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EXPONENTIABILITY IN CATEGORIES OF LAX ALGEBRAS

Dedicated to Nico Pumplün on the occasion of his seventieth birthday

MARIA MANUEL CLEMENTINO, DIRK HOFMANN AND WALTER THOLEN

ABSTRACT. For a complete cartesian-closed category V with coproducts, and for any
pointed endofunctor T of the category of sets satisfying a suitable Beck-Chevalley-type
condition, it is shown that the category of lax reflexive (T,V)-algebras is a quasitopos.
This result encompasses many known and new examples of quasitopoi.

1. Introduction

Failure to be cartesian closed is one of the main defects of the category of topological
spaces. But often this defect can be side-stepped by moving temporarily into the quasito-
pos hull of Top, the category of pseudotopological (or Choquet) spaces, see for example
[11, 14, 7]. A pseudotopology on a set X is most easily described by a relation x → x
between ultrafilters x on X and points x in X, the only requirement for which is the
reflexivity condition

•
x → x for all x ∈ X, with

•
x denoting the principal ultrafilter on

x. In this setting, a topology on X is a pseudotopology which satisfies the transitivity
condition

X → y & y → z ⇒ m(X) → z

for all z ∈ X, y ∈ UX (the set of ultrafilters on X) and X ∈ UUX; here the relation →
between UX and X has been naturally extended to a relation between UUX and UX,
and m = mX : UUX → UX is the unique map that gives U together with eX(x) =

•
x the

structure of a monad U = (U, e,m). Barr [2] observed that the two conditions, reflexivity
and transitivity, are precisely the two basic laws of a lax Eilenberg-Moore algebra when one
extends the Set-monad U to a lax monad of Rel(Set), the category of sets with relations
as morphisms. In [9] Barr’s presentation of topological spaces was extended to include
Lawvere’s presentation of metric spaces as V-categories with V = R+, the extended real
half-line. Thus, for any symmetric monoidal category V with coproducts preserved by
the tensor product, and for any Set-monad T that suitably extends from Set-maps to
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all V-matrices (or “V-relations”, with ordinary relations appearing for V = 2, the two-
element chain), the paper [9] develops the notion of reflexive and transitive (T,V)-algebra,
investigates the resulting category Alg(T,V), and presents many examples, in particular
Top = Alg(U,2).

The purpose of this paper is to show that dropping the transitivity condition leads
us to a quasitopos not only in the case of Top, but rather generally. In order to define
just reflexive (T,V)-algebras, one indeed needs neither the tensor product of V (just
the “unit” object) nor the “multiplication” of the monad T. Positively speaking then,
we start off with a category V with coproducts and a distinguished object I in V and
any pointed endofunctor T of Set and define the category Alg(T,V). Our main result
says that when V is complete and locally cartesian closed and a certain Beck-Chevalley
condition is satisfied, also Alg(T,V) is locally cartesian closed (Theorem 3.7).

Defining reflexive (T,V)-algebras for the “truncated” data T , V entails a considerable
departure from [9], as it is no longer possible to talk about the bicategory Mat(V) of
V-matrices. The missing tensor product prevents us from being able to introduce the
(horizontal) matrix composition; however, “whiskering” by Set-maps (considered as 1-
cells in Mat(V)) is still well-defined and well-behaved, and this is all that is needed in
this paper.

We explain the relevant properties of Mat(V) in Section 2 and define the needed Beck-
Chevalley condition. Briefly, this condition says that the comparison map that “measures”
the extent to which the T -image of a pullback diagram in Set still is a pullback diagram
must be cofully faithful when considered a 1-cell in Mat(V). Having presented our main
result, at the end of Section 3 we show that this condition is equivalent to asking T to
preserve pullbacks or, if V is thin (i.e., a preordered class), to transform pullbacks into
weak pullback diagrams (barring trivial choices for I and V). In certain cases, (BC) turns
out to be even a necessary condition for local cartesian closedness of Alg(T,V), see 3.10.
In Section 4 we show how to construct limits and colimits in Alg(T,V) in general, and
Section 5 presents the construction of partial map classifiers, leading us to the theorem
stated in the Abstract. A list of examples follows in Section 6.

Acknowledgements. We dedicate this paper in great admiration to Nico Pumplün with
whom the third-named author started off studying Lawvere-Linton theories and monads
in the late sixties. The authors are also grateful to Ross Street and Richard Wood for
pointing them to their respective articles [15] and [3].

2. V-matrices

2.1. Let V be a category with coproducts and a distinguished object I. A V-matrix (or
V-relation) r from a set X to a set Y , denoted by r : X � Y , is a functor r : X×Y → V,
i.e. an X × Y -indexed family (r(x, y))x,y of objects in V. With X, Y fixed, such V-
matrices form the objects of a category Mat(V)(X,Y ), the morphisms ϕ : r → s of which
are natural transformations, i.e. families (ϕx,y : r(x, y) → s(x, y))x,y of morphisms in V;
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briefly,
Mat(V)(X,Y ) = VX×Y .

2.2. Every Set-map f : X → Y may be considered as a V-matrix f : X � Y when one
puts

f(x, y) =

{
I if f(x) = y,
0 else,

with 0 denoting a fixed initial object in V. This defines a functor

Set(X,Y ) �� Mat(V)(X,Y ),

of the discrete category Set(X,Y ), and the question is: when do we obtain a full embed-
ding, for all X and Y ? Precisely when

V(I, 0) = ∅ and |V(I, I)| = 1 (∗)
as one may easily check. In the context of a cartesian-closed category V, we usually pick
for I a terminal object 1 in V, and then condition (∗) is equivalently expressed as

0 �∼= 1 (∗∗)
preventing V from being equivalent to the terminal category.

2.3. While in this paper we do not need the horizontal composition of V-matrices in
general, we do need the composites sf and gr for maps f : X → Y , g : Y → Z and
V-relations r : X � Y , s : Y � Z, defined by

(sf)(x, z) = s(f(x), z),

(gr)(x, z) =
∑

y : g(y)=z

r(x, y),

for x ∈ X, z ∈ Z; likewise for morphisms ϕ : r → r′ and ψ : s → s′. Hence, we have the
“whiskering” functors

−f : Mat(V)(Y, Z) → Mat(V)(X,Z),

g− : Mat(V)(X,Y ) → Mat(V)(X,Z),

giving Mat(V) the structure of an equipment in the sense of [3]. Accordingly, the horizon-
tal composition with Set-maps from either side is associative up to coherent isomorphisms
whenever defined; hence, if h : U → X and k : Z → V , then

(sf)h = s(fh) and k(gr) ∼= (kg)r.

Although Mat(V) falls short of being a bicategory, even a sesquicategory [15], we refer to
sets as 0-cells of Mat(V), V-matrices as its 1-cells, and natural transformations between
them as its 2-cells.
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2.4. The transpose r◦ : Y � X of a V-matrix r : X � Y is defined by r◦(y, x) = r(x, y)
for all x ∈ X, y ∈ Y . Obviously r◦◦ = r, and with

(sf)◦ = f ◦s◦, (gr)◦ = r◦g◦

we can also introduce whiskering by transposes of Set-maps from either side, also for
2-cells.

A Set-map f : X → Y gives rise to 2-cells

η : 1X → f ◦f, ε : ff◦ → 1Y

satisfying the triangular identities (εf)(fη) = 1f , (f ◦ε)(ηf ◦) = 1f .
As a consequence one obtains adjoints to the whiskering functors of 2.3:

t→ sf

tf◦ → s

gr → t

r → g◦t

for all r, s, f, g as in 2.3 and t : X � Z; briefly,

(−f ◦) 	 (−f), (g−) 	 (g◦−).

2.5. For a functor T : Set → Set, we denote by κ : TW → U the comparison map from
the T -image of the pullback W := Z ×Y X of (g, f) to the pullback U := TZ ×TZ TX of
(Tg, Tf)

TW Tk

��

Th

��

κ

���
�

�

U
π2 ��

π1

��

TX

Tf

��
TZ

Tg �� TY.

(1)

We say that the Set-functor T satisfies the Beck-Chevalley Condition (BC) if the 1-cell κ is
cofully faithful; that is, if the “whiskering” functor −κ : Mat(V)(U, S) → Mat(V)(TW,S)
is full and faithful, for every set S.

In the next section we will relate this condition with other known formulations of the
Beck-Chevalley condition.

3. Local cartesian closedness of Alg(T,V)

3.1. Let (T, e) be a pointed endofunctor of Set and V category with coproducts and
a distinguished object I. A lax (reflexive) (T,V)-algebra (X, a, η) is given by a set X, a
1-cell a : TX � X and a 2-cell η : 1X → aeX in Mat(V). The 2-cell η is completely
determined by the V-morphisms

ηx := ηx,x : I �� a(eX(x), x),
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x ∈ X. As we shall not change the notation for this 2-cell, we write (X, a) instead of
(X, a, η). A (lax) homomorphism (f, ϕ) : (X, a) → (Y, b) of (T,V)-algebras is given by
a map f : X → Y in Set and a 2-cell ϕ : fa → b(Tf) which must preserve the units:
(ϕeX)(fη) = ηf . The 2-cell ϕ is completely determined by a family of V-morphisms

fx,x : a(x, x) �� b(Tf(x), f(x)),

x ∈ X, x ∈ TX, and preservation of units now reads as feX(x),xηx = ηf(x) for all x ∈ X.
For simplicity, we write f instead of (f, ϕ), and when we write

fx,x : a(x, x) �� b(y, y)

this automatically entails y = Tf(x) and y = f(x); these are the V-components of the
homomorphism f . Composition of (f, ϕ) with (g, ψ) : (Y, b) → (Z, c) is defined by

(g, ψ)(f, ϕ) = (gf, (ψ(Tf))(gϕ))

which, in the notation used more frequently, means

(gf)x,x = (a(x, x)
fx,x �� b(y, y)

gy,y �� c(z, z)).

We obtain the category Alg(T,V) (denoted by Alg(T, e;V) in [9]).

3.2. Let V be finitely complete. The pullback (W, d) of f : (X, a) → (Z, c) and
g : (Y, b) → (Z, c) in Alg(T,V) is constructed by the pullback W = X ×Z Y in Set and
a family of pullback diagrams in V, as follows:

d(w, w)
f ′w,w ��

g′w,w

��

b(y, y)

gy,y

��
a(x, x)

fx,x �� c(z, z)

for all w ∈ W ; hence,

d(w, w) = a(Tg′(w), g′(w)) ×c b(Tf
′(w), f ′(w))

in V, where g′ : W → X and f ′ : W → Y are the pullback projections in Set. For each
w = (x, y) in W , we define ηw :=< ηx, ηy >.

3.3. Every set X carries the discrete (T,V)-structure e◦X . In fact, the 2-cell η : 1X →
e◦XeX making (X, e◦X) a (T,V)-algebra is just the unit of the adjunction eX 	 e◦X in
Mat(V). Now X 
→ (X, e◦X) defines the left adjoint of the forgetful functor

Alg(T,V) �� Set
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since every map f : X → Y into a (T,V)-algebra (Y, b) becomes a homomorphism
f : (X, e◦X) → (Y, b); indeed the needed 2-cell fe◦X → b(Tf) is obtained from the unit 2-
cell η : 1 → beY with the adjunction eX 	 e◦X : it is the mate of fη : f → beY f = b(Tf)eX .
In pointwise notation, for

fx,x : e◦X(x, x) �� b(y, y)

one has fx,x = 1I if eX(x) = x; otherwise its domain is the initial object 0 of V, i.e. it is
trivial.

3.4. We consider the discrete structure in particular on a one-element set 1. Then,
for every (T,V)-algebra (X, a), an element x ∈ X can be equivalently considered as
a homomorphism x : (1, e◦1) → (X, a) whose only non-trivial component is the unit
ηx : I → a(eX(x), x).

3.5. Assume V to be complete and locally cartesian closed. For a homomorphism
f : (X, a) → (Y, b) and an additional (T,V)-algebra (Z, c) we form a substructure of the
partial product of the underlying Set-data (see [10]), namely

Z Qev��

f ′
��

q �� X

f

��
P

p �� Y,

(2)

with

P = Zf = {(s, y) | y ∈ Y, s : (Xy, ay) → (Z, c)},
Q = Zf ×Y X = {(s, x) |x ∈ X, s : (Xf(x), af(x)) → (Z, c)},

where (Xy = f−1y, ay) is the domain of the pullback

iy : (Xy, ay) �� (X, a)

of y : (1, e◦1) → (Y, b) along f . Of course, p and q are projections, and ev is the evaluation
map. We must find a structure d : TP � P which, together with a 2-cell η, will make
these maps morphisms in Alg(T,V).

For (s, y) ∈ P and p ∈ TP , in order to define d(p, (s, y)), consider each pair x ∈ X
and q ∈ TQ with f(x) = y and Tf ′(q) = p and form the partial product

c(z, s(x)) c(z, s(x))fx,x ×b a(x, x)
ẽvq,x��

��

�� a(x, x)

fx,x

��
c(z, s(x))fx,x

p̃q,x �� b(y, y)

(3)
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in V, where z = T ev(q), and then the multiple pullback d(p, (s, y)) of the morphisms p̃q,x

in V, as in:

c(z, s(x))fx,x

p̃q,x

�������������

d(p, (s, y))

πq,x

��������������

pp,(s,y)

�� b(y, y).

3.6. We define the 2-cell η : 1P → deP componentwise. Let (s, y) ∈ P and consider
each x ∈ X and q ∈ TQ with f(x) = y and Tf ′(q) = eP (s, y) = T (s, y)e1 (where
(s, y) : 1 → P ). Consider the pullback jy : Xy → Q of (s, y) : 1 → P along f ′ in Set;
whence, jy(x) = s(x). By (BC) there is x ∈ TXy such that Tjy(x) = q and T !(x) = e1(∗)
(where ! : Xy → 1 and ∗ is the only point of 1). Since evjy = s, we may form the diagram

c(z, s(x)) ay(x, x)
sx,x��

��

(iy)x,x �� a(x, x)

fx,x

��
I

ηy �� b(eY (y), y)

in V, where z = T ev(q) = Ts(x), and the square is a pullback. The universal property
of (3) guarantees the existence of η̃q,x : I → c(z, s(x))fx,x such that p̃q,xη̃q,x = ηy and
ẽvq,x(η̃q,x ×b 1) = sx,x. Then, with the multiple pullback property, the morphisms η̃q,x

define jointly η(s,y) : I → d(eP (s, y), (s, y)).

3.7. Theorem. If the pointed Set-functor T satisfies (BC) and V is complete and
locally cartesian closed, then also Alg(T,V) is locally cartesian closed.

Proof. Continuing in the notation of 3.5 and 3.6, we equip Q with the lax algebra
structure r : TQ � Q that makes the square of diagram (2) a pullback diagram in
Alg(T,V). Then the 2-cell defined by

r(q, (s, x))
πq,x×b1�� c(z, s(x))fx,x ×b a(x, x)

ẽvq,x �� c(z, s(x))

makes ev : (Q, r) → (Z, c) a homomorphism.

In order to prove the universal property of the partial product, given any other pair
(h : (L, u) → (Y, b), k : (M, v) → (Z, c)), where M := L ×Y X, we consider the map
t : L→ P , defined by t(l) := (sl, h(l)), with

((Xh(l), ah(l)))
sl �� (Z, c)) = ((Xh(l), ah(l))

jl �� (M, v) k �� (Z, c)),
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where jl is the pullback of l : (1, e◦1) → (L, u) along f ′′ : (M, v) → (L, u). We remark that
in the commutative diagram

Z Qev�� q ��

f ′��

X

f

��

M
k

		�����
t′ 

����

f ′′

��

Xh(l)

ih(l)

�������jl��

��

P
p �� Y

L

t
�������

1
l

�� h(l)

������

every vertical face of the cube is a pullback in Set.
Now, for each l ∈ L and l ∈ L we define tl,l : u(l, l) → d(Tt(l), t(l)) componentwise.

Since evt′ = k we observe that Tk factors through the comparison map κ : TM →
TL×TP TQ, defined by the diagram

TM Tt′

��

Tf ′′

��

κ
��				

TL×TP TQ
π2 ��

π1

��

TQ

Tf ′

��
TL Tt �� TP ;

that is Tk = (T ev)(Tt′) = (T ev)π2κ. Since also kv factors through κ, i.e., kv = kṽκ, with
(BC) we conclude that the 2-cell kv → c(Tk) is of the form

ϕ

��

M κ �� TL×TP TQ

kṽ

��

(T ev)π2

��Z.

For each x ∈ X and q ∈ TQ such that f(x) = h(l) and Tf ′(q) = Tt(l), let m ∈ TM be
such that (Tf ′′)(m) = l and (Tt′)(m) = q. In the diagram

c(z, sl(x)) v(m, (l, x))
km,(l,x)��

��

�� a(x, x)

fx,x

��
u(l, l)

hl,l �� b(y, y)

in V one has z = (T ev)(q) and the morphism km,(l,x) depends only on q and l. Moreover,
the square is a pullback, hence there is a V-morphism t̃l,l : u(l, l) → c(z, sl(x))

fx,x such
that p̃q,xt̃l,l = hl,l and km,(l,x)(t̃l,l ×b 1) = ẽvq,x. With the multiple pullback property, the
morphisms t̃l,l define the unique 2-cell that makes t : (L, u) → (P, d) a homomorphism.
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If in the proof we take for (Y, b) the terminal object of Alg(T,V), that is, the pair
(1,�) where the lax structure � is constantly equal to the terminal object of V, we
conclude:

3.8. Corollary. If the pointed Set-functor T satisfies (BC) and V is complete and
cartesian closed, then also Alg(T,V) is cartesian closed.

We explain now the strength of our Beck-Chevalley condition.

3.9. Proposition. For T and V as in 2.5, let V(I, 0) = ∅. Then:

(a) If T satisfies (BC), then T transforms pullbacks into weak pullbacks. The two con-
ditions are actually equivalent when V is thin (i.e. a preordered class).

(b) If V is not thin, satisfaction of (BC) by T is equivalent to preservation of pullbacks
by T .

(c) If V is cartesian closed, with I = 1 the terminal object, then T satisfies (BC) if and
only if (Tf)◦Tg = Tk(Th)◦, for every pullback diagram

W k ��

h
��

X

f
��

Z
g �� Y

(4)

in Set.

Proof. (a) Let κ : TW → U be the comparison map of diagram (1). By (BC) the
2-cell κη : κ → κκ◦κ is the image by −κ of a 2-cell σ : 1U → κκ◦. Hence, for each u ∈ U
there is a V-morphism

I → κκ◦(u, u) =
∑

w∈TW :κ(w)=u

κ(w, u).

Therefore the set {w ∈ TW |κ(w) = u} cannot be empty, that is, κ is surjective.
If V is thin and κ is surjective, there is a (necessarily unique) 2-cell 1U → κκ◦. Then

each 2-cell ψ : κr → κs induces a 2-cell ϕ : r → s defined by

r rσ �� rκκ◦
ψκ◦ �� sκκ◦ sε �� s

whose image under −κ is necessarily ψ.

(b) If T preserves pullbacks, then κ is an isomorphism and (BC) holds.
Conversely, let T satisfy (BC) and let κ : TW → U be a comparison map as in (1).

We consider w0, w1 ∈ TW with κ(w0) = κ(w1) and V-morphisms α, β : v → v′ with
α �= β, and define r : U × U → V by r(u, u′) = v and s : U × U → V by s(u, u′) = v′.
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The 2-cell ψ : rκ→ sκ, with ψw,u = α if w = w0 and ψw,u = β elsewhere, factors through
κ only if w0 = w1.

(c) For any commutative diagram (4) there is a 2-cell kh◦ → f ◦g, defined by

kh◦
ηkh◦ �� f ◦fkh◦ = f ◦ghh◦

f◦gε �� f ◦g,

which is an identity morphism in case the diagram is a pullback.
If T satisfies (BC) and V is not thin, the equality Tk(Th)◦ = (Tf)◦Tg follows from

(b). If V is thin, then in the diagram (1) the 2-cell σ : 1 → κκ◦ considered in (a) gives
rise to a 2-cell

(Tf)◦Tg = π2π
◦
1

π2σπ◦
1 �� π2κκ

◦π◦
1 = Tk(Th)◦,

and the equality follows.
Conversely, the equality (Tf)◦Tg = Tk(Th)◦ guarantees the surjectivity of κ, hence

(BC) follows in case V is thin, by (a). If V is not thin, we first observe that a coproduct∑
X I is isomorphic to I only if X is a singleton, due to the cartesian closedness of V.

Now, (Tf)◦Tg = Tk(Th)◦ means that, for every z ∈ TZ and x ∈ TX with Tg(z) = Tf(x),

I = Tf(x, T g(z)) = Tf ◦Tg(z, x) = TkTh◦(z, x)

=
∑

{I |w ∈ TW : Tk(w) = x & Th(w) = z}.
From this equality we conclude that there exists exactly one such w, i.e. TW = TZ ×TY

TX.

3.10. Finally we remark that, in some circumstances, the 2-categorical part of (BC)
is essential for local cartesian-closedness of Alg(T,V). Indeed, if V is extensive [4], T
transforms pullback diagrams into weak pullback diagrams and Alg(T,V) is locally carte-
sian closed, then T satisfies (BC), as we show next. To check (BC) we consider a 2-cell
ψ : rκ → sκ, with κ : TW → U the comparison map of diagram (1) and r, s : U → S.
We need to check that ψ = ϕκ for a unique 2-cell ϕ : r → s. This 2-cell exists, and it is
unique if and only if

∀w0,w1 ∈ TW ∀s ∈ S κ(w0) = κ(w1) ⇒ ψw0,s = ψw1,s.

For v := r(κ(w0), s) and v′ := s(κ(w0), s), and α := ψw0,s and β = ψw1,s, we want to show
that α = β.

For that, in the pullback diagram (4) we consider structures a, b, c, d, on X, Y , Z
and W respectively, constantly equal to I + v, with η : I → I + v the coproduct injection.
For d′ constantly equal to I + v′, in the diagram

(W, d′) (W, d)
(id,ε)��

(h,1)

��

(k,1) �� (X, a)

(f,1)

��
(Z, c)

(g,1) �� (Y, b)
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we define ε by:

εw,w =

{
1 + α if w = w0,
1 + β elsewhere.

The square is a pullback. Hence the morphism (id, ε) factors through the partial product
via t ×Y id, with t : Z → P . Since the 2-cell of t ×Y id is obtained by a pullback
construction and κ(w0) = κ(w1), its 2-cell “identifies” w0 and w1, hence εw0,w = εw1,w,
that is, 1 + α = 1 + β. Therefore α = β, by extensitivity of V.

4. (Co)completeness of the category Alg(T,V)

4.1. We assume V to be complete and cocomplete. The construction of limits in
Alg(T,V) reduces to a combined construction of limits in Set and V, as we show next.

The limit of a functor

F : D → Alg(T,V)
D 
→ (FD, aD)

D
f→ E 
→ (FD, aD)

Ff→ (FE, aE)

is constructed in two steps.
First we consider the composition of F with the forgetful functor into Set

D
F �� Alg(T,V) �� Set, (5)

and construct its limit in Set

(L
pD

�� FD)D∈D.

Then, we define the (T,V)-algebra structure a : TL � L, that is the map a : TX ×
X → V, pointwise. For every l ∈ TL and l ∈ L, we consider now the functor

Fl,l : D → V
D 
→ aD(TpD(l), pD(l))

D
f→ E 
→ aD(TpD(l), pD(l))

Ff
TpD(l),pD(l)�� aE(TpE(l), pE(l))

and its limit in V

(a(l, l)
pD

l,l �� aD(TpD(l), pD(l)))D∈D.

This equips pD : (L, a) → (FD, aD) with a 2-cell pDa→ aDTp
D.

By construction

(L, a)
pD

�� (FD, aD) (6)

is a cone for F . To check that it is a limit, let

(Y, b)
gD

�� (FD, aD)
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be a cone for F . By construction of (L, pD), there exists a map t : Y → L such that
pDt = gD for each D ∈ D. For each y ∈ TY and y ∈ Y ,

b(y, y)
gD

y,y �� aD(TpD(Tt(y)), pD(t(y)))

is a cone for the functor FTt(y),t(y). Hence, by construction of a(Tt(y), t(y)), there exists a
unique V-morphism ty,y making the diagram

a(Tt(y), t(y))
pD

y,y �� aD(TpD(Tt(y)), pD(t(y)))

b(y, y)

ty,y

��




 gD

y,y

�������������������������

commutative. These V-morphisms define pointwise the unique 2-cell gb→ pDa.
For each l ∈ L, ηl : I → a(eL(l), l) is the morphism induced by the cone

(ηDpD(l),pD(l) : I → aD(eFD(pD(l)), pD(l)))D∈D.

4.2. Cocompleteness. To construct the colimit of a functor F : D → Alg(T,V) we
first proceed analogously to the limit construction. That is, we form the colimit in Set

(FD iD �� Q)D∈D

of the functor (5).
To construct the structure c : TQ � Q, for each q ∈ TQ and q ∈ Q, we consider the

functor F q,q : D → V, with

F q,q(D) =
∑

{aD(x, x) |TiD(x) = q, iD(x) = q},

and, for f : D → E, the morphism F q,q(f) : F q,q(D) → F q,q(E) is induced by

aD(x, x)
Ffx,x �� aE(Tf(x), f(x)) ��

∑ {aE(y, y) |TiE(y) = q, iE(y) = q} = F q,q(E).

and denote by c̃(q, q) the colimit of F q,q. If q �= eQ(q) for q ∈ Q, then c̃(q, q) is in fact the
structure c(q, q) on the colimit. For q = eQ(q), the multiple pushout

c̃(eQ(q), q)

������������������

aD(eFD(x), x)

iD
eFD(x),x ��

I

ηx
���������� ηq �� c(eQ(q), q),

defines c(eQ(q), q), with D ∈ D and x ∈ FD such that iD(x) = q.
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5. Representability of partial morphisms

5.1. Let S be a pullback-stable class of morphisms of a category C. An S-partial map

from X to Y is a pair ( X Us�� �� Y ) where s ∈ S. We say that S has a classifier
if there is a morphism true : 1 → 1̃ in S such that every morphism in S is, in a unique
way, a pullback of true; C has S-partial map classifiers if, for every Y ∈ C, there is a

morphism trueY : Y → Ỹ in S such that every S-partial map ( X Us�� �� Y ) from
X to Y can be uniquely completed so that the diagram

U

s
��

�� Y

trueY
��

X ����� Ỹ .

is a pullback.
From Corollary 4.6 of [10] it follows that:

5.2. Proposition. If S is a pullback-stable class of morphisms in a finitely complete
locally cartesian-closed category C, then the following assertions are equivalent:

(i) S has a classifier;

(ii) C has S-partial map classifiers.

5.3. Our goal is to investigate whether the category Alg(T,V) has S-partial map
classifiers, for the class S of extremal monomorphisms. For that we first observe:

5.4. Lemma. An Alg(T,V)-morphism s : (U, c) → (X, a) is an extremal monomorphism
if and only if the map s : U → X is injective and, for each u ∈ TU and u ∈ U ,
su,u : c(u, u) → a(x, x) is an isomorphism in V.

5.5. Proposition. In Alg(T,V) the class of extremal monomorphisms has a classifier.

Proof. For 1̃ = (1 + 1, �̃), where �̃ is pointwise terminal, we consider the inclusion
true : 1 → 1̃ onto the first summand. For every extremal monomorphism s : (U, c) →
(X, a), we define χU : (X, a) → 1̃ with χU : X → 1 + 1 the characteristic map of s(U),
and the 2-cell constantly ! : a(x, x) → 1. Then the diagram below

(U, s)

s

��

! �� 1

true
��

(X, a)
χU �� 1̃

is a pullback diagram; it is in fact the unique possible diagram that presents s as a pullback
of true.
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Using Theorem 3.7 and Proposition 5.5, we conclude that:

5.6. Theorem. If the pointed Set-functor T satisfies (BC) and V is a complete and
cocomplete locally cartesian closed category, then Alg(T,V) is a quasitopos.

5.7. Remark. Representability of (extremal mono)-partial maps can also be proved
directly, and in this way one obtains a slight improvement of Theorem 5.6: Alg(T,V) is
a quasi-topos whenever T satisfies (BC) and V is a complete and cocomplete cartesian
closed category, not necessarily locally so.

6. Examples.

6.1. We start off with the trivial functor T which maps every set to a terminal object 1
of Set. T preserves pullbacks. Choosing for I the top element of any (complete) lattice
V we obtain with Alg(T,V) nothing but the topos Set. This shows that local cartesian
closedness of V is not a necessary condition for local cartesian closedness of Alg(T,V).
We also note that T does not carry the structure of a monad.

If, for the same T , we choose V = Set, then Alg(T,Set) is the formal coproduct
completion of the category Set∗ of pointed sets, i.e. Alg(T,Set) ∼= Fam(Set∗).

6.2. Let T = Id, e = id. Considering for V as in [9] the two-element chain 2, the
extended half-line R+ = [0,∞] (with the natural order reversed), and the category Set,
one obtains with Alg(T,V) the category of

− sets with a reflexive relation

− sets with a fuzzy reflexive relation

− reflexive directed graphs,

respectively.
More generally, if we let TX = Xn for a non-negative integer n, with the same choices

for V one obtains

− sets with a reflexive (n+ 1)-ary relation

− sets with a fuzzy reflexive (n+ 1)-ary relation

− reflexive directed “multigraphs” given by sets of vertices and of edges, with an edge
having an ordered n-tuple of vertices as its source and a single edge as its target;
reflexivity means that there is a distinguished edge (x, · · · , x) → x for each vertex
x.

Note that the case n = 0 encompasses Example 6.1.
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6.3. For a fixed monoid M , let T belong to the monad T arising from the adjunction

SetM ⊥ �� Set,
��

i.e. TX = M ×X with eX(x) = (0, x), with 0 neutral in M (writing the composition in
M additively). T preserves pullbacks. The quasitopos Alg(T,Set) may be described as
follows. Its objects are “M -normed reflexive graphs”, given by a set X of vertices and
sets a(x, y) of edges from x to y which come with a “norm” vx,y : a(x, y) → M for all
x, y ∈ X; there is a distinguished edge 1x : x → x with vx,x(1x) = 0. Morphisms must
preserve the norm. Of course, for trivial M we are back to directed graphs as in 6.2.

It is interesting to note that if one forms Alg(T,Set) for the (untruncated) monad T
(see [9]), then Alg(T,Set) is precisely the comma category Cat/M , where M is considered
a one-object category; its objects are categories which come with a norm function v for
morphisms satisfying v(gf) = v(g) + v(f) for composable morphisms f, g.

6.4. Let T = U be the ultrafilter functor, as mentioned in the Introduction. U transforms
pullbacks into weak pullback diagrams. Hence, for V = 2 we obtain with Alg(T,2) the
quasitopos of pseudotopological spaces, and for V = R+ the quasitopos of (what should
be called) quasiapproach spaces (see [9, 8]). If we choose for V the extensive category
Set, then the resulting category Alg(U,Set) is a rather naturally defined supercategory
of the category of ultracategories (as defined in [9]) but fails to be locally cartesian closed,
according to 3.9(b) and 3.10.
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