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SMOOTHERS AND THEIR APPLICATIONS

IN AUTONOMOUS SYSTEM THEORY

J. E. Palomar Tarancón

Abstract. In this paper the author introduces the concept of smoother. Roughly
speaking, a smoother is a pair (s, K) consisting of a continuous map s sending each
point p of its domain into a closed neighborhood Vp of p, and an operator K that
transforms any function f into another Kf being smoother than f . This property
allows us to remove the effect of a perturbation P from the solutions of an autonomous
system the vector field of which is modified by P .
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0. Introduction

The main aim of this paper consists of introducing the concept of smoother
together with an application in differential equation theory. Roughly speaking a
smoother is an operator transforming an arbitrary function f1 into a similar one
f2 being smoother than f1. In general, smoothers perform integral transforms in
function spaces. To get a first approximation to the smoother concept consider the
following facts. Let y = f(x) be any integrable function defined in R and σ : R → C
a map such that C stands for the collection of all closed subsets of R the interior
of each of which is non-void. For every x ∈ R, let λx be any non-negative real
number, and let σ(x) = [x − λx, x + λx]. With these assumptions, consider the
linear transform K defined as follows. If λx 6= 0 is a finite number, then

(0.0.1) Kf(x) =
1

2λx

∫ λx

−λx

f(x+ τ) dτ
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Figure 1.

Conversely, for λx infinite

(0.0.2) Kf(x) = lim
k→∞

1

2k

∫ k

−k

f(x+ τ) dτ

Finally, if λx = 0, then

(0.0.3) Kf(x) = lim
k→0

1

2k

∫ k

−k

f(x+ τ) dτ = f(x)

Of course, assuming that such a limit exists. Thus, the integral transform K sends
the value of f(x) at x into the average of all values of f(x) in a closed neighborhood
[x− λx, x+ λx] of x. Obviously, in general, the transform Kf(x) is smoother than
f(x). To see this fact consider the following cases. If for every x, σ(x) = R, then
∀x ∈ R : λx = ∞ and Kf(x) is a constant function, that is the smoothest one
that can be built. If for every x ∈ R, σ(x) = {x}, then ∀x ∈ :λx = 0, therefore
Kf(x) = f(x), and consequently both functions have the same smoothness degree.
Thus, between both extreme cases one can build several degrees of smoothness. In
the former example, what we term smoother is nothing but the pair (σ,K).
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Perhaps the most natural smoother application consists of removing, from a
given function, the noise arising from some perturbation. For instance consider the
curves C1 and C2 in Figure 1. Suppose that the differences between C1 and C2
are consequence of some perturbation working over C2. If both curves are the plots
of two functions f1(x) and f2(x) respectively, in general, one can build a smoother
(σ,K) such that Kf1(x) = f2(x). Now, consider a vector field X and the result
Y of a perturbation P working over X, and assume (σ,K) to satisfy the relation
KY = X. If x(t) and y(t) are the general solutions for the ordinary differential

equations
d

dt
x(t) = X

(

x(t)
)

and
d

dt
y(t) = Y

(

y(t)
)

respectively, then we shall

say the smoother (σ,K) to be compatible with the vector field Y , provided that
the following relation holds: Ky(t) = x(t). Thus, one can obtain the corresponding

perturbation-free function from solutions of
d

dt
y(t) = Y

(

y(t)
)

using the smooth

vector field X = KY instead. The main aim of this paper consists of investigating
a compatibility criterion.

1. Smoothers

Let Top stand for the category of all topological spaces, and let N : Top → Top

be the endofunctor carrying each object (E, T ) in Top into the topological space
N(E, T ) = (℘(E) \ {{∅}}, T ∗) the underlying set of which ℘(E) \ {{∅}} consists of
all nonempty subsets of E. Let T ∗ be the topology a subbase S of which is defined
as follows. Denote by C the collection of all T -closed subsets of E and for every
pair (A,B) ∈ C×T , let KA,B = {C ∈ ℘(E)|A ⊂ C ⊆ B}. With these assumptions,
define the subbase S as follows.

S = {KA,B|(A,B) ∈ C × T }

Obviously, if A ⊃ B, then KA,B = ∅. Likewise, if A = ∅ and B = E, then
KA,B = ℘(E) \ {{∅}}.

Let the arrow-map of N be the law sending each continuous map

f : (E1, T1) → (E2, T2)

into the map Nf carrying each subset A ⊆ E1 into f [A] ⊆ E2. It is not difficult to
see Nf to be a continuous map with respect to the associated topology T ∗.

Definition 1.0.1. Let cAlg(N) denote the concrete category of N-co-algebras.
Thus, every object in cAlg(N) is a pair

(

(E, T ), σ(E,T )

)

, consisting of a topological
space (E, T ) together with a continuous map σ(E,T ) : (E, T ) → N(E, T ).

Recall that a continuous mapping f : (E1, T1) → (E2, T2) is a morphism in
cAlg(N) from

(

(E1, T1), σ(E1,T1)

)

into
(

(E2, T1), σ(E2,T2)

)

, provided that the follow-
ing diagram commutes.

(1.0.4) (E1, T1)

f

��

σ(E1 ,T1)
// N(E1, T1)

Nf

��

(E2, T2) σ(E2 ,T2)

// N(E2, T2)
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Now, let Tvec be the topological vector space category, and let TopV ec denote
the category the objects of which are products of the form N(E, T )×

(

C0(E, V ), T ∗
)

,
where (V, T ) is a topological vector space and T ∗ the pointwise topology for the
set C0(E, V ) of all continuous maps from (E, T ) into |(V, T )|; where the functor
| | : Tvec → Top forgets the vector space structure and preserves the topological
one. In addition, a TopV ec-morphism with domain N(E1, T1) ×

(

C0(E1, V ), T ∗
1

)

and codomain N(E2, T2) ×
(

C0(E2, V ), T ∗
2

)

is of the form Nf × g where f lies

in homT op(E1, E2) and g is a continuous mapping with domain C0(E1, V ) and
codomain C0(E2, V ).

Given any topological space (E, T ), let

P(E,T ) : Tvec → TopV ec

denote the functor carrying each Tvec-object (V, T ) into the product

N(E, T ) ×
(

C0(E, V ), T ∗
)

and sending every Tvec-morphism f : (V1, T1) → (V2, T2) into Id × f∗; where
f∗ = homT op((E, T ), |f |) stands for the morphism carrying each g ∈ C0(E, V1)
into f ◦ g ∈ C0(E, V2), and as usual homT op((E, T ), | − |) denotes the covariant
hom-functor.

Finally, let Alg(P(E,T ))denote the category of P(E,T )-algebras, that is, each

object is a pair of the form
(

(V, T ),K(V,T )

)

where

K(V,T ) : P(E,T )(V, T ) = N(E, T ) ×
(

C0(E, V ), T ∗
)

→ |(V, T )|

is a continuous map. In addition, a given continuous linear mapping

f : (V1, T1) → (V2, T2)

is an Alg(P(E,T ))-morphism whenever the following quadrangle commutes.

(1.0.5) N(E, T ) ×
(

C0(E, V1), T
∗
1

)

Id×homT op((E,T ),|f |)

��

K(V1 ,T1)
// |(V1, T1)|

|f |

��

N(E, T ) ×
(

C0(E, V2), T
∗
2

)

K(V2 ,T2)

// |(V2, T2)|

Definition 1.0.2. A smoother will be any pair

((

(E, T ), σ(E,T )

)

,
(

(V, T ),K(V,T )

))

such that
(

(E, T ), σ(E,T )

)

is a co-algebra lying in cAlg(N) and
(

(V, T ),K(V,T )

)

is
an algebra in Alg(P(E,T )) satisfying the following conditions.

a) For every p ∈ E: p ∈ σ(E,T )(p).

b) For every (p, f) ∈ E × C0(E, V ):

K(V,T )

(

σ(E,T )(p), f
)

∈ C
(

Nf
(

σ(E,T )(p)
))



40 SOUTHWEST JOURNAL OF PURE AND APPLIED MATHEMATICS

where, for any subset A ⊆ E, C (A) denotes the convex cover of A.
c) K(V,T ) is linear with respect to its second argument, that is to say, for every

couple of scalars (α, β) and each pair of maps (f, g) the following holds.

(1.0.6)
K(V,T )

(

σ(E,T )(p),αf + βg
)

=

αK(V,T )

(

σ(E,T )(p), f
)

+ βK(V,T )

(

σ(E,T )(p), g
)

1.0.1. Transformation associated to a smoother. Given a homeomorphism
ϕ : (E, T ) → |(V, T )|, a smoother

S =
((

(E, T ), σ(E,T )

)

,
(

(V, T ),K(V,T )

))

induces a transformation Sϕ carrying each point p ∈ E into

ϕ−1
(

K(V,T )

(

σ(E,T )(p), ϕ
)

which will be said to be induced by S. Likewise, for every one-parameter continuous
map family h : E × I ⊆ E × R → E one can define the induced transformation by

(1.0.7) Sh(p,t)(p) = ϕ−1
(

K(V,T )

(

σ(E,T )(h(p, t), ϕ
))

1.0.2. Ordering. Smoothers form a category Smtr the morphism-class of
which consists of every cAlg(N)-morphism f : (E1, T1) → (E2, T2) such that the
following quadrangle commutes

(1.0.8)
(

N(E1, T1) × C0(E1, V )
)

Nf×homT op(f,|(V,T )|)

��

K(V,T )
// |(V, T )|

|Id |

��
(

N(E2, T2) × C0(E2, V )
)

K(V,T )

// |(V, T )|

where homT op (−, |(V, T )|) : Top → Topop stands for the contravariant hom-
functor.

Regarding Smtr as a concrete category over Set via the forgetful functor
such that

((

(E, T ), σ(E,T )

)

,
(

(V, T ),K(V,T )

))

7→ E

with the obvious arrow-map, in each fibre one can define an ordering � as follows.
For any smoother

((

(E, T ), σ(E,T )

)

,
(

(V, T ),K(V,T )

))

, let

Ω
((

(E, T ), σ(E,T )

)

,
(

(V, T ),K(V,T )

))

denote the intersection of all topologies for E containing the set family

K =
{

σ(E,T )(p) | p ∈ E
}

then

(1.0.9)

(

(

(E1, T1), σ(E1,T1)

)

,
(

(V, T ),K(V,T )

)

)

�
(

(

(E2, T2), σ(E2,T2)

)

,
(

(V, T ),K(V,T )

)

)
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if and only if the topology
(

Ω
(

(E1, T1), σ(E1,T1)

)

,
(

(V, T ),K(V,T )

))

is finer than

the topology Ω
((

(E2, T2), σ(E2,T2)

)

,
(

(V, T ),K(V,T )

))

. For a maximal element, the

topology Ω
((

(E, T ), σ(E,T )

)

,
(

(V, T ),K(V,T )

))

must be indiscrete. In this case, for
every p in E, σ(E,T )(p) = E, and consequently, for every p, q ∈ E,

KE,T (σ(E,T )(p), ϕ) = K(E,T )(E,ϕ) = K(σ(E,T )(q), ϕ)

therefore Sϕh(p, t) = ϕ−1
(

K(V,T )

(

σ(E,T )(h(p, t), ϕ
))

transforms h(p, t) into a con-
stant map, which is the smoothest function one can build. Conversely, a minimal
element corresponds to the discrete topology. In this case, by virtue of both condi-
tions a) and b), the transformation (1.0.7) is the identity, so then h(p, t) remains
unaltered. Between both extremes one can build several degrees of smoothness.

1.1 Smoothers in smooth manifolds.. Let (M,An) be a smooth manifold,
ϕ : U ⊆ M → R

n a chart and T the induced topology for U . Henceforth, the
pair (U, T ) will be assumed to be a Hausdorff space. In the most natural way,
one can build a smoother S =

((

(U, T ), σ(U,T )

)

,
(

(Rn, T ),K(Rn,T )

))

over (U, T )

the associated set of continuous maps C0(U,Rn) contains each smooth one like the
diffeomorphism associated to each chart.

For those smooth manifolds such that, for each p ∈Mn, each tangent space
Tp is isomorphic to Rn, that is to say, there is an isomorphism λp : Tp → Rn, one
can associate a map ωX : U → Rn to every smooth vector field X letting

(1.1.1) ∀p ∈ U : ωX(p) = λp

(

Xp)
)

Accordingly, the image of the vector field X under S is

(1.1.2) λp

(

Y
)

= K(Rn,T )

(

σ(U,T )(p), ωX

)

therefore

(1.1.3) Y = λ−1
p

(

K(Rn,T )

(

σ(U,T )(p), ωX

))

From the former equations it follows immediately that if ht : U → U is the one-
parameter group associated to X, then

(1.1.4) ωX(p) = λp (X)
∣

∣

p
= lim

t→0

ϕ ◦ ht(p) − ϕ(p)

t
∈ R

n

accordingly

(1.1.5)

K(Rn,T )

(

σ(U,T )(p), ωX

)

=

lim
t→0

K(Rn,T )

(

σ(U,T )(p), ϕ ◦ ht

)

− K(Rn,T )

(

σ(U,T )(p), ϕ
)

t
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Definition 1.1.1. Let X be a smooth vector field the coordinates of which are
(X1, . . . Xn), and consider the differential equation

(1.1.6)







































d

dt
x1(γ(p, t)) = X1

(

x1(γ(p, t), x2(γ(p, t) . . .
)

d

dt
x2(γ(p, t)) = X2

(

x1(γ(p, t), x2(γ(p, t) . . .
)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

d

dt
xn(γ(p, t)) = Xn

(

x1(γ(p, t), x2(γ(p, t) . . .
)

where the differentiable curve γ : I ⊆ R → U is assumed to be solution of
the former equation for the initial value γ(p, t0) = p. Say, a smoother S =
((

(U, T ), σ(U,T )

)

,
(

(Rn, T ),K(Rn,T )

))

to be compatible with X provided that the

curve y
(

ρ(p, t)
)

= K(Rn,T )

(

σ(U,T ) (γ(p, t)) , ϕ
)

is solution of the equation

(1.1.7)







































d

dt
y1(ρ(p, t)) = Y 1

(

y1(ρ(p, t), y2(ρ(p, t) . . .
)

d

dt
y2(ρ(p, t)) = Y 2

(

y1(ρ(p, t), y2(ρ(p, t) . . .
)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

d

dt
yn(ρ(p, t)) = Y n

(

y1(ρ(p, t), y2(ρ(p, t) . . .
)

where q = Sϕ(y(p, t0)) = Sϕ(p), and

(1.1.8) (Y 1, Y 2, . . . Y n) = K(Rn,T )

(

σ(U,T ) (p) , ωX

)

Obviously, if p is a fixed point for Sϕ, then y(q, t) and x(p, t) are solutions
of (1.1.6) and (1.1.7), respectively, for the same initial value p = x(p, t0) = y(p, t0).

Remark. If p = q, that is to say, if p is a fixed-point for Sϕ, then from Defini-
tion 1.0.2 the relations

(1.1.9) ∀p ∈ U : x(p) ∈ C
(

Nϕ
(

σ(U,T )(p)
))

and

(1.1.10) ∀p ∈ U : y(p) ∈ C
(

Nϕ
(

σ(U,T )(p)
))

are true, therefore

(1.1.11) ‖x(p) − y(p)‖ ≤ max
q1,q2∈C(σ(U,T )(p))

‖ϕ(q1) − ϕ(q2)‖

From the former relation one can build some proximity criteria. If the maximum
distance among points in any set σ(U,T )(p) is bounded, that is to say, if there is
δ > 0 such that

∀p ∈ U : max
q1,q2∈C(σ(U,T )(p))

‖ϕ(q1) − ϕ(q2)‖ < δ

then
∀t > 0 : ‖x(p, t) − y(p, t)‖ < δ
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Proposition 1.1.3. Let
(

(U, T ), σ(U,T )

)

be a co-algebra in cAlg(N) and for every
point p of U let µp : σ(U,T ) → [0,∞) be a measure for σ(U,T )(p) such that the set
σ(U,T )(p) is µp-measurable. If for every p ∈ U the following condition hold,

a) p ∈ σ(U,T )(p).
b) σ(U,T )(p) is a closed subset of U .

c) µp

(

σ(U,T )(p)
)

= 1

then the pair
((

(U, T ), σ(U,T )

)

,
(

(V, T ),K(V,T )

))

is a smoother, where

(1.1.12) K(V,T )

(

σ(U,T )(p),f
)

=

∫

· · ·

∫

σ(U,T )(p)

f dµp

Proof. Obviously, K(V,T ) is linear with respect to its second coordinate, and by
definition, it satisfies condition a) in Definition 1.0.2, therefore it remains to be
proved K(V,T ) to satisfy condition b) too.

It is a well-known fact that each coordinate f j of any measurable function f

is the limit of a sequence
{

f j
n | n ∈ N

}

of step-functions each of which of the form

(1.1.13) f j
n =

m
∑

i=1

c
j
i,nχEi,n

such that each of the Ei,n is µp-measurable and for every i ∈ N, cji,n = f j(αi) for

some αi ∈ Ei,n, besides, ∀n ∈ N : Ei,n ∩Ej,n = ∅ (i 6= j) and ∪m
i=1Ei,n = σ(U,T )(p).

In addition
∫

· · ·

∫

σ(U,T )(p)

f j dµp = lim
n→∞

m
∑

i=1

c
j
i,nµp(χEi,n

) (1.1.14)

Now, from statement c) it follows that

(1.1.15) ∀n ∈ N :

m
∑

i=1

µp(χEi,n
) = µp(σ(U,T )(p)) = 1

therefore

(1.1.16) ∀n ∈ N :

m
∑

i=1

ci,nµp(χEi,n
) ∈ C

(

Nf(σ(U,T )(p))
)

where ci,n = (c1i,n, c
2
i,n, · · · ). Finally, since σ(U,T )(p) is assumed to be closed, the

proposition follows. �

2. A compatibility criterion

Although smoothers can be useful in several areas, the aim of this paper
is its application in differential equations in which only those smoothers being
compatible with the associated vectors are useful. To build a compatibility criterion
the following result is a powerful tool.
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Theorem 2.0.4. Let (Mn,An) be a smooth manifold and (U,ϕ) a chart. Let
ht : U → U stand for the one-parameter group associated to a smooth vector field
X and

S =
((

(U, T ), σ(U,T )

)

,
(

(Rn, T ),K(Rn,T )

))

a smoother. If the following relation holds

(2.0.17)
∃δ > 0, ∀t < δ : K(Rn,T )

(

σ(U,T )

(

ht(p)
)

, ϕ
)

=

K(Rn,T )

(

σ(U,T )(p), ϕ ◦ ht

)

then S is compatible with X.

Proof. First, from
y(q, t) = K(Rn,T )

(

σ(U,T ) (ht(p)) , ϕ
)

we obtain that

ϕ(q) = y(q, t0) = K(Rn,T )

(

σ(U,T ) (p) , ϕ
)

= ϕ (Sϕ(p))

Now, it is not difficult to see that

(2.0.18)

d

dt
y

∣

∣

∣

q
=

lim
t→0

K(Rn,T )

(

σ(U,T ) (ht(p)) , ϕ
)

− K(Rn,T )

(

σ(U,T ) (h0(p)) , ϕ
)

t

and using (2.0.17) the former equation becomes

(2.0.19)

d

dt
y

∣

∣

∣

q
=

lim
t→0

K(Rn,T )

(

σ(U,T ) (p) , ϕ ◦ ht)
)

− K(Rn,T )

(

σ(U,T ) (p) , ϕ
)

t
=

lim
t→0

K(Rn,T )

(

σ(U,T ) (p) , ϕ ◦ ht − ϕ
)

t
=

lim
t→0

K(Rn,T )

(

σ(U,T ) (p) ,
ϕ ◦ ht − ϕ

t

)

and by continuity

(2.0.20)

lim
t→0

K(Rn,T )

(

σ(U,T ) (p) ,
ϕ ◦ ht − ϕ

t

)

=

K(Rn,T )

(

σ(U,T ) (p) , lim
t→0

ϕ ◦ ht − ϕ

t

)

therefore, taking into account (1.1.1) and (1.1.4),

(2.0.21)
d

dt
y

∣

∣

∣

q
= lim

t→0
K(Rn,T )

(

σ(U,T ) (p) , ωX

)

accordingly, if ϕ
(

ht(p)
)

= (x1(p, t), x2(p, t) . . . ) is solution of (1.1.6) for the initial
value p, then

(y1(q, t), y2(q, t) . . . ) = K(Rn,T )

(

σ(U,T ) (ht(p)) , ϕ
)

is solution of the equation (1.1.7) for the initial value q = Sϕ(p), being

(Y 1, Y 2 . . . ) = K(Rn,T )

(

σ(U,T ) (p) , ωX

)

�
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Corollary 2.0.5. With the same conditions as in the preceding theorem, if p is a
fixed point for Sϕ and x(p, t) =

(

x1(p, t), x2(p, t) . . .
)

is solution of the initial value
problem

(2.0.22)







d

dt
x(p, t) = X

(

x(p, t)
)

x(p, t0) = ϕ(p)

then y(p, t) =
(

y1(p, t), y2(p, t) . . .
)

= K(Rn,T )

(

σ(U,T ) (ht(p)) , ϕ
)

is solution for the
initial value problem

(2.0.23)







d

dt
y(p, t) = Y

(

y(p, t)
)

= K(Rn,T )

(

σ(U,T ) (p) , ωX

)

y(p, t0) = ϕ(p)

Remark 2.0.6. The smoother defined in (2.0.39) satisfies the conditions of the
former corollary, because each point (x, y) of R

2 is a fixed-point. However, the
smoother

S =
((

(U, T ), σ(U,T )

)

,
(

(Rn, T ),K(Rn,T )

))

such that the law σ(U,T ) sends each point (x0, y0) ∈ R2 into the subset

A(x0,y0) =

{

(x, y) ∈ R
2 | x0 ≤ x ≤ x0 + 1 −

y

y0
, 0 ≤ y ≤ ex0

}

the associated transform of which is

(2.0.24)

K(R2,T ) : f(x, y) 7→
2

3y

∫∫

σ(U,T )(x,y)

f(x+ u, y + v) dudv =

2

3y

∫ 0

−y

∫ 1− v
y

0

f(x+ u, y + v) dudv

is compatible with the vector
(

1
y

)

and sends the point (x, y) into (x+ 7
9 ,

4
9y),

this is to say, Sϕ(x, y) = (x+ 7
9 ,

4
9y), Thus, there is no fixed point for Sϕ. Of course,

this smoother transforms the solution (t+ x0, y0e
t) of the equation

(2.0.25)











d

dt
x(t) = 1

d

dt
y(t) = y(t)

for the initial value (x0, y0) at t = 0, into the solution (t + x0 + 7
9 ,

4
9y0e

t) of the

same equation for the initial value (x0 + 7
9 ,

4
9y0).

Definition 2.0.7. Given a smoother

S =
((

(U, T ), σ(U,T )

)

,
(

(Rn, T ),K(Rn,T )

))

defined over a chart (U,ϕ) of a smooth manifold (M,An), and a smooth vector field
X, define the derivative ∇XS by the following expression.

(2.0.26)

∇XS|p =

lim
t→0

K(Rn,T )

(

σ(U,T ) (ht(p)) , ϕ
)

− K(Rn,T )

(

σ(U,T ) (p) , ϕ ◦ ht

)

t
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Corollary 2.0.8. If ∇XS = 0, then S is compatible with X.

Proof. Obviously, taking into account Definition 2.0.7, from ∇XS = 0, the state-
ment (2.0.17) follows. �

Definition 2.0.9. Given a smooth vector field X, the associated one-parameter
group of which is ht : U → U , say a measure-field {µp | p ∈ U} to be invariant
with respect to X, provided that for every p ∈ U and each measurable subset E of
σ(U,T )(p) the following relation holds

(2.0.27) ∀t ∈ R : µht(p) (Nht(E)) = µp(E)

accordingly the measure µp(E) remains unaltered under the one-parameter group
ht : U → U associated to X.

Remark 2.0.10. In [4] it is shown that, for a wide class of vector fields, each
differentiable-map ψ : U → C satisfying the equation

(2.0.28) X ψ̆(p) =

(

n
∑

i=1

X i ∂

∂xi
ψ(x1, x2 . . . )

)

˘= 0

satisfies also the equation

(2.0.29)
d

dt
ψ(ht(p)) = 0

accordingly, ψ(ht(p)) does not depend upon the parameter t; where for every con-
tinuous function f , f˘ denotes the maximal extension by continuity. Thus, an
invariance criterion can consist of proving the existence of a differentiable map
ψE : U → R, for each measurable subset E ⊆ U , such that

(2.0.30)

{

ψE(p) = µp(E)

X ψ̆E(p) = 0

Theorem 2.0.11. If a measure field {µp | p ∈ U} is invariant with respect to X

and, for each t ∈ R, the member of corresponding one-parameter group ht : U → U

is a cAlg(N)-morphism, then the smoother

S =
((

(U, T ), σ(U,T )

)

,
(

(Rn, T ),K(Rn,T )

))

such that

(2.0.31) K(V,T )

(

σ(U,T )(p), ϕ
)

=

∫

· · ·

∫

σ(U,T )(p)

ϕdµp

is compatible with X.

Proof. First, because, for each t ∈ R, the map ht : U → U is assumed to be a
cAlg(N)-morphism, then by virtue of (1.0.4) we have that

(2.0.32)

K(V,T )

(

σ(U,T )(ht(p)), ϕ
)

=

K(V,T )

(

Nht

(

σ(U,T )(p)
)

, ϕ
)

=

∫

· · ·

∫

Nht

(

σ(U,T )(p)
)

ϕdµp
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and because

(2.0.33) Nht

(

σ(U,T )(p)
)

=
{

ht(q) | q ∈ σ(U,T )(p)
}

then

(2.0.34)

∫

· · ·

∫

Nht

(

σ(U,T )(p)
)

ϕdµp =

∫

· · ·

∫

σ(U,T )(p)

ϕ ◦ ht dµht(p)

therefore, since the invariance of {µp | p ∈ U} with respect to X is assumed, then
for every subset E ⊆ σ(U,T )(p) the following relation holds

µht(p)

(

Nht(E)
)

= µp(E)

therefore from (2.0.34) it follows that

(2.0.35)

∫

· · ·

∫

σ(U,T )(p)

ϕ ◦ ht dµht(p) =

∫

· · ·

∫

σ(U,T )(p)

ϕ ◦ ht dµp

consequently,

(2.0.36)

K(V,T )

(

σ(U,T )(ht(p)), ϕ
)

=
∫

· · ·

∫

σ(U,T )(p)

ϕ ◦ ht dµp = K(V,T )

(

σ(U,T )(p), ϕ ◦ ht

)

accordingly, the smoother S satisfies the conditions of the preceding theorem. �

Example 2.0.12. Consider the initial value problem

(2.0.37)























d

dt
x(t) = 1

d

dt
y(t) = 0.1 cos

(

x(t)
)

(

x(0), y(0)
)

= (x0, y0)

the solution of which is

(2.0.38)

{

x(t) = x0 + t

y(t) = y0 + 0.1
(

sin(t+ x0) − sin(x0)
)

where we are assuming the function 0.1 cos
(

x(t)
)

, in the second equation of (2.0.37),

to be the consequence of a perturbation working over the vector field
(

1
0

)

. The map

σ, sending each (x, y) ∈ R2 into the closed set [x−π, x+π]× [y−1, y+1], together
with the operator K defined as follows
(2.0.39)

K :
(

f1(x, y), f2(x, y)
)

7→
( 1

4π

∫ 1

−1

∫ π

−π

f1(x+ u, y + v)dudv,

1

4π

∫ 1

−1

∫ π

−π

f2(x+ u, y + v)dudv
)
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form a smoother such that K transforms the vector
(

1
0.1 cos(x)

)

of the equation

(2.0.37) into the perturbation-free vector
(

1
0

)

, therefore it transforms also (2.0.37)
into the following initial value problem,

(2.0.40)























d

dt
x(t) = 1

d

dt
y(t) = 0

(

x(0), y(0)
)

= (x0, y0)

Now, it is not difficult to see K to be compatible with the vector field of the equa-
tion (2.0.37), therefore K transforms also the solution (2.0.38) of (2.0.37) into the
solution of (2.0.40), as one can see in the following equality

(2.0.41)































1

4π

∫ 1

−1

∫ π

−π

(x0 + u+ t) : dudv = x0 + t

1

4π

∫ 1

−1

∫ π

−π

(

y0 + v + 0.1
(

sin(x0 + u+ t)−

sin(x0 + u)
))

dudv = y0

and

(2.0.42)

{

x(t) = x0 + t

y(t) = y0

is nothing but the general solution of (2.0.40). Thus, K sends (2.0.37) into (2.0.40)
and also sends the general solution of (2.0.37) into the perturbation-free solution
(2.0.42) of (2.0.40).
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