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A SOLUTION TO AN ”UNSOLVED

PROBLEM IN NUMBER THEORY”

Allan J. MacLeod

Abstract. We discuss the problem of finding integer-sided triangles with the ratio
base/altitude or altitude/base an integer. This problem is mentioned in Richard
Guy’s book ”Unsolved Problems in Number Theory”. The problem is shown to be
equivalent to finding rational points on a family of elliptic curves. Various computa-
tional resources are used to find those integers in [1, 99] which do appear, and also
find the sides of example triangles.
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1. Introduction

Richard Guy’s book Unsolved Problems in Number Theory [5] is a rich source of
fascinating problems. The final 3 paragraphs in section D19 of this book discuss
the following problem:

Problem Which integers N occur as the ratios base/height in integer-sided trian-
gles?

Also mentioned is the dual problem where height/base is integer. Some numerical
examples are given together with some more analytical results, but no detailed
analysis is presented.

Let BCD be a triangle with sides b,c,d using the standard naming convention. Let
a be the height of B above the side CD. If one of the angles at C or D is obtuse
then the height lies outside the triangle, otherwise it lies inside.

Assume, first, that we have the latter. Let E be the intersection of the height and
CD, with DE = z and EC = b − z. Then
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(1)
a2 + z2 = c2

a2 + (b − z)2 = d2

Now, if base/height = N, the second equation is

a2 + (z − Na)2 = d2

For altitudes outside the triangle the equations are the same, except for z − Na
replaced by z + Na. We thus consider the general system, with N positive or
negative.

(2)
a2 + z2 = c2

a2 + (z − Na)2 = d2

Clearly, we can assume that a and z have no common factors, so there exists integers
p and q (of opposite parities) such that (1) a = 2pq,z = p2 − q2, or (2) a = p2 − q2,
z = 2pq.

As a first stage, we can set up an easy search procedure. For a given pair (p, q),
compute a and x using both the above possibilities. For N in a specified range test
whether the resulting d value is an integer square.

This can be very simply done using the software package UBASIC, leading to
the results in Table 1, which come from searching with 3 ≤ p + q ≤ 999 and
−99 ≤ N ≤ 99.

This table includes results for the formulae quoted in Guy, namely N = 2m(2m2+1)
and N = 8t2 ± 4t + 2, and the individual values quoted except for N = 19. It also
includes solutions from other values.

It is possible to extend the search but this will take considerably more time and
there is no guarantee that we will find all possible values of N. We need alternative
means of answering the following questions:

(1) can we say for a specified value of N whether a solution exists?

(2) if one exists, can we find it?

2. Elliptic Curve Formulation

In this section, we show that the problem can be considered in terms of elliptic
curves.

Assuming a = 2pq and z = p2 − q2, then the equation for d is

(3) d2 = p4 − 4Np3q + (4N2 + 2)p2q2 + 4Npq3 + q4

Define j = d/q2 and h = p/q, so that
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Table 1. Solutions for 2 ≤ N ≤ 99

N b c d N b c d

5 600 241 409 6 120 29 101
8 120 17 113 9 9360 1769 10841

13 291720 31849 315121 14 2184 685 1525
15 10920 2753 8297 18 6254640 439289 6532649
20 46800 8269 54781 26 15600 5641 10009
29 3480 169 3601 29 737760 31681 719329
29 706440 336841 371281 34 118320 4441 121129
36 4896 305 4625 40 24480 1237 23413
40 24360 3809 20609 40 741000 274853 1015397
42 24360 3389 21029 42 68880 26921 42041
42 2270520 262909 2528389 48 118320 4033 121537
61 133224 2305 132505 62 226920 93061 133981
68 4226880 90721 4293409 86 614040 260149 354061
94 3513720 42709 3493261 99 704880 198089 506969

(4) j2 = h4 − 4Nh3 + (4N2 + 2)h2 + 4Nh + 1

This has an obvious rational point h = 0, j = 1, and so is birationally equivalent
to an elliptic curve, see Mordell [7]. Using standard algebra, we can can link this
equation to the curve

(5) EN : y2 = x3 + (N2 + 2)x2 + x

with the transformations h = p/q = (Nx + y)/(x + 1).

If, however, a = p2 − q2 and z = 2pq, we have a different quartic for d2, but leading
to the same elliptic curve, with the relevant transformation p/q = (Nx + x + y +
1)/(Nx − x + y − 1).

Thus the existence of solutions to the original problem is related to the rational
points lying on the curve. There is the obvious point (x, y) = (0, 0), which gives
p/q = 0 or p/q = −1, neither of which give non-trivial solutions. A little thought
shows the points (−1,±N), giving p/q = ∞, p/q = 0/0, or p/q = 1, again failing
to give non-trivial solutions.

We can, in fact, invert this argument and show the following

Lemma: If (x, y) is a rational point on the elliptic curve EN with x 6= 0 or
x 6= −1, then we get a non-trivial solution to the problem.

The proof of this is a straightforward consideration of the situations leading to
p2 − q2 = 0 or pq = 0, and showing that the only rational points which can cause
these are x = 0 or x = −1. It is also clear that if a or z become negative we can
essentially ignore the negative sign.
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3. Torsion Points

It is well known that the rational points on an elliptic curve form a finitely-generated
group, which is isomorphic to the group T ⊕ Z

r, where r ≥ 0 is the rank of the
elliptic curve, and T is the torsion subgroup of points of finite order.

We first consider the torsion points. The point at infinity is considered the identity
of the group. Points of order 2 have y = 0, so (0, 0) is one. The other roots of
y = 0 are irrational for N integral, so there is only one point of order 2. Thus, by
Mazur’s theorem, the torsion subgroup is isomorphic to Z/nZ, with the symmetry
of the curve about y = 0 ensuring N one of 2, 4, 6, 8, 10, 12.

For elliptic curves of the form y2 = x(x2 + ax + b), a point P = (x, y) leads to 2P
having x-coordinate (x2 − b)2/4y2. Thus, if P has order 4, then 2P has order 2, so
2P=(0,0) for the curves EN . Thus x2 − 1 = 0, so that x = ±1. The value x = 1

gives y =
√

N2 + 4, which is irrational. x = −1 gives y = ±N , so that (−1,±N)
are the only order 4 points. This reduces the possibilities for the torsion subgroup
to Z/4Z, Z/8Z, or Z/12Z.

For Z/8Z, we would have 4 points of order 8. Suppose Q is of order 8, giving 2Q of
order 4. Thus the x-coordinate of 2Q must be -1, but as we stated previously, the
x-coordinate of 2Q is a square. Thus there cannot be any points of order 8.

For Z/12Z, we would have 2 points of order 3, which correspond to any rational
points of inflection of the elliptic curve. These are solutions to

(6) 3x4 + 4(N2 + 2)x3 + 6x2 − 1 = 0

If x = r/s is a rational solution to this, then s|3 and r|1, so the only possible
rational roots are ±1 and ±1/3. Testing each shows that they are not roots for any
value of N.

Thus, the torsion subgroup consists of the point at infinity, (0,0), (−1,±N). As we
saw, in the previous section, these points all lead to trivial solutions. We thus have
proven the following

Theorem: A non-trivial solution exists iff the rank of EN is at least 1. If the
rank is zero then no solution exists.

4. Parametric Solutions

As mentioned in the introduction, Guy quotes the fact that solutions exist for
N = 2m(2m2 + 1) and N = 8t2 ± 4t + 2, though without any indication of how
these forms were discovered. We show, in this section, how to use the elliptic curves
EN to determine new parametric solutions.

The simple approach used is based on the fact that rational points on elliptic curves
of the form

y2 = x3 + ax2 + bx

have x = du2/v2 with d|b. Thus, for EN , we can only have d = ±1.

We look for integer points so v = 1, and searched over 1 ≤ N ≤ 999 and 1 ≤ u ≤
99999 to find points on the curve. The data output is then analysed to search for
patterns leading to parametric solutions.
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For example, the above sequences have points P given by

1. N = 2m(2m2 + 1), P = (4m2, 2m(8m4 + 4m2 + 1)),

2. N = 8t2 + 4t + 2, P = (−(8t2 + 4t + 1)2, 2(4t + 1)(4t2 + 2t + 1)(8t2 + 4t + 1)),

3. N = 8t2 − 4t + 2, P = (−(8t2 − 4t + 1)2, 2(4t − 1)(4t2 − 2t + 1)(8t2 − 4t + 1)).

These parametric solutions are reasonably easy to see in the output data. Slightly
more difficult to find is the solution with N = 4(s2+2s+2), x = (2s3+6s2+7s+3)2

and y = (s + 1)(s2 + 2s + 2)(2s2 + 4s + 3)(4s4 + 16s3 + 32s2 + 32s + 13).

Using p/q = (Nx + y)/(x + 1) with a = 2pq, z = p2 − q2, we find the following
formulae for the sides of the triangles:

b = 8(s + 1)(s2 + 2s + 2)(2s2 + 2s + 1)(2s2 + 4s + 3)(2s2 + 6s + 5)

c =16s10 + 192s9 + 1056s8 + 3504s7 + 7768s6 + 12024s5

+ 13168s4 + 10076s3 + 5157s2 + 1594s + 226

d =16s10 + 128s9 + 480s8 + 1104s7 + 1720s6

+ 1896s5 + 1504s4 + 868s3 + 381s2 + 138s + 34

Other parametric solutions can be found by adding the points on the curve to the
torsion points.

5. Rank Calculations

We now describe a computational approach to the determination of the rank. This
follows the approach of Zagier & Kramarcz [10] or Bremner & Jones [2] for example.
The computations are based on the Birch and Swinnerton-Dyer (BSD) conjecture,
which states (roughly) - if an elliptic curve has rank r, then the L-series of the curve
has a zero of order r at the point 1. Smart [9] calls this the ”conditional algorithm”
for the rank.

The L-series of an elliptic curve can be defined formally as

L(s) =
∞
∑

k=1

ak

ks

where ak are integers which depend on the algebraic properties of the curve. This
form is useless for effective computation at s = 1, so we use the following form from
Proposition 7.5.8. of Cohen [3]

L(1) =

∞
∑

k=1

ak

k

(

exp(−2πkA/
√

N∗) + ε exp(−2πk/(A
√

N∗))
)

with ε = ±1 - the sign of the functional equation, N ∗ - the conductor of the
equation, and A ANY number.

N∗ can be computed by Tate’s algorithm - see Algorithm 7.5.3 of Cohen, while ε
can be computed by computing the right-hand sum at two close values of A - say



14 SOUTHWEST JOURNAL OF PURE AND APPLIED MATHEMATICS

1 and 1.1 - and seeing which choice of ε leads to agreement (within rounding and
truncation error). If ε = 1 then the curve has even rank, whilst if ε = −1 the curve
has odd rank.

We thus determine the value of ε. If ε = 1, we compute

L(1) = 2

∞
∑

k=1

ak

k
exp(−2πk/

√
N∗)

and, if this is non-zero, then we assume r = 0, whilst, if zero, r ≥ 2. For ε = −1,
we compute

L′(1) = 2

∞
∑

k=1

ak

k
E1(2πk/

√
N∗)

with E1 the standard exponential integral special function. If this is non-zero, then
we assume r = 1, whilst if zero, r ≥ 3.

The most time-consuming aspect of these computations is the determination of the
ak values. Cohen gives a very simple algorithm which is easy to code, but takes a
long time for k large. To achieve convergence in the above sums we clearly need
k = O(

√
N∗). Even in the simple range we consider, N∗ can be several million, so

we might have to compute many thousands of ak values.

6. Numerical Results

Using all the ideas of the previous section, we wrote a UBASIC program to estimate
the rank of EN for 1 ≤ N ≤ 99. The results are given in the following table. We
have no proof that these values are correct, but for every value of N with rank
greater than 0 we have found a non-trivial solution to the original triangle problem.

TABLE 2. Rank of EN for 1 ≤ N ≤ 99

0 1 2 3 4 5 6 7 8 9

00+ 0 0 0 0 1 1 0 1 1
10+ 0 0 0 1 1 1 0 1 1 1
20+ 1 1 1 1 0 0 1 0 0 2
30+ 0 1 1 0 1 1 1 1 1 0
40+ 2 0 2 1 1 1 0 0 1 0
50+ 0 0 1 2 0 0 0 0 0 0
60+ 0 2 2 1 0 0 0 0 2 1
70+ 0 1 1 1 1 0 1 1 0 1
80+ 0 0 0 1 1 2 2 1 0 0
90+ 0 0 1 1 1 1 0 1 1 2

To find an actual solution, we can assume that x = du2/v2 and y = duw/v3, with
(u, v) = 1 and d squarefree, and hence that



A SOLUTION TO AN ”UNSOLVED PROBLEM IN NUMBER THEORY 15

w2 = du4 + (N2 + 2)u2v2 + v4/d

implying that d = ±1.

For curves with rank 2, we found that a simple search quickly finds a solution. This
also holds for a few rank 1 curves, but most curves did not produce an answer in a
reasonable time.

A by-product of the L-series calculation is an estimate H of the height of a rational
point on the curve. The height gives a rough idea of how many decimal digits
will be involved in a point, and thus how difficult it will be to compute it. The
following formula gives the height, see Silverman [8] for a more precise definition of
the quantities involved.

H =
L′(1) T 2

2 |X| Ω c

where T is the order of the torsion subgroup, X is the Tate-Safarevic group, Ω is
the real period of the curve, and c is the Tamagawa number of the curve.

There is no known algorithm to determine |X| and so we usually use the value 1
in the formula. Note that for this problem T = 4, and that this formula gives a
value half that of an alternative height normalisation used in Cremona [4].

Unfortunately, this value is not always the height of the generator of the infinite
subgroup, but sometimes of a multiple. An example comes from N = 94, where
the height calculation gave a value H = 55.1, suggesting a point with tens of digits
in the numerator and denominator. We actually found a point with x = 4/441.

To determine the values of (d, u, v, w), we used a standard descent procedure as
described by Cremona or Bremner et al [1]. We consider equation (11) firstly as

w2 = dz2 + (N2 + 2)zt + t2/d

Since this is a quadratic, if we find a simple numerical solution, we can parameterise
z = f1(r, s) and t = f2(r, s), with f1 and f2 homogeneous quadratics in r and s.
We then look for solutions to z = ku2, t = kv2, with k squarefree.

Considering q = kv2, if we find a simple numerical solution we can parameterise
again for r and s as quadratics, which are substituted into p = ku2, giving a quartic
which needs to be square. We search this quartic to find a solution.

We wrote a UBASIC code which performs the entire process very efficiently. This
enabled most solutions with heights up to about 16 to be found.

For larger heights we can sometimes use the fact that the curve EN is 2-isogenous
to the curve

f2 = g3 − 2(N2 + 2)g2 + N2(N2 + 4)g

with x = f2/4g2 and y = f(g2−N2(N2 +4))/8g2. This curve has the same rank as
EN and sometimes a point with estimated height half that of the equivalent point
on EN .
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For points with height greater than about 20, however, we used a new descent
method which involves trying to factorise the quartic which arises in the descent
method discussed above. This method is described in the report [6]. This has
enabled us to complete a table of solutions for all values in the range 1 < N ≤ 99.

The largest height solved is for N = 79 with E79 having equation y2 = x3 +
6243x2 + x. The estimated height is roughly 40, but the 2-isogenous curve f 2 =
g3 − 12486g2 + 38975045g was indicated to have a point with height about 20.

We found a point with

g =
2836 8499 3467 6319 5139 0020

4689 8490 9449 9234 0041

leading to a point on the original curve with

x =
2654 7926 1289 1944 1996 8505 1867 1143 3025

1705 4187 5947 7256 7676 9862 5643 5806 2336

For interested readers, this point leads to the triangle with sides

b =1465869971847782318353219719440069878

8657474856586410826213286741631164960

c =892767653488748588760336294270957750

7378277308118665999941086255389471249

d =573595369182305619553786626779319292

6159738767971279754707312477117108209

7. Altitude/Base

If we wish altitude/base=M, then we can use the theory of section 2, with N = 1/M .
If we define s = M3y, t = M2x, we get the system of elliptic curves FM , given by

s2 = t3 + (2M2 + 1)t2 + M4t

These curves have clearly the same torsion structure as EN , with the point at
infinity, (0, 0), and (−M2,±M2) being the torsion points. We can also search for
parametric solutions, and we found that M = s(s + 2) has the following points:

1. (s3(s + 2),±s3(s + 2)(2s2 + 4s + 1)),

2. (s(s + 2)3,±s(s + 2)3(2s2 + 4s + 1)),

3. (−s(s + 2)(s + 1)2,±s(s + 1)(s + 2))

If we call the first point Q, then the second point comes from Q + (0, 0) and the
third from Q + (−M2, M2).

Considering Q, we find
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TABLE 3. Rank of FM for 1 ≤ M ≤ 99

0 1 2 3 4 5 6 7 8 9

00+ 0 0 1 0 1 0 1 1 0
10+ 1 0 0 1 0 1 0 0 1 0
20+ 0 1 0 0 1 0 0 1 0 0
30+ 1 0 0 0 0 1 0 1 0 1
40+ 1 2 2 2 1 0 0 1 1 1
50+ 0 1 1 0 0 2 0 1 1 0
60+ 1 1 1 2 1 0 0 1 1 0
70+ 1 1 1 1 1 0 1 1 0 0
80+ 2 1 0 0 0 0 1 0 2 0
90+ 0 1 0 1 0 1 0 0 0 1

b = 2(s + 1) , c = s(2s2 + 6s + 5) , d = (s + 2)(2s2 + 2s + 1)

which always gives an obtuse angle.

The BSD conjecture gives rank calculations listed in Table 3.

As before, we used a variety of techniques to find non-torsion points on FM . We
must say that these curves proved much more testing than EN . Several hours
computation on a 200MHz PC were needed for M = 47, while we have not been
able to find a point for M = 67, which has an estimated height of 45.7, though this
is the only value in [1, 99] for which we do not have a rational point.
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