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SIMULTANEOUSLY REFLECTIVE AND COREFLECTIVE
SUBCATEGORIES OF PRESHEAVES

ROBERT EL BASHIR AND JIŘÍ VELEBIL

ABSTRACT. It is proved that any category K which is equivalent to a simultaneously
reflective and coreflective full subcategory of presheaves [Aop,Set], is itself equivalent to
the category of the form [Bop,Set] and the inclusion is induced by a functor A −→ B

which is surjective on objects. We obtain a characterization of such functors.

Moreover, the base category Set can be replaced with any symmetric monoidal closed
category V which is complete and cocomplete, and then analogy of the above result
holds if we replace categories by V-categories and functors by V-functors.

As a consequence we are able to derive well-known results on simultaneously reflective
and coreflective categories of sets, Abelian groups, etc.

1. Introduction

A full subcategory K of L, which is simultaneously reflective and coreflective in L, inherits
many pleasant properties of L, for example, the computation of limits and colimits. In
the literature, various instances of categories L were studied: for example the category
of all topological spaces and continuous maps in [9] or the category Ab of all Abelian
groups and their homomorphisms in [2]. The latter paper characterized full subcategories
of Ab, which arise as simultaneously reflective and coreflective, as precisely the categories
of (right) R-modules for certain commutative rings R with a unit.

The approach we take in this paper is motivated by results proved in [2]. The category
Ab of Abelian groups bears a symmetric monoidal closed structure and therefore gives
rise to the theory of categories enriched over Ab. Any full embedding

J : K −→ Ab

is then, in fact, an Ab-functor: hom-sets of K are Abelian groups and actions of J on these
groups are group homomorphisms. Moreover, if J possesses both left and right adjoints
L and R, then both these functors can be given a structure of Ab-functors as well. Thus,
the adjoint situation

L � J � R
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is an adjoint situation in the realm of Ab-categories and Ab-functors. Any ring R with
a unit corresponds precisely to a one-object Ab-category R and the category of right R-
modules Mod-R is the Ab-category [Rop, Ab] of Ab-functors from Rop to Ab and Ab-natural
transformations. Similarly, viewing Abelian groups as right Z-modules (where Z denotes
the ring of integers) allows us to consider Ab as the category of the form [Zop, Ab], where
Z is a one-object Ab-category corresponding to Z.

Therefore, the result of Section 1.2 in [2] can be restated as follows:

Every full sub-Ab-category K of [Zop, Ab] which is simultaneously reflective and
coreflective in [Zop, Ab] is equivalent to an Ab-category [Rop, Ab] for some one-object
Ab-category R.

Such reformulation allows us to consider a general question:

If we replace Ab by a general symmetric monoidal closed category V and a one-object
Ab-category Z by a general small V-category A, what do simultaneously reflective and
coreflective full sub-V-categories of [Aop,V] look like?

The answer is similar to the case of V = Ab: such categories are, up to equivalence,
precisely those full sub-V-categories of the form [Bop,V] and the inclusion is induced by
a V-functor P : A −→ B, that is, the inclusion is the V-functor

[P op, 1V] : [Bop,V] −→ [Aop,V]

of “restriction along P op”. We call V-functors P with the property that [P op, 1V] is fully
faithful connected (see 3.3 below) and give several characterizations of them.

Among others, connected functors will be proved to be exactly the representably fully
faithful functors (Condition 4, Proposition 3.6). Such morphism in general 2-categories
have already been studied by John Gray, Ross Street and other authors, see [12] or [4].
In [5], Brian Day calls such functors Cauchy dense.

2. Preliminaries

We use the notation and terminology of [10]. We fix a locally small symmetric monoidal
closed category Vo, which is complete and cocomplete. The tensor product in Vo is denoted
by ⊗, its unit by I. The “internal hom” is denoted by [ , ]. Thus, for every object A in
Vo, there is an adjunction

⊗A � [A, ] : Vo −→ Vo

The category Vo therefore serves as a base category for enriched category theory. Espe-
cially, there is an enriched category — denoted by V — which has the same objects as Vo

and for which V(A,B) = [A,B].
In what follows, whenever we say category, functor, natural transformation, etc., we

always mean V-category, V-functor, V-natural transformation. Non-enriched categories,
functors, natural transformations, etc., will be called ordinary. Each V-category X has an
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underlying ordinary category Xo having the same objects as X and with hom-sets defined
by

Xo(X,Y ) = Vo(I,X(X,Y ))

For a small category D and functors D : Dop −→ V and F : D −→ K a colimit of F
weighted by D is an object D ∗ F together with an isomorphism

K(D ∗ F,K) ∼= [Dop,V](D,K(F ,K))

natural in K. A dual notion is that of a limit of F : D −→ K weighted by D : D −→ V.
For a small category A we denote by [Aop,V] the category of all functors H : Aop −→ V

as objects and the hom-objects in [Aop,V] are defined by the end (a special weighted limit):

[Aop,V](H,G) =

∫
A

[HA,GA]

This weighted limit exists. In fact, assumptions on Vo entail that V is complete and
cocomplete, thus, so is [Aop,V], weighted limits and colimits there being formed pointwise.

3. Connected Functors

In the present section we characterize those functors P : A −→ B for which the functor

[P op, 1V] : [Bop,V] −→ [Aop,V]

is fully faithful and we show that, up to equivalence, these are precisely all simultaneously
reflective and coreflective full subcategories of [Aop,V].

We begin with the following well-known assertion (see, for example, Theorem 4.50
of [10] or Theorem 6.7.7 in the second volume of [3] for the proof):

3.1. Lemma. Suppose that P : A −→ B is a functor between small categories. Then the
functor

[P op, 1V] : [Bop,V] −→ [Aop,V]

H �→ H · P op

has both left and right adjoints.

A left adjoint of [P op, 1V] assigns to H : Aop −→ V a left Kan extension of H along P op,
denoted by LanP opH. Analogously, a right adjoint of [P op, 1V] assigns to H : Aop −→ V a
right Kan extension of H along P op, denoted by RanP opH.

If, in the notation of the previous lemma, the functor [P op, 1V] were full and faithful,
it would therefore provide us with an example of a subcategory of presheaves which is
simultaneously reflective and coreflective.
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3.2. Definition. A functor P : A −→ B between small categories is called connected,
if the restriction along P op, that is, the functor

[P op, 1V] : [Bop,V] −→ [Aop,V]

is full and faithful.

3.3. Remark. The terminology “connected functor” has been proposed by Peter John-
stone in his lecture at PSSL in Cambridge in November 2000 for ordinary functors
P : A −→ B for which the induced functor

[P, 1Set] : [B, Set] −→ [A, Set]

is full and faithful. It follows, however, that this condition is equivalent to the requirement
that

[P op, 1Set] : [Bop, Set] −→ [Aop, Set]

is full and faithful (see Proposition 3.6 below or [1]). It is the latter condition which is
more convenient for our setting — this is why we have chosen it in our definition.

3.4. Remark. A useful necessary property of a connected functor P : A −→ B is its
density, that is, the fact that the functor

P̃ : B −→ [Aop,V]

B �→ B(P ,B)

is full and faithful. This follows immediately from the commutative triangle

[Bop,V]
[P op,1V ] �� [Aop,V]

B

Y

����������� P̃

�����������

where Y is the (full and faithful) Yoneda embedding.

Density of a functor P : A −→ B can equivalently be expressed by saying that
each object B is represented as a weighted colimit P̃B ∗ P , or, equivalently, that a left
Kan extension LanP P of P along itself exists and is isomorphic to the identity functor
1B : B −→ B (see Theorem 5.1 of [10]).

3.5. Definition. A functor P : A −→ B between small categories is called absolutely
dense, if it is dense and all colimits P̃B ∗ P are absolute, that is, they are preserved by
any functor.

An easy characterization of connected functors follows from analyzing a counit of the
left Kan extension. For the case of V = Set (that is, for ordinary categories) some of the
characterizations below have been given in [1].
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3.6. Proposition. For P : A −→ B between small categories the following are equiva-
lent:

1. The functor P is connected.

2. For every object B of B, the counit

εY B : LanP op(Y B · P op) −→ Y B

of LanP op( ) � [P op, 1V] is an isomorphism, where Y : B −→ [Bop,V] denotes the
Yoneda embedding.

3. The functor P is absolutely dense.

4. For every category X, the functor

[P, 1X] : [B,X] −→ [A,X]

is full and faithful.

5. The functor P op : Aop −→ Bop is connected, that is, the functor

[P, 1V] : [B,V] −→ [A,V]

is full and faithful.

6. For every pair of functors W : Bop −→ V and D : B −→ X a weighted colimit W ∗D
exists if and only if a weighted colimit (W · P op) ∗ (D · P ) exists and both colimits
are isomorphic.

Proof. Condition 1 is equivalent to the fact that ε evaluated at any H : Bop −→ V is a
natural isomorphism. Since any such H can be expressed as a weighted colimit H ∗ Y of
representables, and since both LanP op( ) and [P op, 1V] preserve colimits (see Lemma 3.1),
conditions 1 and 2 are equivalent.

2 implies 3. P is dense by considerations in 3.4. To prove that P is absolutely dense,
we verify that every functor F : B −→ X preserves weighted colimits B ∼= P̃B ∗ P . In
fact, recall that [P op, 1V] is assumed to be full and faithful and use P̃B = B( , B) · P op

to deduce the following isomorphisms

X
(
P̃B ∗ F · P,X

) ∼= [Aop,V]
(
B(P ,B),X(F · P ,X)

)
∼= [Aop,V]

(
B( , B) · P op,X(F ,X) · P op

)
∼= [Bop,V]

(
B( , B),X(F ,X)

)
∼= X(FB,X)
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natural in every object X in X.

3 implies 4. Since we assume that P is absolutely dense, this means that a left Kan
extension LanP P ∼= 1B of P along itself is preserved by any functor F : B −→ X. Thus,
for any pair F,G : B −→ X of functors we have isomorphisms

[B,X](F,G) ∼= [B,X]
(
LanP (F · P ), G

)
∼= [A,X](F · P,G · P )

where the last isomorphism is induced by precomposing with P . We conclude that con-
dition 4 holds.

Since 4 clearly implies 5, we prove that 5 implies 2. Analogously to the equivalence of
conditions 1 and 2 we firstly deduce that condition 5 is equivalent to the fact that the
counit of LanP ( ) � [P, 1V] is an isomorphism, whenever it is evaluated at a representable
functor B(B′, ). Thus, the map

∫ A

B(B′, PA)⊗B(PA,B) −→ B(B′, B)

induced by composition, is an isomorphism, natural in both B and B′. Therefore, condi-
tion 2 holds, since the natural isomorphism

∫ A

B( , PA)⊗B(PA,B) −→ B( , B)

is precisely εY B.

1 implies 6. Consider the following isomorphisms

X
(
(W · P op ∗ (D · P ), X)

) ∼= [Aop,V]
(
W · P op,X(D · P ,X)

)
∼= [Aop,V]

(
W · P op,X(D ,X) · P op

)
∼= [Bop,V]

(
W, X(D ,X)

)
∼= X(W ∗ D,X)

natural in X.

6 implies 1. Apply condition 6 to the case when D is the Yoneda embedding Y : B −→
[Bop,V]. Since (W · P op) ∗ (Y · P ) is isomorphic to LanP op(W · P op) and since W ∗ Y is
isomorphic to W , from

(W · P op) ∗ (Y · P ) ∼= W

we conclude that the counit of LanP op( ) � [P op, 1V] is an isomorphism. Therefore
[P op, 1V] is full and faithful.
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3.7. Examples. The above proposition allows one to characterize connected functors
for some choices of the base category V.

1. In case when V is the category Ab of Abelian groups and their homomorphisms,
connected functors between one-object categories (that is, homomorphisms of rings
with unit) are precisely epimorphisms of rings (see [11]). It holds that the functor
P : R −→ S is an epimomorphism if and only if the canonical map m : S ⊗

R
S −→ S,

m(s⊗ s′) = ss′ is a bijection (Proposition 16.3 in [11]). Connected functors do not
increase the size of infinite rings. For the classification of connected functors with
domain Z, see [2].

It has been proved in 2.4 of [7] that every epimorphism f : R −→ S of rings with
unit induces a full embedding of categories

[P, 1X] : [S,X] −→ [R,X]

for any Ab-category X. (Here, S and R denote the one-object Ab-categories corre-
sponding to R and S.) Condition 4 of Proposition 3.6 shows that a converse also
holds.

2. In case when V is the category Set of sets and mappings we obtain the following
characterization of connected functors P : A −→ B (see Theorem 2.1 in [1]):

Firstly, for every arrow f : B′ −→ B in B define the category f // P as follows:

- objects are pairs 〈p : B′ −→ PA, q : PA −→ B〉 with q · p = f

- morphisms from 〈p : B′ −→ PA, q : PA −→ B〉 to 〈p′ : B′ −→ PA′, q′ :
PA′ −→ B〉 are those morphisms h : A −→ A′ such that Ph · p = p′ and
Ph · q′ = q.

Then P is connected if and only if the category f // P is connected for every
f : B′ −→ B. This can be seen immediately from Proposition 3.6: the functor P is
connected if and only if the map∫ A

B(B′, PA) × B(PA,B) −→ B(B′, B)

induced by composition, is an isomorphism. Thus, the elements of the coend on
the left are in one to one correspondence with morphisms f : B −→ B′. This is
precisely to say that every category of the form f // P is connected.

Connected functors between one-object ordinary categories are precisely epimor-
phisms in the category of monoids (see Corollary 2.2 in [7]). Such an epimorphism
may increase the size of monoid M only if M is finite — see [6]. An easy example
of a connected functor which is not full is the inclusion of the additive monoid N of
natural numbers into the monoid Z of integers.
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Connected functors between ordinary categories are not precisely the epimorphisms.
It holds that if a functor P is an epimorphism which is one-to-one on objects, then
P is connected (Corollary 2.2 of [7]). It is shown in [1] that connected functors
P : A −→ B are precisely lax epimorphisms in the 2-category Cat of small categories,
functors and natural transformations. A functor P : A −→ B is, by definition, a
lax epimorphism whenever the functor

[P, 1X] : [B,X] −→ [A,X]

is full and faithful for every small category X (see also condition 4 of Proposition 3.6).

The next result shows that connected functors enjoy good closure properties.

3.8. Lemma. The class of connected functors is closed under composition and tensor
products.

Proof. It is clear that Q · P : A −→ C is a connected functor whenever P : A −→ B

and Q : B −→ C are connected functors.

To show that P ⊗Q : A⊗C −→ B⊗D is a connected functor for connected functors
P : A −→ B and Q : C −→ D it suffices to show that

P ⊗ 1C : A⊗C −→ B⊗C and 1B⊗Q : B⊗C −→ B⊗D

are connected functors, because P ⊗Q = (1B⊗Q) · (P ⊗ 1C).

Connectedness of P ⊗ 1C follows immediately from the commutative diagram

[B⊗C,V]
[P ⊗ 1C ,V] ��

∼=
��

[A⊗C,V]

∼=
��[

B, [C,V]
]

[P,1[C,V]]
��
[
A, [C,V]

]

and connectedness of 1B⊗Q is proved in a similar way.

3.9. Remark. Connected functors can also be characterized via profunctors.

Recall that the bicategory Prof of profunctors is defined as follows (see, for example,
[3] for details):

1. Objects are small categories.

2. Morphisms from X to Y are functors Yop ⊗X −→ V called profunctors (also bimo-
dules, or distributors) and denoted by X ◦ ��Y .

3. 2-cells are natural transformations between the respective functors.
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4. For profunctors
ϕ : X ◦ ��Y and ψ : Y ◦ ��Z

the composite profunctor ψ · ϕ : X ◦ ��Z has values

(
ψ · ϕ

)
(Z,X) =

∫ Y

ψ(Z, Y )⊗ϕ(Y,X)

This composition is associative up to an isomorphism and an identity profunctor
iX : X ◦ ��X is the hom-functor of the category X.

Recall that every functor P : A −→ B between small categories induces a pair of
profunctors

P � : A ◦ ��B and P� : B ◦ ��A

where P �(B,A) = B(B,PA) and P�(A,B) = B(PA,B). Moreover, there is always an
adjunction

P � � P�

in Prof with counit P � · P� −→ iB defined pointwise by the morphism

εB′,B :

∫ A

B(B′, PA)⊗B(PA,B) −→ B(B′, B)

which is the unique morphism induced by composition.
Thus, by Proposition 3.6, P is connected if and only if the counit of P � � P� is an

isomorphism.
It will be useful later to note that the unit iA −→ P� ·P � of P � � P� is given pointwise

by the morphism

A(A′, A) −→
∫ B

B(PA′, B)⊗B(B,PA)

which is the action PA′,A : A(A′, A) −→ B(PA′, PA) of P on hom-objects — here, we use

the fact that
∫ B

B(PA′, B)⊗B(B,PA) ∼= B(PA′, PA).

We now show that one can assume, without loss of generality, that connected functors
are surjective on objects. Recall that small categories X and Y are called Morita equiva-
lent, if the corresponding categories of presheaves [Xop,V] and [Yop,V] are equivalent, or,
equivalently, if the categories X and Y are equivalent in the bicategory Prof.

3.10. Lemma. Suppose that P : A −→ B is a connected functor. Factorize P as

A
P ��

F ���
��

��
��

B

C

G

���������

with F surjective on objects and G fully faithful. Then F is connected and C, B are Morita
equivalent categories.
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Proof. For every H,K : Bop −→ V the following triangle commutes:

[Bop,V](H,K)
[P op,1V ]H,K ��

[Gop,1V ]H,K

���
��

��
��

��
��

��
��

�
[Aop,V](H · P op, K · P op)

[Cop,V](H · Gop, K · Gop)

[F op,1V ]HGop,KGop

���������������������

Since F is surjective on objects, the morphism

[F op, 1V]HGop,KGop

is a monomorphism (see the proof of Proposition 5.11 of [10]). Since it is also a split
epimorphism, we conclude that it is an isomorphism. Thus, also the morphism

[Gop, 1V]H,K

is an isomorphism and we have shown that G is a fully faithful connected functor. By
Remark 3.9 the adjunction of profunctors G� � G� is an adjoint equivalence, thus C and
B are Morita equivalent categories. As a consequence, the functor F is connected.

The main result of this paper shows that, up to equivalence, there are no other simul-
taneously reflective and coreflective full subcategories of [Aop,V] than inclusions of the
form

[P op, 1V] : [Bop,V] −→ [Aop,V]

for a (necessarily connected) functor P : A −→ B which is surjective on objects.

3.11. Theorem. Let A be a small category and let J be a full embedding

J : K −→ [Aop,V].

of a simultaneously reflective and coreflective subcategory. Then there exists a connected
functor P : A −→ B which is surjective on objects such that, up to equivalence, the
embedding J is

[P op, 1V] : [Bop,V] −→ [Aop,V]

Proof. Form the composite

A
Y �� [Aop,V] L �� K

of the Yoneda embedding and the left adjoint L of J and denote it by E. Then E is a
dense functor and J : K −→ [Aop,V] is isomorphic to a fully faithful functor

Ẽ : K �→ K(E ,K)
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(see Proposition 5.15 of [10]).
Factorize E as follows:

A
E ��

P ���
��

��
��

K

B

E′

���������

where P is surjective on objects and E ′ is fully faithful. Since E is dense, so are P and
E ′ (Theorem 5.13 of [10]) and the triangle

[Bop,V]
[P op,1V ] �� [Aop,V]

K
Ẽ′

����������� Ẽ

�����������

commutes, because E ′ · P = E.
The functor Ẽ ′ : K −→ [Bop,V] has a left adjoint ∗E ′, sending a functor H : Bop −→

V to a colimit H ∗ E ′ of E ′ weighted by H, because K is cocomplete.
It remains to show that the functor Ẽ ′ is an equivalence. It is clearly full and faithful,

since E ′ is dense. It suffices to show that Ẽ ′ is essentially surjective on objects. This is
done in the following steps:

1. Firstly observe that every object of the form E ′A is small-projective in K, that is,
the hom-functor

K(E ′A, ) : K −→ V

preserves all colimits. Indeed, consider a colimit W ∗ D in K. Then we obtain the
following isomorphisms

K(E ′A,W ∗ D) ∼= K(LY A,W ∗ D)

∼= [Aop,V]
(
Y A, Ẽ(W ∗ D)

)
∼= W ∗ [Aop,V](Y A, ẼD )
∼= W ∗ K(E ′A,D )

by using the fact that L � Ẽ and that Ẽ preserves colimits (since Ẽ is a left adjoint).

2. From the above it follows that Ẽ ′ preserves small colimits.

3. To conclude the proof, take any H : Bop −→ V. Then the following isomorphisms

Ẽ ′(H ∗ E ′) ∼= H ∗ Ẽ ′E ′ ∼= H ∗ Y ∼= H

take place, because E ′ is full and faithful and thus the composite Ẽ ′ · E ′ is the
Yoneda embedding Y .
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Since the category V itself is equivalent to [Iop,V], where I is the one-object unit
category, as a consequence of Theorem 3.11 we obtain:

3.12. Corollary. Any full reflective and coreflective subcategory of V is equivalent to
the category of the form [Aop,V], where A has one object, that is, it corresponds to a
monoid in V.

3.13. Examples.

1. Any (not necessarily commutative) ring R with a unit can be viewed as a one-
object Ab-category R. Theorem 3.11 asserts that full reflective and coreflective
subcategories of [Rop, Ab] are of the form [Sop,V] for a one-object Ab-category S,
that is, a ring S with a unit. Moreover, the inclusion [Sop,V] −→ [Rop,V] is induced
by an epimorphism of rings f : R −→ S (see Example 3.7). Thus, full reflective
and coreflective subcategories of right R-modules are up to equivalence precisely
categories of right S-modules for ring-epimorphic images S of R.

2. More in general, given a commutative theory, that is, a variety V of algebras in which
all operations are homomorphisms, we can produce in a natural way the tensor
product with one-generated free algebra as its unit (see [3]). By Theorem 3.11 we
can represent full reflective and coreflective subcategories of the presheaf categories
[Aop,V], for the resulting enriched category V, by connected functors. Among the
many instances of this construction one can find the varieties of medial groupoids
(see, for example, [8]), commutative semigroups, abelian groups.

3. From Theorem 3.11 we can conclude that, up to equivalence, Set does not have any
simultaneously reflective and coreflective full subcategories than Set itself. This can
be seen as follows:

Let I be a monoid on one-element set, considered as a category. Then [Iop, Set]
is equivalent to Set and any reflective and coreflective subcategory J : K −→ Set
must be, up to equivalence, of the form [P op, 1Set] : [Bop, Set] −→ [Iop, Set], where
P : I −→ B is an epimorphism of monoids (see Example 3.7).

Since, by Remark 3.4, the functor P is dense, the monoid B must be isomorphic to
the monoid of I-equivariant maps of B to itself. Since every map is I-equivariant,
it follows that B must be isomorphic to I.

By Remark 3.9, a functor P : A −→ B is connected if and only if the adjunction
P � � P� of the corresponding profunctors is a “full reflection”, that is, if the counit of
this adjunction is an isomorphism. Applying Theorem 3.11 we now show that every full
reflection of profunctors is generated by a connected functor. More precisely, the following
holds:

3.14. Proposition. Suppose that ϕ : B ◦ ��A and ψ : A ◦ ��B are profunctors with
ψ � ϕ and such that the counit ψ · ϕ −→ iB is an isomorphism. Then there is a category
C and a connected functor P : A −→ C such that C is Morita equivalent to B and the
adjunction ψ � ϕ is, up to this equivalence, the adjunction P � � P�.
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Proof. Put tr(ϕ) : B −→ [Aop,V] and tr(ψ) : A −→ [Bop,V] to be the functors

tr(ϕ) : B �→ ϕ( , B) and tr(ψ) : A �→ ψ( , A)

and consider the functors

∗ tr(ϕ) : [Bop,V] −→ [Aop,V] and ∗ tr(ψ) : [Aop,V] −→ [Bop,V]

By assumption, ∗ tr(ψ) � ∗ tr(ϕ) and the counit of this adjunction is an isomorphism.
Since, clearly, the functor ∗ tr(ϕ) preserves colimits, it has a right adjoint. Thus, the
functor

∗ tr(ϕ) : [Bop,V] −→ [Aop,V]

is a full embedding of a simultaneously reflective and coreflective subcategory. The rest
follows by applying Theorem 3.11.
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