) for µ ≺ λ, t ≤ s,
(3) ∀λ ∈ D, ∃µ ∈ D such that λ ≺ µ and Ux(µ, t1) ∩ Uy(µ, t2) 6= ∅, implies

y ∈ Ux(λ, t1 + t2),
(4) X = ∪t>0Ux(λ, t), ∀λ ∈ D, ∀x ∈ X .

It is clear that a topological space of type F is a Hausdorff topological space of
type (EL). Therefore The usual metric spaces, Hausdorff topological vector spaces,
and Menger probabilistic metric spaces are special cases of a Hausdorff topological
Space of type (EL).

proposition 2.1. Let (X, τ) be a topological space of type (EL). Then, for each
λ ∈ D, there exists a τ -distance function pλ.

Proof. Let x ∈ X and λ ∈ D. Consider the set Ex = {Ux(λ, t)|λ ∈ D, t > 0} of
neighborhoods of x such that X = ∪t>0Ux(λ, t). Then for each y ∈ X , there exists
t∗ > 0 such that y ∈ Ux(λ, t∗). Therefore, for each λ ∈ D, we can define a function
pλ : X ×X −→ IR+ as follows

pλ(x, y) = inf{t > 0, y ∈ Ux(λ, t)}.

set Bλ(x, t) = {y ∈ X |pλ(x, y) < t}. let x ∈ X and Vx a neighborhood of x. Then
the exists (λ, t) ∈ D × IR+, such that Ux(λ, t) ⊂ Vx. We show that Bλ(x, t) ⊂
Ux(λ, t). Indeed, consider y ∈ Bλ(x, t) and suppose that y /∈ Ux(λ, t). It follows that
pλ(x, y) ≥ t, which implies that y /∈ Bλ(x, t). A contradiction. Thus Bλ(x, t) ⊂ Vx.
Therefore pλ is a τ -distance function.

remark 2.2. As a consequence of proposition 3.1, we claim that each topological
space of type (EL) has a familly of τ -distances M = {pλ|λ ∈ D}.

3. Some properties of τ-distances

lemma 3.1. Let (X, τ) be a topological space with a τ -distance p.

(1) Let (xn) be arbitrary sequence in X and (αn) be a sequence in IR+ con-
verging to 0 such that p(x, xn) ≤ αn for all n ∈ IN . Then (xn) converges
to x with respect to the topology τ .
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(2) If (X, τ) is a Hausdorff topological space, then (2.1) p(x, y) = 0 implies
x = y. (2.2) Given (xn) in X,

lim
n→∞

p(x, xn) = 0 and lim
n→∞

p(y, xn) = 0

imply x = y.

Proof.

(1) Let V be a neighborhood of x. Since lim p(x, xn) = 0, there exists N ∈ IN
such that ∀n ≥ N , xn ∈ V . Therefore limxn = x with respect to τ .

(2) (2.1) Since p(x, y) = 0, then p(x, y) < ε for all ε > 0. Let V be a neighbor-
hood of x. Then there exists ε > 0 such that Bp(x, ε) ⊂ V , which implies
that y ∈ V . Since V is arbitrary, we conclude y = x. (2.2) From (2.1),
lim p(x, xn) = 0 and lim p(y, xn) = 0 imply limxn = x and lim xn = y with
respect to the topology τ which is Hausdorff. Thus x = y.

Let (X, τ) be a topological space with a τ -distance p. A sequence in X is p-
Cauchy if it satisfies the usual metric condition with respect to p. There are several
concepts of completeness in this setting.

Definition 3.1. Let (X, τ) be a topological space with a τ -distance p.

(1) X is S-complete if for every p-Cauchy sequence (xn), there exists x in X
with lim p(x, xn) = 0.

(2) X is p-Cauchy complete if for every p-Cauchy sequence (xn), there exists x
in X with limxn = x with respect to τ .

(3) X is said to be p-bounded if sup{p(x, y)/x, y ∈ X} <∞.

remark 3.1. Let (X, τ) be a topological space with a τ -distance p and let (xn) be
a p-Cauchy sequence. Suppose that X is S-complete, then there exists x ∈ X such
that lim p(xn, x) = 0. Lemma 4.1(b) then gives limxn = x with respect to the
topology τ . Therefore S-completeness implies p-Cauchy completeness.

4. Fixed point theorem

In what follows, we involve a function ψ : IR+ −→ IR+ which satisfies the
following conditions

(1) ψ is nondecreasing on IR+ ,
(2) limψn(t) = 0, ∀t ∈]0,+∞[.

It is easy to see that under the above properties, ψ satisfies also the following
condition

ψ(t) < t, foreach t ∈]0,+∞[

Theorem 4.1. Let (X, τ) be a Hausdorff topological space with a τ -distance p.
Suppose that X is p-bounded and S-complete. Let f be a selfmapping of X such
that

p(fx, fy) ≤ ψ(p(x, y)), ∀x, y ∈ X

Then f has a unique fixed point.

Proof. Let x0 ∈ X . Consider the sequence (xn) defined by

{

x0 ∈X,

xn+1 =fxn
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We have

p(xn, xn+m) =p(fxn−1, fxn+m−1)

≤ψ(p(xn−1, xn+m−1)) = ψ(p(fxn−2, fxn+m−2))

≤ψ2(p(xn−2, xn+m−2))

....

≤ψn(p(x0, xm)) ≤ ψn(M)

where M = sup{p(x, y)/x, y ∈ X}. Since limψn(M) = 0, we deduce that the
sequence (xn) is a p-cauchy sequence. X is S-complete, then lim p(u, xn) = 0, for
some u ∈ X , and therefore lim p(u, xn+1) = 0 and lim p(fu, fxn) = 0. Now, we
have lim p(fu, xn+1) = 0 and lim p(u, xn+1) = 0. Therefore, lemma 3.1(2.2) then
gives fu = u. Suppose that there exists u, v ∈ X such that fu = u and fv = v. If
p(u, v) 6= 0, then

p(u, v) = p(fu, fv) ≤ ψ(p(u, v)) < p(u, v)

a contradiction. Therefore the fixed point is unique. Hence we have the theorem.

When ψ(t) = kt, k ∈ [0, 1[, we get the following result, which gives a generaliza-
tion of Banach’s fixed point theorem in this new setting

Corollary 4.1. Let (X, τ) be a Hausdorff topological space with a τ -distance p.
Suppose that X is p-bounded and S-complete. Let f be a selfmapping of X such
that

p(fx, fy) ≤ kp(x, y), k ∈ [0, 1[, ∀x, y ∈ X

Then f has a unique fixed point.

Since a symmetric space (X, d) admits a τd-distance where τd is the topology
defined earlier in example 2.3, corollary 4.1 gives a genaralization of the following
known result (Theorem 1[5] for f = IdX which generalize Proposition 1[3]). Recall
that (W.3) denotes the following axiom given by Wilson [8] in a symmetric space
(X, d): (W.3) Given {xn}, x and y in X , lim d(xn, x) = 0 and lim d(xn, y) = 0 imply
x = y. It is clear that (W.3) guarantees the uniqueness of limits of sequences.

corollary 4.2. Let (X, d) be a d-bounded and S-complete symmetric space satisfy-
ing (W.3) and f be a selfmapping of X such that

d(fx, fy) ≤ kd(x, y), k ∈ [0, 1[, ∀x, y ∈ X

Then f has a fixed point.
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