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TYPE MULTIVALUED MAPPINGS
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Abstract. In the present paper we prove some fixed point theorems for near-
contractive type multivalued mappings in complete metric spaces. these theorems
extend some results in [1], [5], [6] and others
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1 Basic Preliminaries

Let (X, d) be a metric space we put:

CB = {A : A is a nonempty closed and bounded subset of X }

BN = {A : A is a nonempty bounded subset of X }

If A, B are any nonempty subsets of X we put:

D(A, B) = inf{d(a, b) : a ∈ A, b ∈ B},

δ(A, B) = sup{d(a, b) : a ∈ A, b ∈ B},

H(A, B) = max{ {sup{D(a, B) : a ∈ A}, sup{D(b, A) : b ∈ B} }.

If follows immediately from the definitoin that

δ(A, B) = 0 iff A = B = {a},

H(a, B) = δ(a, B),

δ(A, A) = diamA,

δ(A, B) ≤ δ(A, C) + δ(A, C),

D(a, A) = 0 if a ∈ A,

for all A, B, C in BN(X) and a in X.

In general both H and δ may be infinite. But on BN(X) they are finite. More-
over, on CB(X) H is actually a metric ( the Hansdorff metric).
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Definition 1.1. [2] A sequence {An} of subsets of X is said to be convergent to a

subset A of X if

(i) given a ∈ A, there is a sequence {an} in X such that an ∈ An for n = 1, 2, ...,

and {an} converges to a

(ii) given ε > 0 there exists a positive integer N such that An ⊆ Aε for n > N

where Aε is the union of all open spheres with centers in A and radius ε

Lemma 1.1. [2,3].If {An} and {Bn} are seqences in BN(X) converging to A and

B in BN(X) respectively, then the sequence {δ(An, Bn)} converges to δ(A, B).

Lemma 1.2. [3] Let {An} be a sequence in BN(X) and x be a point of X such

that δ(An, x) → 0. Then the sequence {An} converges to the set {x} in BN(X).

Definition 1.2. [3] A set-valued mapping F of X into BN(X) is said to be contin-

uous at x ∈ X if the sequence {Fxn} in BN(X) converges to Fx whenever {xn} is

a sequence in X converging to x in X. F is said continuous on X if it is continuous

at every point of X.

The following Lemma was proved in [3]

Lemma 1.3. Let {An} be a sequence in BN(X) and x be a point of X such that

lim
n→∞

an = x,

x being independent of the particular choice of an ∈ An. If a selfmap I of X is

continuous, then Ix is the limit of the sequence {IAn}.

Definition 1.3. [4]. The mappings I : X → X and F : X → BN(X) are δ-

compatible if limn→∞ δ(FIxn, IFxn) = 0 whenever {xn} is a sequence in X such

that IFxn ∈ BN(X),
Fxn → t and Ixn → t

for some t in X.

2. Our Results

We establish the following:

2. 1. A Coincidence Point Theorem

Theorem 2.1. Let I : X → X and T : X → BN(X) be two mappings such that

FX ⊂ IX and

(C.1) φ(δ(Tx, Ty)) ≤ aφ(d(Ix, Iy)) + b[φ(H(Ix, Tx)) + φ(H(Iy, Ty))]

+ c min{φ(D(Iy, Tx)), φ(D(Ix, Ty))},

where x, y ∈ X, φ : R
+ −→ R

+ is continuous and strictly increasing such that

φ(0) = 0. a, b, c are nonnegative, a + 2b < 1 and a + c < 1. Suppose in addition

that {F, I} are δ-compatible and F or I is continuous. Then I and T have a unique

common fixed point z in X and further Tz = {z}.
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Proof. Let x0 ∈ X be an arbitrary point in X . Since TX ⊂ IX we choose a point
x1 in X such that Ix1 ∈ Tx0 = Y0 and for this point x1 there exists a point x2 in
X such that Ix2 ∈ Tx1 = Y1, and so on. Continuing in this manner we can define
a sequence {xn} as follows:

Ixn+1 ∈ Txn = Yn

For sinplicity, we can put Vn = δ(Yn, Yn+1), for n = 0, 1, 2, .... By (C, 1) we have

φ(Vn) = φ(δ(Yn, Yn+1)) = φ(δ(Txn, Txn+1))

≤ aφ(d(Ixn, Ixn+1)) + b[φ(H(Ixn, Txn)) + φ(H(Ixn+1, Txn+1))]

+ c min{φ(D(Ixn+1, Txn)), φ(D(Ixn, Txn+1))}

≤ A1 + A2 + A3

Where
A1 = aφ(δ(Yn−1, Yn))

A2 = b[φ(δ(Yn−1, Yn)) + φ(δ(Yn, Yn+1))],

A3 = cφ(D(Ixn+1, Yn)).

So
φ(Vn) ≤ aφ(Vn−1) + b[φ(Vn−1) + φ(Vn)]

Hence we have

φ(Vn) ≤
a + b

1 − b
φ(Vn−1) < φ(Vn−1) (1)

Since φ is increasing, {Vn} is a decreasing sequence. Let limnVn = V , assume that
V > 0. By letting n → ∞ in (1), Since φ is continuous , we have:

φ(V ) ≤
a + b

1 − b
φ(V ) < φ(V ),

which is contradiction , hence V = 0.
Let yn be an arbitrary point in Yn for n = 0, 1, 2, .... Then

lim
n→∞

d(yn, yn+1) ≤ lim
n→∞

δ(Yn, Yn+1) = 0.

Now, we wish to show that {yn} is a Cauchy sequence, we proceed by contradiction.
Then there exist ε > 0 and two sequences of natural numbers {m(i)}, {n(i)},
m(i) > n(i), n(i) → ∞ as i → ∞ such taht

δ(Yn(i), Ym(i)) > ε while δ(Yn(i), Ym(i)−1) ≤ ε

Then we have

ε < δ(Yn(i), Ym(i)) ≤ δ(Yn(i), Ym(i)−1) + δ(Ym(i)−1, Ym(i))

≤ ε + Vm(i)−1,

since {Vn} converges to 0, δ(Yn(i), Ym(i)) → ε. Futhermore, by triangular inequality,
it follows that

| δ(Yn(i)+1, Ym(i)+1) − δ(Yn(i), Ym(i)) |≤ Vn(i) + Vm(i),
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and therefore the sequence {δ(Yn(i)+1, Ym(i)+1)} converges to ε

¿From (C. 2), we also deduce:

φ(δ(Yn(i)+1, Ym(i)+1)) = φ(δ(Txn(i)+1, Txm(i)+1))

≤ C1 + C2 + C3

≤ C4 + C5 + C6 (4)

Where

C1 = aφ(d(Ixn(i)+1, Ixm(i)+1)),

C2 = b
{

φ(δ(Ixn(i)+1, Txn(i)+1)) + φ(δ(Ixm(i)+1, Txm(i)+1))
}

,

C3 = cmin{φ(D(Ixn(i)+1, Ym(i)+1), φ(D(Ixn(i)+1 , Ym(i)+1)},

C4 = aφ(δ(Yn(i), Ym(i))),

C5 = [φ(Vn(i)) + φ(Vm(i)],

C6 = cφ(δ(Yn(i), Ym(i)) + Vm(i)).

Letting i → ∞ in (4), we have

φ(ε) ≤ (a + c)φ(ε) < φ(ε)

This is a contradiction. Hence {yn} is a Cauchy sequence in X and it has a limit
y in X . So the sequence {Ixn} converge to y and further, the sequence {Txn}
converge to set {y}. Now supose that I is continuous. Then

I2xn → Iy and ITxn → {Iy}

by Lemma 1.3. Since I and T are δ-compatible. Therefore TIxn → {Iy}. Using
inequality (C.1) , we have

φ(δ(TIxn, Txn)) ≤ aφ(d(I2xn, Ixn)) + b[φ(H(Ixn, Txn)) + φ(H(I2xn, T Ixn))]

+ cmin{φ(D(Ixn, T Ixn)), φ(D(I2xn, Txn))},

for n ≥ 0. As n → ∞ we obtain by Lemma 1.1

φ(d(Iy, y)) ≤ aφ(d(Iy, y)) + cφ(d(y, Iy)),

That is φ(d(Iy, y)) = 0 which implies that Iy = y. Further

φ(δ(Ty, Txn)) ≤ aφ(d(Iy, Ixn)) + b[φ(H(Iy, Ty)) + φ(H(Ixn, Txn))]

+ cmin{φ(D(Ixn, T y)), φ(D(Iy, Txn))},

for n ≥ 0. As n → ∞ we obtain by Lemma 1.1

φ(δ(Ty, y)) ≤ bφ(δ(Ty, y)),

which implies that Ty = y. Thus y is a coincidence point for T and I . Now suppose
that T and I have a second common fixed point z such that Tz = {z} = {Iz}.
Then, using inequality (C.1), we obtain

φ(d(y, z)) = φ(δ(Ty, Tz)) ≤ (a + c)φ(d(z, y)) < φ(d(z, y))

which is a contradiction. This completes the proof of the Theorem.
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Corollary 2.1 ([6.Theorem2.1]). Let (X, d) be a complete metric space, T :
X −→ CB(X) a multi-valued map satisfying the following condition :

φ(δ(Tx, Ty)) ≤ aφ(d(x, y)) + b
[

φ(δ(x, Tx)) + φ(δ(y, Ty))
]

+

+ c min
{

φ(d(x, Ty)), φ(d(y, Tx))
}

∀x, y ∈ X,

where φ : R
+ −→ R

+ is continuous and strictly increasing such that φ(0) = 0
and a, b, c are three positive constants such that a + 2b < 1 and a + c < 1, then T

has a unique fixed point.

Note that the proof of Theorem 2.1 is another proof of Corollary 2.1 which is of
interest in part because it avoids the use of Axiom of choice.

2. 2. A Fixed Point Theorem

Theorem 2.2. Let (X, d) be a complete metric space. If F : X → CB(X) is a

multi-valued mapping and φ : R
+ −→ R

+ is continuous and strictly increasing

such that φ(0) = 0. Furthermore, let a, b, c be three functions from (0,∞) into [0, 1)
such that

a + 2b : (0,∞) → [0, 1) and a + c : (0,∞) → [0, 1) are decreasing functions.

Suppose that F satisfies the following condition:

(C.3) φ(δ(Fx, Fy)) ≤ a(d(x, y))φ(d(x, y)) + b(d(x, y))[φ(H(x, Fx)) + φ(H(y, Fy))]

+ c(d(x, y)) min{φ(D(y, Fx)), φ(D(x, Fy))},

then F has a unique fixed point z in X such that Fz = {z}.

Proof.. First we will establish the existence of a fixed point. Put p = max{(a +

2b)
1

2 , (a+c)
1

2 }, take any xo in X . Since we may assume that D(x0, Fx0) is positive,
we can choose x1 ∈ Fx0 which satisfies φ(d(x0, x1)) ≥ p(D(x0, Fx0))φ(H(x0, Fx0)),
we may assume that p(d(x0, x1)) is positive. Assuming now that D(x1, Fx1) is pos-
itive, we choose x2 ∈ Fx1 such that φ(d(x1, x2)) ≥ p(d(x0, x1))φ(H(x1, Fx1)) and
φ(d(x1, x2)) ≥ p(D(x1, Fx1))φ(d(x1, Fx1)), since d(x0, x1) ≥ D(x0, Fx0) and p is
deceasing then we have also

φ(d(x0, x1)) ≥ p(d(x0, x1))φ(H(x0, Fx0)). Now

φ(d(x1, x2)) ≤ φ(δ(Fx0, Fx1))

≤ a(d(x0, x1))φ(d(x0, x1)) + b(d(x0, x1))[φ(H(x0 , Fx0)) + φ(H(x1, Fx1))]

+ c(d(x0, x1)) min{φ(D(Fx0, x1)), φ(D(x0, Fx1))}

≤ ap−1φ(d(x0, x1)) + bp−1[φ(d(x0, x1)) + φ(d(x1, x2))],

which implies
φ(d(x1, x2)) ≤ q(d(x0, x1))φ(d(x0, x1))

where
q : (0,∞) → [0, 1)

is defined by

q =
a + b

p − b
.
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Note that r ≥ t implies q(r) ≤ p(t) < 1. By induction, assumunig that D(xi, Fxi)
and p(d(xi−1, xi)) are positive, we obtain a sequence {xi} which satisfies xi ∈
Fxi−1, φ(d(xi−1, xi)) ≥ p(d(xi−1, xi))φ(H(xi−1, Fxi−1)),

φ(d(xi, xi+1)) ≥ p(d(xi−1, xi))φ(H(xi, Fxi)),

φ(d(xi , xi+1)) ≤ q(d(xi−1, xi))φ(d(xi−1 , xi))

≤ p(d(xi−1, xi))φ(d(xi−1 , xi))

< φ(d(xi−1, xi)).

It is not difficult to verify that limi d(xi, xi+1) = 0. If {xi} is not Cauchy, there
exists ε > 0 and two sequences of natural numbers {m(i)}, {n(i)},

m(i) > n(i) > i such that d(xm(i), xn(i)) > ε while d(xm(i)−1, xn(i)) ≤ ε. It is
not difficult to verify that

d(xm(i), xn(i)) → ε as i → ∞ and d(xm(i)+1, xn(i)+1) → ε as i → ∞.

For i sufficiently large d(xm(i), xm(i)+1) < ε and d(xn(i), xn(i)+1) < ε. For these i

we have

φ(d(xm(i)+1, xn(i)+1)) ≤ φ(δ(Fxm(i), Fxn(i)))

≤ a(d(xm(i), xn(i)))φ(d(xm(i), xn(i)))

+ b(d(xm(i), xn(i)))[φ(H(xm(i) , Fxm(i))) + φ(H(xn(i), Fxn(i)))]

+ c(d(xm(i), xn(i))) min{φ(D(xm(i), Fxn(i))), φ(D(xn(i) , Fxm(i))}

≤ a(d(xm(i), xn(i)))φ(d(xm(i), xn(i)))

+ b(d(xm(i), xn(i)))p
−1(d(xn(i), xn(i)+1))φ(d(xn(i), xn(i)+1))

+ b(d(xm(i), xn(i)))p
−1(d(xm(i), xm(i)+1))φ(d(xm(i), xm(i)+1))

+ c(d(xn(i), xm(i))φ(d(xm(i), xn(i)+1))

≤ a(d(xm(i), xn(i)))φ(d(xm(i), xn(i)+1) + d(xn(i)+1, xn(i))

+ b(d(xm(i), xn(i)))p
−1(d(xn(i), xn(i)+1))φ(d(xn(i), xn(i)+1))

+ b(d(xm(i), xn(i)))p
−1(d(xm(i), xm(i)+1))φ(d(xm(i) , xm(i)+1))

+ c(d(xn(i), xm(i))φ(d(xm(i), xn(i)+1 + d(xn(i)+1, xn(i)))

≤ [a(ε) + c(ε)]φ(d(xm(i), xn(i)) + d(xn(i), xn(i)+1))

+ φ(d(xm(i), xm(i)+1)) + φ(d(xn(i), xn(i)+1)) (∗)

Letting i → ∞ in (∗), we have: φ(ε) ≤ [a(ε) + c(ε)]φ(ε) < φ(ε). This is contra-
diction. Hence {xi} is cauchy sequence in a complete metric space X , then there
existe a point x ∈ X such that xn → x as i → ∞. This x is a fixed point of F

because

φ(H(xi+1, Fx)) = φ(δ(xi+1, Fx)) ≤ φ(δ(Fxi, Fx))

≤ a(d(xi, x))φ(d(xi , x))

+ b(d(xi, x))[φ(H(x, Fx)) + φ(H(xi, Fxi))]

+ c(d(xi, x)) min{φ(D(xi, Fx)), φ(D(x, Fxi))}

≤ a(d(xi, x))φ(d(xi , x))

+ b(d(xi, x))p−1(d(xi, xi+1)φ(d(xi, xi+1))

+ b(d(xi, x))φ(H(x, Fx)) + c(d(xi, x))φ(d(x, xi+1) (∗∗)
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Using b < 1
2 , p−1(d(xi, xi+1)) < p−1(d(x0, x1)) and letting i → ∞ in (∗∗), we have:

φ(δ(x, Fx)) ≤
1

2
φ(H(x, Fx)).

That is φ(H(x, Fx)) = 0 and therefore H(x, Fx) = 0 i.e, Fx = x. Fx = {x}. We
claim that x is unique fixed point of F . For this, we suppose that y (x 6= y) is
another fixed point of F such that Fy = {y}. Then

φ(d(y, x)) ≤ φ(δ(Fy, Fx))

≤ aφ(d(x, y)) + b[φ(H(x, Fx)) + φ(H(y, Fy))]

+ c min{φ(D(x, Fy)), φ(D(y, Fx))}

≤ [a + c]φ(d(x, y)) < φ(d(x, y)),

a contradiction. This completes the proof of the theorem.

We may establish a common fixed point theorem for a pair of mappings F and
G which stisfying the contractive condition corresponding to (C.1), i.e., for all
x, y ∈ X

(C.2) φ(δ(Fx, Gy)) ≤ aφ(d(x, y)) + b[φ(H(x, Fx)) + φ(H(y, Gy))]

+ c min{φ(D(y, Fx)), φ(D(x, Gy))},

2. 3 A Common Fixed Point Theorem.

Theorem 2.3. Let (X, d) be a metric space. Let F and G be two mappings of X

into BN(X) and φ : R
+ −→ R

+ is continuous and strictly increasing such

that φ(0) = 0. Furthermore, let a, b, c be three nonnegative constants such that

a+2b < 1 and a+ c < 1. Suppose that F and G satisfy (C.2). Then F and G have

a unique common fixed point. This fixed point satisfies Fx = Gx = {x}.

Proof. Put p = max{(a+2b)
1

2 , c
1

2 }. we may assume that is positive. We define by
using the Axiom of choice the two single-valued functions f, g : X → X by letting
f(x) be a point w1 ∈ Fx and g(x) be a point w2 ∈ Gx such that φ(d(x, w1)) ≥
pφ(H(x, Fx)) and φ(d(x, w2)) ≥ pφ(H(x, Gx)). Then for every x, y ∈ X we have:

φ(d(f(x), g(y))) ≤ φ(δ(Fx, Gy)) ≤ aφ(d(x, y)) + b[φ(H(x, Fx)) + φ(H(y, Gy))]

+ c min{φ(D(y, Fx)), φ(D(x, Gy))}

≤ aφ(d(x, y)) + p−1b[φ(d(x, fx)) + φ(d(y, gy))]

+ c min{φ(d(y, fx)), φ(d(x, gy))}.

Since a+2p−1b ≤ p−1(a+2b) ≤ p < 1, from [7, Theorem 2.1] we conclude that f and
g has a common fixed point. That is, there exists a point x such that 0 = d(x, fx) =
φ(d(x, fx)) ≥ pφ(H(x, Fx)) and 0 = d(x, gx) = φ(d(x, gx)) ≥ pφ(H(x, Gx)) which
implies φ(H(x, Fx)) = 0 and φ(H(x, Gx)) = 0, then H(x, Fx) = δ(x, Fx) = 0 and
H(x, Gx) = δ(x, Gx) = 0 i.e. Fx = Gx = {x}. Hence F and G have a common
fixed point x ∈ X . We claim that x is unique common fixed point of F and G. For
this, we suppose that y (x 6= y ) is another fixed point of F and G. Since y ∈ Fy

and y ∈ Gy, from (C.2) we have

max{φ(H(y, Fy)), φ(H(y, Gy))} ≤ φ(δ(Fy, Gy))

≤ b[φ(H(y, Fy)) + φ(H(y, Gy))]

≤ 2b max{φ(H(y, Fy)), φ(H(y, Gy))}
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which implies δ(Fy, Gy) = 0, that is Fy = Gy = {y}. Then

φ(d(y, x)) = φ(δ(Fy, Gx))

≤ aφ(d(x, y)) + b[φ(H(x, Gx)) + φ(H(y, Fy))]

+ c min{φ(D(x, Fy)), φ(D(y, Gx))}

≤ [a + c]φ(d(x, y)) < φ(d(x, y)),

a contradiction. This completes the proof of the theorem.
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