Electronic Journal: Southwest Journal of Pure and Applied Mathematics Internet: http://rattler.cameron.edu/swjpam.html ISSN 1083-0464
Issue 2, December 2003, pp. 96-104.
Submitted: September 24, 2003. Published: December 31, 2003.

# MULTIPLE RADIAL SYMMETRIC SOLUTIONS FOR NONLINEAR BOUNDARY VALUE PROBLEMS OF $p$-LAPLACIAN 

Qian Zhou and Yuanyuan Ke


#### Abstract

We discuss the existence of multiple radial symmetric solutions for nonlinear boundary value problems of $p$-Laplacian, based on Leggett-Williams's fixed point theorem.


A.M.S. (MOS) Subject Classification Codes. 35J40, 35J65, 35J67.

Key Words and Phrases. Multiple radial symmetric solutions, $p$-Laplacian equation, Leggett-Williams's fixed point theorem.

## 1. Introduction.

In this paper, we consider the existence of multiple radial symmetric solutions of the $p$-Laplacian equation

$$
\begin{equation*}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=g(x) f(x, u), \quad x \in \Omega \tag{1.1}
\end{equation*}
$$

subject to the nonlinear boundary value condition

$$
\begin{equation*}
B\left(\frac{\partial u}{\partial \nu}\right)+u=0, \quad x \in \partial \Omega \tag{1.2}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{n}$ is the unit ball centered at the origin, $\nu$ denotes the unit outward normal to the boundary $\partial \Omega, g(x), f(x, s)$ and $B(s)$ are all the given functions. In order to discuss the radially symmetric solutions, we assume that $g(x)$ and $f(x, s)$ are radially symmetric, namely, $g(x)=g(|x|), f(x, s)=f(|x|, s)$. Let $w(t) \equiv u(|x|)$ with $t=|x|$ be a radially symmetric solution. Then a direct calculation shows that

$$
\begin{equation*}
\left(t^{n-1} \varphi\left(w^{\prime}(t)\right)\right)^{\prime}+t^{n-1} g(t) f(t, w(t))=0, \quad 0<t<1 \tag{1.3}
\end{equation*}
$$

[^0]where $\varphi(s)=|s|^{p-2} s$ and $p>1$, with the boundary value condition
\[

$$
\begin{gather*}
w^{\prime}(0)=0  \tag{1.4}\\
w(1)+B\left(w^{\prime}(1)\right)=0 \tag{1.5}
\end{gather*}
$$
\]

Such a problem arises in many different areas of applied mathematics and the fields of mechanics, physics and has been studied extensively, see [1]-[6]. In particular, the Leggett-Williams fixed point theorem has been used to discuss the multiplicity of solutions. For example, He, Ge and Peng [1] considered the following ordinary differential equation

$$
\left(\varphi\left(y^{\prime}\right)\right)^{\prime}+g(t) f(t, y)=0, \quad 0<t<1
$$

which corresponds to the special case $n=1$ of the equation (1.3), with the boundary value conditions

$$
\begin{aligned}
& y(0)-B_{0}\left(y^{\prime}(0)\right)=0 \\
& y(1)-B_{1}\left(y^{\prime}(1)\right)=0
\end{aligned}
$$

They used the Leggett-Williams fixed point theorem and proved the existence of multi-nonnegative solutions.

In this paper, we extent the results in [1] with $n \geq 1$. We want to use LeggettWilliams's fixed-point theorem to search for solutions of the problem (1.3)-(1.5) too.

This paper is organized as follows. Section 2 collects the preliminaries and statements of results. The proofs of theorems will be given subsequently in Section 3.

## 2. Preliminaries and Main Results

As a preliminary, we first assume that the given functions satisfy the following conditions Preliminaries and Main Results
(A1) $f:[0,1] \times[0,+\infty) \rightarrow[0,+\infty)$ is a continuous function.
(A2) $g:(0,1) \rightarrow[0,+\infty)$ is continuous and is allowed to be singular at the end points of $(0,1), g(t) \not \equiv 0$ on any subinterval of $(0,1)$. In addition,

$$
0<\int_{0}^{1} g(r) d r<+\infty
$$

(A3) $B(s)$ is a continuous, nondecreasing, odd function, defined on $(-\infty,+\infty)$. And there exists a constant $m>0$, such that

$$
0 \leq B(s) \leq m s, \quad s \geq 0
$$

In order to prove the existence of the multi-radially symmetric solutions of the problem (1.3)-(1.5), we need some lemmas.

First, we introduce some denotations. Let $E=(E,\|\cdot\|)$ be a Banach space, $P \subset E$ is a cone. By a nonnegative continuous concave functional $\alpha$ on $P$, we mean a mapping $\alpha: P \rightarrow[0,+\infty)$ that is $\alpha$ is continuous and

$$
\alpha\left(t w_{1}+(1-t) w_{2}\right) \geq t \alpha\left(w_{1}\right)+(1-t) \alpha\left(w_{2}\right)
$$

for all $w_{1}, w_{2} \in P$, and all $t \in[0,1]$. Let $0<a<b, r>0$ be constants. Denote

$$
P_{r}=\{w \in P \mid\|w\|<r\}
$$

and

$$
P(\alpha, a, b)=\{w \in P \mid a \leq \alpha(w),\|w\| \leq b\} .
$$

We need the following two useful lemmas.
Lemma 2.1 (Leggett-Williams's fixed point theorem)Let $T: \bar{P}_{c} \rightarrow \bar{P}_{c}$ be completely continuous and $\alpha$ be a nonnegative continuous concave functional on $P$ such that $\alpha(w) \leq\|w\|$, for all $w \in \bar{P}_{c}$. Suppose there exist $0<a<b<d \leq c$ such that
(B1) $\{w \in P(\alpha, b, d) \mid \alpha(w)>b\} \neq \emptyset$ and $\alpha(T w)>b$, for $w \in P(\alpha, b, d)$,
(B2) $\|T w\|<a$, for $\|w\| \leq a$, and
(B3) $\alpha(T w)>b$, for $w \in P(\alpha, b, c)$ with $\|T w\|>d$.
Then, $T$ has at least three fixed points $w_{1}, w_{2}$ and $w_{3}$ satisfying

$$
\left\|w_{1}\right\|<a, \quad b<\alpha\left(w_{2}\right), \quad \text { and } \quad\left\|w_{3}\right\|>a, \quad \alpha\left(w_{3}\right)<b
$$

Lemma 2.2 Let $w \in P$ and $\delta \in(0,1 / 2)$. Then
(C1) If $0<\sigma<1$,

$$
w(t) \geq\left\{\begin{array}{l}
\frac{\|w\| t}{\sigma}, 0 \leq t \leq \sigma \\
\frac{\|w\|(1-t)}{(1-\sigma)}, \sigma \leq t \leq 1
\end{array}\right.
$$

(C2) $w(t) \geq \delta\|w\|$, for all $t \in[\delta, 1-\delta]$.
(C3) $w(t) \geq\|w\| t, 0 \leq t \leq 1$, if $\sigma=1$.
(C4) $w(t) \geq\|w\|(1-t), 0 \leq t \leq 1$, if $\sigma=0$.
Here $\sigma \in[0,1]$, such that

$$
w(\sigma)=\|w\| \equiv \sup _{t \in[0,1]}|w(t)|
$$

We want to use the fixed-point theorem in Lemma 2.1 to search for solutions of the problem (1.3)-(1.5). By (A2), there exists a constant $\delta \in(0,1 / 2)$, so that

$$
L(x) \equiv \psi\left(\int_{\delta}^{x} g(t) d t\right)+\psi\left(\int_{x}^{1-\delta} g(t) d t\right), \quad \delta \leq x \leq 1-\delta
$$

is a positive and continuous function in $[\delta, 1-\delta]$, where $\psi(s) \equiv|s|^{\frac{1}{(p-1)}} \operatorname{sgn} s$ is the inverse function of $\varphi(s)=|s|^{p-2} s$. For convenience, we set

$$
L \equiv \min _{\delta \leq x \leq 1-\delta} L(x)
$$

and

$$
\lambda=(m+1) \psi\left(\int_{0}^{1} g(r) d r\right)
$$

And in this paper, we set the Banach space $E=C[0,1]$ with the norm defined by

$$
\|w\|=\sup _{t \in[0,1]}|w(t)|, \quad w \in E
$$

The cone $P \subset E$ is specified as,

$$
P=\{w \in E \mid w \text { is a nonnegative concave function in }[0,1]\} .
$$

Furthermore, we define the nonnegative and continuous concave function $\alpha$ satisfying

$$
\alpha(w)=\frac{w(\delta)+w(1-\delta)}{2}, \quad w \in P
$$

Obviously,

$$
\alpha(w) \leq\|w\|, \quad \text { for all } w \in P .
$$

Under all the assumptions (A1)-(A3), we can get the main result as follows
Theorem 2.1 Let $a, b, d, \delta$ be given constants with $0<a<\delta b<b<b / \delta \leq d$, and let the following conditions on $f$ and $\varphi$ are fulfilled:
(D1) For all $(t, w) \in[0,1] \times[0, a], f(t, w)<\varphi\left(\frac{a}{\lambda}\right)$;
(D2) Either
i) $\limsup _{w \rightarrow+\infty} \frac{f(t, w)}{w^{p-1}}<\varphi\left(\frac{1}{\lambda}\right)$, uniformly all $t \in[0,1]$, or
ii) $f(t, w) \leq \varphi\left(\frac{\eta}{\lambda}\right)$, for all $(t, w) \in[0,1] \times[0, \eta]$ with some $\eta \geq d, \lambda>0$;
(D3) $f(t, w)>\varphi\left(\frac{2 b}{\delta L}\right)$, for $(t, w) \in[\delta, 1-\delta] \times[\delta b, d]$ with some $L>0$.
Then, the problem (1.3)-(1.5) have at least three radially symmetric solutions $w_{1}$, $w_{2}$ and $w_{3}$, such that

$$
\left\|w_{1}\right\|<a, \quad \alpha\left(w_{2}\right)>b, \quad \text { and } \quad\left\|w_{3}\right\|>a, \quad \alpha\left(w_{3}\right)<b
$$

## 3. Proofs of the Main Results

We are now in a position to prove our main results.
Proof of Theorem 2.1. Define $T: P \rightarrow E, w \mapsto W$, where $W$ is determined by

$$
\begin{aligned}
W(t)= & (T w)(t) \\
\triangleq B & \circ \psi\left(\int_{0}^{1} r^{n-1} g(r) f(r, w(r)) d r\right) \\
& +\int_{t}^{1} \psi\left(s^{-(n-1)} \int_{0}^{s} r^{n-1} g(r) f(r, w(r)) d r\right) d s, \quad t \in[0,1]
\end{aligned}
$$

for each $w \in P$.
First we prove each fixed point of $W$ in $P$ is a solution of (1.3)- (1.5). By the definition of $W$, we have

$$
W^{\prime}(t)=(T w)^{\prime}(t)=-\psi\left(t^{-(n-1)} \int_{0}^{t} r^{n-1} g(r) f(r, w(r)) d r\right)
$$

Noticing that

$$
\begin{aligned}
& \left|-\psi\left(t^{-(n-1)} \int_{0}^{t} r^{n-1} g(r) f(r, w(r)) d r\right)\right| \\
= & \left|-\psi\left(\int_{0}^{t}\left(\frac{r}{t}\right)^{n-1} g(r) f(r, w(r)) d r\right)\right| \\
\leq & \left|-\psi\left(\int_{0}^{t} g(r) f(r, w(r)) d r\right)\right|
\end{aligned}
$$

and by the integrability of $g$ and $f$, we have

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} W^{\prime}(t)=\lim _{t \rightarrow 0^{+}} \psi\left(\int_{0}^{t} g(r) f(r, w(r)) d r\right)=0 \tag{3.1}
\end{equation*}
$$

Considering

$$
W^{\prime}(0)=\lim _{t \rightarrow 0} \frac{W(t)-W(0)}{t}
$$

and

$$
\begin{aligned}
& W(t)-W(0) \\
= & \int_{t}^{1} \psi\left(s^{-(n-1)} \int_{0}^{s} r^{n-1} g(r) f(r, w(r)) d r\right) d s \\
& \quad-\int_{0}^{1} \psi\left(s^{-(n-1)} \int_{0}^{s} r^{n-1} g(r) f(r, w(r)) d r\right) d s \\
= & -\int_{0}^{t} \psi\left(s^{-(n-1)} \int_{0}^{s} r^{n-1} g(r) f(r, w(r)) d r\right) d s
\end{aligned}
$$

and by using L'Hospital's rule, we get

$$
\begin{aligned}
W^{\prime}(0) & =\lim _{t \rightarrow 0} \frac{W(t)-W(0)}{t} \\
& =\lim _{t \rightarrow 0}(W(t)-W(0))^{\prime} \\
& =-\lim _{t \rightarrow 0} \psi\left(t^{-(n-1)} \int_{0}^{t} r^{n-1} g(r) f(r, w(r)) d r\right) d s \\
& =0 .
\end{aligned}
$$

Recalling (3.1), we know that $W^{\prime}(t)$ is right-continuous at the point $t=0$, and $W^{\prime}(0)=0$, namely, the fixed point of $W$ satisfies (1.4). By the assumption (A1) and (A2), we also have

$$
W^{\prime}(t)=(T w)^{\prime}(t) \leq 0
$$

Then $\|T w\|=(T w)(0)$. On the other hand, since

$$
W(1)=B \psi\left(\int_{0}^{1} r^{n-1} g(r) f(r, w(r)) d r\right)
$$

and

$$
B\left(W^{\prime}(1)\right)=-B \psi\left(\int_{0}^{1} r^{n-1} g(r) f(r, w(r)) d r\right)
$$

we see that

$$
W(1)+B\left(w^{\prime}(1)\right)=0,
$$

namely, the fixed point of $W$ also satisfies (1.5).
Next we show that the conditions in Lemma 2.1 are satisfied. We first prove that condition (D2) implies the existence of a number $c$ where $c>d$ such that

$$
W: \bar{P}_{c} \rightarrow \bar{P}_{c} .
$$

If ii) of (D2) holds, by the condition (A3), we see that

$$
\begin{aligned}
\|T w\|= & (T w)(0) \\
= & B \circ \psi\left(\int_{0}^{1} r^{n-1} g(r) f(r, w(r)) d r\right) \\
& +\int_{0}^{1} \psi\left(s^{-(n-1)} \int_{0}^{s} r^{n-1} g(r) f(r, w(r)) d r\right) d s \\
\leq & m \psi\left(\int_{0}^{1} r^{n-1} g(r) f(r, w(r)) d r\right) \\
& +\int_{0}^{1} \psi\left(\int_{0}^{s}\left(\frac{r}{s}\right)^{n-1} g(r) f(r, w(r)) d r\right) d s \\
\leq & (m+1) \psi\left(\int_{0}^{1} g(r) f(r, w(r)) d r\right) \\
\leq & (m+1) \psi\left(\int_{0}^{1} g(r) \varphi\left(\frac{\eta}{\lambda}\right) d r\right) \\
= & (m+1) \psi\left(\int_{0}^{1} g(r) d r\right) \psi\left(\varphi\left(\frac{\eta}{\lambda}\right)\right) \\
= & \frac{\eta}{\lambda}(m+1) \psi\left(\int_{0}^{1} g(r) d r\right) \\
= & \eta, \quad \quad \text { for } w \in \bar{P}_{\eta} .
\end{aligned}
$$

Then, if we select $c=\eta$, there must be $W: \bar{P}_{c} \rightarrow \bar{P}_{c}$.
If i) of (D2) is satisfied, then there must exist $D>0$ and $\epsilon<\varphi(1 / \lambda)$, so that

$$
\begin{equation*}
\frac{f(t, w)}{w^{p-1}}<\epsilon, \quad \text { for }(t, w) \in[0,1] \times[D,+\infty) \tag{3.2}
\end{equation*}
$$

Let $M=\max \{f(t, w) \mid 0 \leq t \leq 1,0 \leq w \leq D\}$. By (3.2), we obtain

$$
\begin{equation*}
f(t, w) \leq M+\epsilon w^{p-1}, \quad \text { for }(t, w) \in[0,1] \times[0,+\infty) \tag{3.3}
\end{equation*}
$$

Selecting a proper real number $c$, so that

$$
\begin{equation*}
\varphi(c)>\max \left\{\varphi(d), M\left(\varphi\left(\frac{1}{\lambda}\right)-\epsilon\right)^{-1}\right\} . \tag{3.4}
\end{equation*}
$$

Utilizing (3.2), (3.3) and (3.4), we have

$$
\begin{aligned}
\|T w\|= & (T w)(0) \\
= & B \circ \psi\left(\int_{0}^{1} r^{n-1} g(r) f(r, w(r)) d r\right) \\
& +\int_{0}^{1} \psi\left(s^{-(n-1)} \int_{0}^{s} r^{n-1} g(r) f(r, w(r)) d r\right) d s \\
\leq & m \psi\left(\int_{0}^{1} r^{n-1} g(r) f(r, w(r)) d r\right) \\
& +\int_{0}^{1} \psi\left(\int_{0}^{s}\left(\frac{r}{s}\right)^{n-1} g(r) f(r, w(r)) d r\right) d s \\
\leq & (m+1) \psi\left(\int_{0}^{1} g(r) f(r, w(r)) d r\right) \\
\leq & (m+1) \psi\left(\int_{0}^{1} g(r)\left(M+\epsilon w^{p-1}\right) d r\right) \\
= & (m+1) \psi\left(\int_{0}^{1} g(r)\left(M\left(\varphi\left(\frac{1}{\lambda}\right)-\epsilon\right)^{-1}\left(\varphi\left(\frac{1}{\lambda}\right)-\epsilon\right)+\epsilon w^{p-1}\right) d r\right) \\
\leq & (m+1) \psi\left(\int_{0}^{1} g(r)\left(\varphi(c)\left(\varphi\left(\frac{1}{\lambda}\right)-\epsilon\right)+\epsilon c^{p-1}\right) d r\right) \\
= & (m+1) \psi\left(\int_{0}^{1} g(r) d r\right) \frac{c}{\lambda}=c, \quad \text { for } w \in \bar{P}_{c} .
\end{aligned}
$$

So we obtain $\|W\| \leq c$, that is $W: \bar{P}_{c} \rightarrow \bar{P}_{c}$.
Then we want to verify that $W$ satisfies the condition (B2) in Lemma 2.1. If $\|w\| \leq a$, then by the condition (D1), we know

$$
f(t, w)<\varphi\left(\frac{a}{\lambda}\right), \quad \text { for } 0 \leq t \leq 1, \quad 0 \leq w \leq a
$$

We use the methods similarly to the above, and can get $\|W\|=\|T w\|<a$, that is, $W$ satisfies (B2).

To fulfill condition (B1) of Lemma 2.1, we note that $w(t) \equiv(b+d) / 2>b$, $0 \leq t \leq 1$, is the member of $P(\alpha, b, d)$ and $\alpha(w)=\alpha((b+d) / 2)>b$, hence $\{w \in P(\alpha, b, d) \mid \alpha(w)>b\} \neq \emptyset$. Now assume $w \in P(\alpha, b, d)$. Then

$$
\alpha(w)=\frac{w(\delta)+w(1-\delta)}{2} \geq b, \quad \text { and } b \leq\|w\| \leq d
$$

Utilizing the condition (C2) in Lemma 2.2, we know that for all $s$, which satisfying $\delta \leq s \leq 1-\delta$, there has

$$
\delta b \leq \delta\|w\| \leq w(s) \leq d
$$

And meanwhile, we can select a proper $\varepsilon$, so that

$$
\left(\frac{\varepsilon}{s}\right)^{n-1}>\left(\frac{\varepsilon}{1-\delta}\right)^{n-1}>\frac{1}{2}
$$

Combining the condition (D3), we can see

$$
\begin{aligned}
\alpha(T w) & =\frac{(T w)(\delta)+(T w)(1-\delta)}{2} \\
& \geq(T w)(1-\delta) \\
& \geq \int_{1-\delta}^{1} \psi\left(\int_{0}^{s}\left(\frac{r}{s}\right)^{n-1} g(r) f(r, w(r)) d r\right) d s \\
& \geq \int_{1-\delta}^{1} \psi\left(\int_{\varepsilon}^{s}\left(\frac{r}{s}\right)^{n-1} g(r) f(r, w(r)) d r\right) d s \\
& \geq \int_{1-\delta}^{1} \psi\left(\int_{\varepsilon}^{s}\left(\frac{\varepsilon}{s}\right)^{n-1} g(r) f(r, w(r)) d r\right) d s \\
& \geq \int_{1-\delta}^{1} \psi\left(\left(\frac{\varepsilon}{s}\right)^{n-1} \int_{\delta}^{1-\delta} g(r) f(r, w(r)) d r\right) d s \\
& >\int_{1-\delta}^{1} \psi\left(\frac{1}{2} \int_{\delta}^{1-\delta} g(r) \varphi\left(\frac{2 b}{\delta L}\right) d r\right) d s \\
& =\frac{1}{2} \delta \psi\left(\int_{\delta}^{1-\delta} g(r) d r\right) \frac{2 b}{\delta L} \\
& \geq b
\end{aligned}
$$

That is (B1) is well verified.
Finally, we prove (B3) of Lemma 2.1 is also satisfied. For $w \in P(\alpha, b, c)$, we have $\|T w\|>d$. By using the condition (C2) in Lemma 2.2, we get

$$
\alpha(T w)=\frac{(T w)(\delta)+(T w)(1-\delta)}{2} \geq \delta\|T w\|>\delta d>b
$$

Then, the condition (B3) in Leggett-Williams's fixed point theorem is well verified.
Using the above results and applying Leggett-Williams's fixed point theorem, we can see that the operator $W$ has at least three fixed points, that is the problem (1.3)-(1.5) have at least three radially symmetric solutions $w_{1}, w_{2}$ and $w_{3}$, which satisfying

$$
\left\|w_{1}\right\|<a, \quad \alpha\left(w_{2}\right)>b, \quad \text { and } \quad\left\|w_{3}\right\|>a, \quad \alpha\left(w_{3}\right)<b
$$

The proof is complete.

## References

1. He, X. M., Ge, W. G. and Peng, M. S. : Multiple positive solution for onedimensional p-Laplacian boundary value problems, Applied Mathematics Letters, 15(2002), 937-943.
2. Wang, J. Y. : The existence of positive solution for one-dimensional p-Laplacian, Proc. Amer. Math. Soc., 125(1997), 2275-2283.
3. Yao, Q. L. and Lu, H. C. : Positive solution of one-dimensional singular pLaplacian equations, (in Chinese), Acta Mathematica Sinica, 14(1998), 12551264.
4. Henderson, J. and Thompson, H. B. : Multiple symmetric positive solutions for a second order boundary value problem, Proc. Amer. Math. Soc., 128(2000), 2372-2379.
5. Anderson, D. : Multiple positive solutions for a three-point boundary value problem, Math. J. Comput. Modelling, 27(1998)(6), 49-57.
6. Avery, R. I. : Three symmetric positive solutions for a second-order boundary value problem, Appl. Math. Lett., 13(2000)(3), 1-7.

[^0]:    Department of Mathematics, Jilin University, P. R. China.
    E-mail Address: keyy@email.jlu.edu.cn
    (C)2003 Cameron University

