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CUBICAL SETS AND THEIR SITE

MARCO GRANDIS AND LUCA MAURI

ABSTRACT. Extended cubical sets (with connections and interchanges) are presheaves
on a ground category, the extended cubical site K, corresponding to the (augmented)
simplicial site, the category of finite ordinals. We prove here that K has characterisations
similar to the classical ones for the simplicial analogue, by generators and relations, or
by the existence of a universal symmetric cubical monoid ; in fact, K is the classifying
category of a monoidal algebraic theory of such monoids. Analogous results are given for
the restricted cubical site I of ordinary cubical sets (just faces and degeneracies) and for
the intermediate site J (including connections). We also consider briefly the reversible
analogue, !K.

1. Introduction

The category �̃ of finite ordinals (and monotone mappings) is the basis of the presheaf
category Smp∼ of augmented simplicial sets, i.e. functors X : �̃op → Set. It has well
known characterisations, as:

(a) the subcategory of Set generated by finite ordinals, their faces and degeneracies,

(b) the category generated by such faces and degeneracies, under the cosimplicial rela-
tions,

(c) the free strict monoidal category with an assigned internal monoid.

The second characterisation is currently used in the description of an augmented simplicial
set as a sequence of sets with faces and degeneracies, subject to the (dual) simplicial
relations.

Cubical sets have also been considered; the main advantage, perhaps, can be traced
back to the fact that cubes are closed under products, while products of tetrahedra have
to be “covered” with tetrahedra; this advantage appears clearly when studying singular
homology based on cubical chains, (cf. Massey [28]). Various works have proved the
importance of adding, to the ordinary structure provided by faces and degeneracies, the
connections (introduced in Brown-Higgins [4, 5, 6]; see also [33, 1, 12] and their references).
Finally, the interest of adding interchanges and reversions can be seen in various works
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of the first named author on homotopy theory, based on a cylinder (or path) functor and
its structure of cubical (co)monad (e.g., [14, 15, 16]). All these maps have their origin in
the standard topological interval I = [0, 1] and its structure as an involutive lattice (cf.
(12)).

Here, we give characterisations, similar to (a)–(c) above, for three “cubical sites”,
I ⊂ J ⊂ K ⊂ Set, whose objects are always the elementary cubes 2n = {0, 1}n. The
first category is the ordinary (reduced) cubical site, generated by faces and degeneracies;
J includes connections, and K also interchanges. The characterisation of the third, in
Theorem 8.2, is perhaps the most important of the three; K is:

(a) the subcategory of Set with objects 2n, generated by faces, degeneracies, connections
and interchanges;

(b) the subcategory of Set with objects 2n, closed under the binary-product functor
and generated by the basic faces (δ± : 1 → 2), degeneracy (ε : 2 → 1), connections
(γ± : 22 → 2) and interchange (σ : 22 → 22);

(c) the category generated by faces, degeneracies, connections and interchanges, under
the extended cocubical relations (equations (5), (16), (28)–(30));

(d) the free strict monoidal category with an assigned symmetric cubical monoid (Sec-
tion 6);

(e) the classifying category of the monoidal theory of symmetric cubical monoids (Sec-
tion 10).

Again, this theorem gives a presentation of the extended cubical site K, and provides
a definition of extended cubical sets (with connections and interchanges), by structural
maps, under the dual relations. Note that K is a symmetric monoidal category; however,
in (d), we characterise it among arbitrary monoidal categories. The reason for this is that
a cylinder endofunctor (with faces, degeneracies, connections and interchanges) in an
arbitrary category C is a strict monoidal functor I∗ : K → Cat(C,C), where Cat(C,C)
is monoidal with respect to composition, though not symmetric in general.

References on cubical sets have been cited above; for simplicial sets see [30, 10, 13].
The characterisations of the category of finite ordinals can be found in Mac Lane’s text
[27]; finite cardinals, the site of (augmented) symmetric simplicial sets, have been similarly
characterised in [17]. For monoidal categories, see [27] and Kelly’s book [23]. Links with
PRO’s, PROP’s, monoidal theories and rewrite systems will be given in the text.

Outline. The classical notion of an abstract interval in a monoidal category (with
two faces and a degeneracy) is the starting point for considering ordinary, or restricted,
cubical sets (with faces and degeneracies); we give an elementary characterisation of the
corresponding restricted cubical site I, by cocubical relations or the existence of a universal
bipointed object (Section 4). Then, we introduce cubical monoids in a monoidal category,
proving the characterisations of the intermediate site J (Section 5). Symmetric cubical
monoids are dealt with in Section 6 and the main results recalled above on the extended
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cubical site K are proved in Section 8. Then, we consider briefly the reversible analogue,
!K, which also has reversions (Section 9). In the appendix (Section 10) we show that the
various notions of cubical monoids can be regarded as models of certain monoidal algebraic
theories and that the cubical sites are the classifying categories for these theories. The
reader can prefer to omit, at first, all references to such theories in the preceding sections,
and go back to them when reading the Appendix.

It would be desirable to find a geometric characterisation of the maps in K. In fact,
such maps preserve subcubes and the product order, but these conditions are not sufficient
to characterise them (Section 8).

Notation. The term “graph” stands always for directed graph. In a monoidal category,
the tensor powers A⊗ . . .⊗A of an object are generally denoted as An. The binary weights
α, β vary in the set {−, +}, or, when convenient, in 2 = {0, 1}; in both cases, −α denotes
the “opposite” weight.

Acknowledgements. We are indebted to the editor, R. Brown, and to an exceptionally
careful Referee, whose comments helped us to make many points clearer; the latter also
provided relevant links with the theory of Rewrite Systems, in the proof of Theorem 5.1.

2. Geometric models

Combinatorial topology and combinatorial homotopy theory are based on three families
of simple geometric models: the (standard) tetrahedra �n, the cubes In = [0, 1]n and
the discs, or globes, Dn. Correspondingly, we have simplicial, cubical and globular sets,
usually described as sequences of sets linked by mappings (faces and degeneracies, at
least) satisfying suitable relations. Simplicial sets are presheaves X : �op → Set on a very
“natural” category, the simplicial site � of positive finite ordinals [n] = {0, 1, . . . , n}, with
monotone mappings; one might equivalently use for [n] the integral trace of the standard
n-tetrahedron, �n ∩ Zn+1 = {e0, . . . , en}, i.e. the set of unit points of the cartesian axes.

In the cubical case, the objects of our site will be the elementary cubes 2n = {0, 1}n =
In ∩Zn, i.e. the integral traces of the standard topological cubes; the maps will be conve-
niently defined, according to which kind of cubical sets we are considering: the ordinary
ones (with faces and degeneracies), the intermediate ones (including connections), or the
extended ones (also including interchanges). Finally, in the globular case, one can use
the integral traces of the standard discs, Dn ∩ Zn = {±e1, . . . ,±en} (coinciding with the
traces of the standard octahedra); but this will not be treated here (one can see [32]).

3. The pointwise embedding of a discrete site

Let C be a small category with a terminal object 1. A point (or global element, or global
section) of a C-object C is a map x : 1 → C; the set of such maps yields the global section
functor

Γ: C → Set, Γ(C) = hom(1, C). (1)
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This functor is, trivially, injective on objects (since hom-sets in C are assumed to be
disjoint). If it is also faithful, we shall call it the pointwise embedding of C (in Set);
plainly, this condition is equivalent to saying that

(∗) for every C-object C, the family of its global elements x : 1 → C is jointly epi in C.

Another way of looking at this property is concerned with the presheaf category
PSh(C) = SetCop

. Then, the Yoneda embedding and the global section functor of PSh(C)

y : C → PSh(C), y(C) = Ĉ = hom(−, C) : Cop → Set,

Γ̂ : PSh(C) → Set, Γ̂(X) = X(1) = lim
←−

(X : Cop → Set),
(2)

give the global section functor Γ = Γ̂y of C, and it is easy to prove that Γ is faithful if
and only if all the representable presheaves on C are simple (in the sense of [18], 1.3).

The simplicial sites have pointwise embedding, the ordinary one. We prove below
that this is also true for the cubical sites I, J, K, which will thus be embedded in Set
with objects 2n (since, whatever be their definition, this is always the number of points
of the object of “dimension n”). But it is false for the globular site, which can be easily
embedded in Set with the objects considered in Section 2, but not as described above (all
its objects of positive dimension have 2 vertices).

Finally, in order to characterise categories defined through generators and relations,
we shall often use a general lemma, which can be sketched as follows. Note that, speaking
of the special form of a composite of generators, we are not referring to the existence
of some algorithm providing it: it is well known that a word problem, for monoids or
categories, need not have a solution. In the sequel, we shall speak of canonical form when
such an algorithm can be exhibited.

3.1. Lemma. [Special Form Lemma] Let G be a category generated by a subgraph
G, whose maps satisfy in G a system of relations Φ. Then G is freely generated by G
under such relations if and only if every G-map can be expressed in a unique special form
f = gm · · · g1, as a composite of G-maps, and every G-factorisation f = g′n · · · g′1 in G
can be made special by applying the relations Φ finitely many times.

Proof. First, let us recall that a system of relations Φ on a graph G is a set of
pairs of parallel morphisms in the free category Ĝ generated by G; a graph-morphism
F : G → C with values in a category satisfies such relations if its extension to Ĝ identifies
the morphisms of each pair. The category freely generated by G under Φ is produced by
the universal such functor, mapping G to the quotient Ĝ/Φ (modulo the least congruence
identifying all pairs of Φ).

Now, the necessity of the condition above is easily proved by choosing, arbitrarily,
one special form in each equivalence class of Ĝ/Φ. Conversely, take a graph-morphism
F : G → C, with values in an arbitrary category and satisfying the system of relations;
this extends to at most one functor F : G → C, letting it operate on special forms
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F (gm · . . . · g1) = F (gm) · . . . · F (g1); this construction defines indeed a functor, since any
composite gf in G is rewritten in special form using relations which “are preserved” in
C.

4. The restricted cubical site I

Let I be the subcategory of Set consisting of the elementary cubes 2n, together with the
maps f : 2m → 2n which delete some coordinates and insert some 0’s and 1’s (without
modifying the order of the remaining coordinates).

I is a strict symmetric monoidal category; its tensor product 2p � 2q = 2p+q is induced
by the cartesian product of Set, but is no longer a cartesian product in the subcategory
(exponents denote tensor powers). (Note that I is a PRO, i.e. a strict monoidal category
whose monoid of objects is isomorphic to the additive monoid of natural numbers; cf.
[26, 2].)

The object 2 is a bipointed object (both in (Set,×) and (I,�)), with (basic) faces δα

and degeneracy ε

δα : 1 → 2, ε : 2 → 1, εδα = 1 (α = ±). (3)

Higher faces and degeneracies are constructed from the structural maps, via the monoidal
structure, for 1 � i � n and α = ±

δα
i = 2i−1 � δα � 2n−i : 2n−1 → 2n,

εi = 2i−1 � ε � 2n−i : 2n → 2n−1,
(4)

and the cocubical relations follow easily from the previous formulas:

δβ
j δα

i = δα
i+1δ

β
j , j � i

εiεj = εjεi+1, j � i

δα
i−1εj, j < i

εjδ
α
i =


1, j = i

δα
i εj−1, j > i.

(5)

4.1. Lemma. [Canonical Form, for the restricted cubical site] Using (5) as rewriting
rules (from left to right), each composite in Set of faces and degeneracies can be turned
into a unique canonical factorisation (empty for an identity)

δα1
j1

· · · δαs
js

εi1 · · · εir : 2m → 2m−r → 2n,

1 � i1 < · · · < ir � m,

n � j1 > . . . > js � 1,

m − r = n − s � 0,

(6)

consisting of a surjective composed degeneracy (a composition of ε’s, deleting the coordi-
nates specified by indices), and an injective composed face (a composition of δα, inserting
0’s and 1’s in the specified positions).

Proof. Obvious.
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4.2. Theorem. [The restricted cubical site] The category I can be characterised as:

(a) the subcategory of Set with objects 2n, generated by all faces and degeneracies (4);

(b) the subcategory of Set with objects 2n, closed under the binary-product functor (re-
alised as 2p � 2q = 2p+q), and generated by the basic faces (δα : 1 → 2) and degener-
acy (ε : 2 → 1);

(c) the category generated by the graph (4), subject to the cocubical relations (5);

(d) the free strict monoidal category with an assigned internal bipointed object, (2; δα, ε);

(e) the classifying category of the monoidal theory I of bipointed objects.

The embedding I → Set used above is the pointwise one (Section 3).

Proof. The characterisation (a) is already proved: every map of I can clearly be
factorised as in (6), in a unique way; therefore, (b) follows from the construction of higher
faces and degeneracies as tensor products, in (4), while (c) follows from the Special Form
Lemma 3.1. For (d), let A = (A,⊗, E) be a strict monoidal category with an assigned
bipointed object (A, δα, ε); then, defining higher faces and degeneracies of A as above, in
(4)

δα
i = δα

n,i = Ai−1 ⊗ δα ⊗An−i : An−1 −→ An,

εi = εn,i = Ai−1 ⊗ ε⊗An−i : An −→ An−1,
(7)

the cocubical relations are satisfied; therefore, we know that there is a unique functor
F : I → A sending 2n to An and preserving higher faces and degeneracies. It is now
sufficient to prove that this F is strictly monoidal (then, it will be the unique such functor
sending 2 to A and preserving δα, ε); as we already know that F is a functor, our thesis
follows from the following formulas

F (2p � 2q) = F (2p+q) = Ap+q = Ap ⊗Aq,

F (εn,i � 2p) = F (εn+p,i) = εn+p,i = εn,i ⊗Ap,

F (2p � εn,i) = F (εn+p,i+p) = εn+p,i+p = Ap ⊗ εn,i,

(8)

(and the similar ones for faces), since the tensor product of arbitrary I-maps f = fp · · · f1

and g = gq · · · g1 (in canonical form) can be decomposed as

f � g = (fp � 1) · · · (f1 � 1)(1 � gq) · · · (1 � g1). (9)

The meaning of statement (e) is explained in Section 10—see in particular the examples
(a) in Section 10.1 and 10.2; its proof is given in Proposition 10.4. The last assertion
follows immediately from Section 3.
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4.3. Remark. (a) Our results, Lemma 4.1 and Theorem 4.2, not only give a reduced
form for the maps of I, but solve the word problem for I, as presented above, by generators
and relations (cf. [31, 3]). In fact we have proved that any (categorically well formed)
word in faces and degeneracies can be rewritten in a unique canonical form, by applying
finitely many times our relations (5), as “rewriting rules” (from left to right), so that all
faces are taken to the left of all degeneracies, and both blocks are conveniently ordered.
Similar results will be proved, much less trivially, for wider cubical sites — J and K— in
the next sections.

(b) A different global description of I, as embedded in Setop, can be found in Crans’
thesis [8], Section 3.2. In fact, an I-map f : 2m → 2n can be represented by a mapping
f ∗ : n → m ∪ {−, +} (where n = {1, . . . , n}) which reflects the order of m, as in the
following example

f : 25 → 27, f = δ0
6δ

1
5δ

1
3ε1 : (t1, . . . , t5) 	→ (t2, t3, 1, t4, 1, 0, t5), (10)

f ∗ : 7 → 5 ∪ {−, +}, 1, 2, . . . , 7 	→ 2, 3, +, 4, +,−, 5. (11)

(f ∗ : n → m∪ {−, +} gives back f , sending t : m → 2 to n → m∪ {−, +} → 2, where the
last map is t on m and obvious on {−, +}.)

5. Connections and the intermediate cubical site

The set 2 = {0, 1} has a richer structure, as an involutive lattice, which can be described
by the following structural mappings: faces, degeneracy, connections, interchange and
reversion

1
δ+

��

δ−
�� 2ε�� 22

γ−
��

γ+
��

22 σ �� 22 2
ρ

�� 2

δα(0) = α, σ(t, t′) = (t′, t), ρ(t) = 1 − t,

γ−(t, t′) = t ∨ t′,

γ+(t, t′) = t ∧ t′.

(12)

Deferring interchange and reversion to the next sections, let us note that we are not
interested in the complete axioms of lattices (e.g., in the idempotence of the operations
γ±, or in their full absorption laws), but only in a part of them, corresponding to a cubical
monoid in the sense of [14]: a set equipped with two structures of commutative monoid
(∨, 0; ∧, 1), so that the unit of each operation is absorbent for the other (0 ∧ x = 0,
1 ∨ x = 1).

In a monoidal category A = (A,⊗, E), an internal cubical monoid [14] is an object A
with faces (or units) δα, degeneracy ε and connections (or main operations) γα

E
δ+

��

δ−
�� Aε�� A⊗A

γ−
��

γ+
�� (13)
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satisfying the following axioms

εδα = 1, εγα = ε(ε⊗A) = ε(A⊗ ε) (degeneracy),

γα(γα ⊗A) = γα(A⊗ γα) (associativity),

γα(δα ⊗A) = 1 = γα(A⊗ δα) (unit),

γβ(δα ⊗A) = δαε = γβ(A⊗ δα) (α �= β) (absorbing elements).

(14)

Higher connections are constructed from the basic ones, as in (4)

γα
i = Ai−1 ⊗ γα ⊗An−i : An+1 → An (1 � i � n; α = ±), (15)

and the cocubical relations for connections follow from these constructions and the previ-
ous axioms:

γβ
j γα

i =

{
γα

i γβ
j+1, j > i

γα
i γα

i+1, j = i; α = β
εjγ

α
i =




γα
i−1εj, j < i

εiεi, j = i

γα
i εj+1, j > i

γβ
j δα

i =




δα
i−1γ

β
j , j < i − 1

1, j = i − 1, i; α = β

δα
i εi, j = i − 1, i; α �= β

δα
i γβ

j−1, j > i.

(16)

(The dual relations have appeared quite recently, in [1], Section 3; but a partial version
with one connection can be found in [4], p. 235).

Let J be the subcategory of Set consisting of the elementary cubes 2n, together with
the mappings generated by all faces, degeneracies and connections (γα

i : 2n+1 → 2n). Note,
again, that J is a PRO.

We prove now that every J-map has a unique canonical factorisation, as in the following
example

δ−3 δ+
1 γ+

1 γ−1 ε2ε5 : (t1, . . . , t5) 	→ (t1, t3, t4)

	→ (t1 ∨ t3) ∧ t4

	→ (1, (t1 ∨ t3) ∧ t4, 0).

(17)

5.1. Theorem. [Canonical form for the intermediate cubical site] Each J-map (com-
posite of faces, degeneracies and connections) can be rewritten, using (5) and (16), as

f = (δβ1

k1
· · · δβt

kt
)(γα1

j1
· · · γαs

js
)(εi1 · · · εir) : 2m → 2p → 2p−s → 2n,

1 � i1 < · · · < ir � m, 1 � j1 � . . . � js < p, n � k1 > · · · > kt � 1,

(p = m − r, p − s = n − t � 0).

(18)

We obtain a unique, canonical form, adding the following condition on connections:
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(∗) if jk = jk+1 then αk �= αk+1.

This form consists of a (surjective) composed degeneracy ε = εi1 · · · εir , a (surjective)
composed connection γ = γα1

j1
· · · γαs

js
and an (injective) composed face δ = δβ1

k1
· · · δβt

kt
.

Proof. First, we want to mention a relevant information due to the Referee. An alterna-
tive proof to the present one can be based on the theory of rewrite systems, originated in
the framework of λ-calculus, cf. [11, 19]: one would reduce the argument to showing that
all critical pairs (γ, γ′) are joinable, for suitable pairs of composed connections. This new
proof would be clearer and placed in a well-established context. But we agree with the
Referee’s suggestion of not modifying the line of our original proof, because the following
case K seems to be hardly solvable in the new line, and the techniques we shall use there
“are best understood as extensions” of the ones we are using here.

Now, the proof. The existence the factorisation above is obvious, taking into account,
for (∗), the fact that γα

i γα
i = γα

i γα
i+1. As to its uniqueness, the composed face δ : 2n−t → 2n

(and its factorisation) is determined by the image of f , which has to be an (n−t)-face of 2n

(for some t � n); while the composed degeneracy ε : 2m → 2m−r (and its factorisation) is
determined by the indices of the coordinates of (t1, . . . , tm) ∈ 2m from which our mapping
f does not depend (fδα

i εi = f). Since the former is injective and the latter surjective,
also the composed connection γ is determined, and we are reduced to prove that, if the
following factorisations

γ = γα1
i1

· · · γαs
is

= γβ1

j1
· · · γβs

js
: 2p → 2p−s (1 � i1 � . . . � is < p;

1 � j1 � . . . � js < p),
(19)

satisfy the condition (∗), then i = j and α = β, where i = (i1, . . . , is) and so on. Since it
is obviously true for s = 0, let us assume it holds up to s − 1 and prove it for s.

The initial block of i will be the maximal initial segment (i1, . . . , iq) without holes :
ik+1 coincides with ik or ik + 1 (1 � k < q). Concretely, it corresponds to a block of
coordinates linked by connections; formally, it is determined by the mapping γ by the
following computations. To begin with

εiγ = γα1
i1−1 · · · γαs

is−1εi : 2p → 2p−s−1 (i < i1),

εiγ = εiεiγ
α2
i2

· · · γαs
is

= εiεi+1 · · · εi+qγ
αq+1

iq+1
· · · γαs

is

= γ
αq+1

iq+1−q−1 · · · γαs
is−q−1εi · · · εi+q (i = i1),

(20)

showing that εiγ does not depend on precisely one coordinate for i < i1, but on q + 1 � 2
coordinates for i = i1; therefore the sequences i and j must have i1 = j1 and the same
length q � s of their initial block; moreover

γ
αq+1

iq+1−q−1 · · · γαs
is−q−1εi · · · εi+q = γ

βq+1

jq+1−q−1 · · · γβs

js−q−1εi · · · εi+q, (21)

whence, cancelling εi · · · εi+q and applying the inductive assumption, we get that the
indices and weights involved above coincide. Cancelling the corresponding composed
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connection in (19), we have a similar equality for the initial blocks (where the index
i1 = j1 is already determined)

γ′ = γα1
i1

· · · γαq

iq
= γβ1

j1
· · · γβq

jq
: 2p → 2p−q,

i1 = j1,
ik+1 − ik � 1, jk+1 − jk � 1 (1 � k < q).

(22)

(Note that we cannot apply the inductive assumption to these blocks, because we do not
know whether q < s.)

Let h � 1 be the greatest number such that i1 = i2 = . . . = ih(= i); by (∗), the
segment (α1, . . . , αh) is a sequence of alternating weights, α1 �= α2 �= . . . The mapping γδα

i

can be computed as follows

γδα
i =




γα1
i1

· · · γαh−1

ih−1
γ

αh+1

ih+1−1 · · · γαq

iq−1, α = αh

γα1
i1

· · · γαh−2

ih−2
εiγ

αh+1

ih+1−1 · · · γαq

iq−1 = γα1
i1

· · · γαh−2

ih−2
εiεi+1 · · · εi+q−h, h > 1, α �= αh

δα
i εiεi+1 · · · εi+q−1, h = 1, α �= α1.

(23)
Thus, the weight αh and the number h are determined by the fact that γδα

i1
depends on

each of its coordinates if α = αh, while otherwise it is independent of, precisely, q+1−h �
1 of them. Therefore, j has the same initial block of equal indices j1 = j2 = · · · = jh(= i)
and αh = βh; computing γδα

i on both expressions, for α = αh = βh, we have

γα1
i1

· · · γαh−1

ih−1
γ

αh+1

ih+1−1 · · · γαq

iq−1 = γβ1

j1
· · · γβh−1

jh−1
γ

βh+1

jh+1−1 · · · γβq

jq−1, (24)

and applying the inductive assumption to this equality, we conclude that i = j and α = β.

5.2. Theorem. [The intermediate cubical site] The category J is a strict symmetric
monoidal category, with respect to the tensor product 2p � 2q = 2p+q. It can be charac-
terised as:

(a) the subcategory of Set with objects 2n, generated by all faces, degeneracies and
connections;

(b) the subcategory of Set with objects 2n, closed under the binary-product functor (re-
alised as 2p � 2q = 2p+q), and generated by the basic faces (δα : 1 → 2), degeneracy
(ε : 2 → 1), connections (γα : 22 → 2);

(c) the category generated by the graph formed of faces, degeneracies and connections,
subject to the cocubical relations (5) and (16);

(d) the free strict monoidal category with an assigned internal cubical monoid, namely
(2; δα, ε, γα);

(e) the classifying category of the monoidal theory J of cubical monoids.

The embedding J → Set used above is the pointwise one (Section 3).
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Proof. Follows from the previous theorem, as in Theorem 4.2. The monoidal theory of
cubical monoids is described in Section 10.1, example (b). In view of 10.2(b), statement
(e) coincides with Proposition 10.5.

6. Symmetric cubical monoids

In a monoidal category A = (A,⊗, E), an internal symmetric cubical monoid is a cubical
monoid A as in (13) with a symmetry (or interchange) σ

σ : A⊗A → A⊗A, (25)

under the following axioms, added to (14) (the second is a Yang-Baxter condition on σ,
see [24] and references therein)

σσ = 1, (σ⊗A)(A⊗σ)(σ⊗A) = (A⊗σ)(σ⊗A)(A⊗σ),

(ε⊗A)σ = A⊗ ε, σ(δα ⊗A) = A⊗ δα,

γασ = γα, σ(γα ⊗A) = (A⊗ γα)(σ⊗A)(A⊗σ).

(26)

Higher interchanges are constructed in the usual way

σi = Ai−1 ⊗σ⊗An−i : An+1 → An+1 (1 � i � n). (27)

By the previous axioms, they satisfy the Moore relations:

σiσi = 1,

σiσjσi = σjσiσj (i = j − 1),

σiσj = σjσi (i < j − 1),

(28)

together with the mixed cocubical relations for interchanges:

j < i j = i j = i + 1 j > i + 1
εjσi = σi−1εj εi+1 εi σiεj

σiδ
α
j = δα

j σi−1 δα
i+1 δα

i δα
j σi

σiγ
α
j = γα

j σi+1 γα
i+1σiσi+1 γα

i σi+1σi γα
j σi

(29)

γα
i σi = γα

i . (30)

The extended cocubical relations will consist thus of (5) (for faces and degeneracies),
(16) (including connections) and the relations (28)–(30) above (including interchanges).
¿From (28), it follows that the symmetric group Sn operates on the tensor power An.
(Recall that Sn, the group of automorphisms of the set {1, ...n}, is generated by the main
transpositions σi = (i, i + 1), for 1 � i < n, under the relations (28); see Coxeter-Moser
[7], 6.2; or Johnson [22], Section 5, Thm. 3.)
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7. Interchanges and the extended cubical site

Let K be the subcategory of Set consisting of the elementary cubes 2n, together with the
maps generated by faces, degeneracies, connections and main transpositions, produced by
the interchange σ : 2 → 2 (12):

σi = 2i−1 �σ � 2n−i : 2n+1 → 2n+1 (1 � i � n). (31)

By our previous remarks, the symmetric group Sn operates on 2n. (K is a PROP; this
means a strict monoidal category M with a faithful strict monoidal functor �Sn → M,
bijective on objects; the category �Sn is the disjoint union of the groups Sn, with the
obvious monoidal structure; cf [26, 21].)

Observe that the object 2 itself with the obvious operations is a symmetric cubical
monoid in K, which will be called the generic symmetric cubical monoid.

To determine a canonical form for K-maps, it will be relevant to note the following
example. The composed connection

γ−1 γ+
2 γ+

4 γ+
5 γ−8 : (t1, . . . , t9) 	→ (t1 ∨ (t2 ∧ t3), t4 ∧ t5 ∧ t6, t7, t8 ∨ t9), (32)

is plainly invariant under the subgroup of permutations of S9 (acting on its domain, 29)
generated by the main transpositions σ2 = (2, 3), σ4 = (4, 5), σ5 = (5, 6), σ8 = (8, 9).

In general, let a composed connection γ be given

γ = γα1
j1

· · · γαs
js

: 2p → 2p−s, 1 � j1 < . . . < js < p, (33)

determined by a strictly increasing sequence j = (j1, . . . , js) with weights α = (α1, . . . , αs)
(and determining them, by Theorem 5.1). We shall use a subgroup Sp(j,α) of Sp, which
is obviously contained in the subgroup of permutations which leave γ fixed

Sp(j,α) ⊂ S(γ) = {λ ∈ Sp | γλ = γ} ⊂ Sp, (34)

(and, likely, coincides with the latter; but we do not need this).
Namely, the subgroup Sp(j,α) is generated by those permutations σi (1 � i < p) such

that one of the following conditions holds

− i is a j-index while i + 1 is not,

− i, i + 1 are j-indices with the same weight, αi = αi+1.
(35)

Equivalently, Sp(j,α) consists of the permutations which preserve the intervals of Dp(j,α):
the latter is the decomposition of the (integral) interval [1, p] in a disjoint union formed
of: (a) all maximal subintervals of type [j′, j′′] where all points are j-indices with the same
α-weight, except possibly j′′ which need not be a j-index; (b) the remaining singletons.
Thus, in case (32), we have j = (1, 2, 4, 5, 8) in [1, 9], with the following weights α and
decomposition D9(j,α)

1 2 3 4 5 6 7 8 9

− + + + − α

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ D9(j,α)

(36)

the corresponding S9(j,α) is precisely the subgroup of S9 considered above.
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8. Main results, in the extended case

8.1. Theorem. [Canonical form for the extended cubical site] Each K-map (composite
of faces, degeneracies, connections and interchanges) has a canonical factorisation

f = (δβ1

k1
· · · δβt

kt
)(γα1

j1
· · · γαs

js
)λ(εi1 · · · εir) : 2m → 2p → 2p → 2p−s → 2n,

i � i1 < . . . < ir � m, λ ∈ Sp (p = m − r),

1 � j1 < . . . < js < p, n � k1 > . . . > kt � 1 (p − s = n − t � 0),

(37)

where everything is unique, except the permutation λ ∈ Sp which is determined up to
an arbitrary permutation of the subgroup Sp(j,α) ⊂ Sp defined in the previous section.
Also λ is uniquely determined, provided we require that λ−1 be strictly increasing on the
intervals of the decomposition Dp(j,α). (Then, according to terminology, λ and λ−1 are
respectively called a shuffle and a deal for the decomposition Dp(j,α), or vice versa). The
factorisation is again an epi-mono factorisation with image given by the composed face.

Proof. First, let us prove the existence of this factorisation. Invoking the preceding
factorisation (18) and the rewriting rules (29) for interchanges, we only need to prove that
here one can make the sequence j = (j1, . . . , js) strictly increasing (in (18) it was weakly
so). In fact, using interchanges and letting (30) intervene, one can replace any unwanted
occurrence γα

i γβ
i as follows

γα
i γβ

i = γα
i σiγ

β
i = γα

i γβ
i+1σiσi+1. (38)

The fact that λ can be modified by an arbitrary permutation of the subgroup Sp(j,α)
follows from γα

i σi = γα
i and the following two equations

γα
i γβ

j =

{
γα

i σiγ
β
j = γα

i γβ
j σi, j > i + 1,

γα
i σiγ

α
i+1 = γα

i γα
i σi+1σi = γα

i γα
i+1σi+1σi = γα

i γα
i+1σi, j = i + 1; α = β,

(39)

together with the classification of generators of Sp(j,α) in (35): use the first equation
above for a generator σi of the first type (when i is a j-index but i + 1 is not); use the
second equation for the second case (when i, i + 1 are j-indices with the same weight).

Finally, we must prove the uniqueness of the factorisation (37). Since the composed
face δβ1

k1
· · · δβt

kt
and the composed degeneracy εi1 · · · εir are determined as in Theorem 5.1,

we are reduced to considering an identity

γ = γ′λ : 2p → 2p−s, λ ∈ Sp,

γ = γα1
i1

· · · γαs
is

(1 � i1 < . . . < is < p),

γ′ = γβ1

j1
· · · γβs

js
(1 � j1 < . . . < js < p),

(40)

and proving that i = j, α = β, λ ∈ Sp(i,α). The delicate point will be controlling the
permutation λ, by properties invariant up to permutation of coordinates.
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(a). A particular case. Assume that i = j = (1, 2, ...p − 1), so that

γ = γ′λ : 2p → 2, γ = γα1
1 · · · γαp−1

p−1 , γ′ = γβ1

1 · · · γβp−1

p−1 . (41)

Since all i-indices are consecutive, Dp(i,α) is simply the decomposition of [1, p[ consisting
of the maximal subintervals on which α is constant, with p added to the last of them. Let
[i′, i′′] be one of these α-subintervals (whence, i′ < p) and i ∈ [i′, i′′]; then γδα

i = γδα
i′ =

· · · = γδα
i′′ can be analysed as follows, depending on α

γδα
i =

{
γα1

1 · · · γαi′−1

i′−1 γ
αi′+1

i′ · · · γαp−1

p−2 , α = αi

γα1
1 · · · γαi′−2

i′−2 εi′ · · · εp−1, α �= αi.
(42)

Note that the mapping γδα
i depends on each of its p − 1 coordinates if α = αi, while it

depends on exactly i′−1 < p−1 of them if α �= αi. But γδα
i = γ′λδα

i = γ′δα
j λ′, (j = λ(i)),

and γ′δα
j depends on all its coordinates if α = βj, on j′ − 1 otherwise (j′ being the initial

endpoint of the β-subinterval containing j). Therefore, αi = βj and i′ = j′.
Moreover, letting i vary in the α-subinterval [i′, i′′], we have seen that j = λ(i) belongs

to the β-subinterval beginning at j′ = i′, obviously fixed. In other words, λ takes the whole
α-subinterval [i′, i′′] into a β-subinterval which begins, precisely, at i′ and has at least as
many points as the former. Since this holds for all α-subintervals and λ is bijective, it
follows that the decompositions Dp(i,α) and Dp(i,β) coincide and λ ∈ Sp(i,α); further,
αi = βλ(i) = βi for all i < p, so α = β.

(b) General case. Let us come back to the relation γ = γ′λ, as specified in (40). We
can suppose that is � js. Since the thesis holds trivially for s = 0, when γ = γ′ = id and
λ = id, we assume it holds up to s − 1 and prove it for s � 1.

Let h be the greatest integer � 1 such that i1 < i2 < . . . < ih are consecutive; then

εiγ =




γα1
i1−1 · · · γαs

is−1εi : 2p → 2p−s−1, i < i1
εiεi+1γ

α2
i2

· · · γαs
is

= εi · · · εi+hγ
αh+1

ih+1
· · · γαs

is

= γ
αh+1

ih+1−h−1 · · · γαs
is−h−1εi · · · εi+h,

i = i1,
(43)

so that the mapping εiγ = εiγ
′λ does not depend on 1 coordinate for i < i1, but on h + 1

coordinates for i = i1; therefore the sequences i and j must have the same maximal initial
segment of consecutive indices, (i1, . . . , ih) = (i, . . . , i + h) = (j1, . . . , jh), and the equality
εiγ = εiγ

′λ gives, for i = i1

γ
αh+1

ih+1−h−1 · · · γαs
is−h−1εi · · · εi+h = γ

βh+1

jh+1−h−1 · · · γβs

js−h−1εi · · · εi+hλ. (44)

This mapping, as expressed in the left member of (44), is independent of the coordinates
ti, . . . , ti+h (and no other); therefore, the permutation λ must preserve the subset {i, ...i+
h} (as well as its complement), which means that λ = λ′λ′′, where λ′ ∈ Sp permutes the
subset {i, . . . , i+h} and λ′′ ∈ Sp its complement in [1, p]. It follows that λ′ can be omitted
in (44) (but not in (40), generally!), while λ′′ can be moved to the left

γ
αh+1

ih+1−h−1 · · · γαs
is−h−1εi · · · εi+h = γ

βh+1

jh+1−h−1 · · · γβs

js−h−1λ
′′εi · · · εi+h : 2p → 2p−s−1; (45)
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more precisely, λ′′ ∈ Sp−h−1 is the permutation λ′′ transferred to the set [1, p−h−1] by the
surjective mapping which omits the indices {i, ...i + h}, εi · · · εi+h : [1, p] → [1, p − h − 1].
Cancelling the latter, a surjection, we have

γ
αh+1

ih+1−h−1 · · · γαs
is−h−1 = γ

βh+1

jh+1−h−1 · · · γβs

js−h−1λ
′′ : 2p−h−1 → 2p−h−1−(s+h), (46)

γ
αh+1

ih+1
· · · γαs

is
= γ

βh+1

jh+1
· · · γβs

js
λ′′ : 2p → 2p−(s+h). (47)

(The last passage comes from applying 2h+1 �− to the preceding one.)
By the inductive assumption, (ih+1, . . . , is) = (jh+1, . . . , js), the corresponding termi-

nal segments of α and β coincide as well, and λ′′ ∈ Sp(ih+1 . . . , is; αh+1 . . . , αs). Rewriting
the equality γ = γ′λ as below, transferring λ′ to λ′ and cancelling the epimorphism of
(47), we have that

(γα1
i1

· · · γαh
ih

)(γ
αh+1

ih+1
· · · γαs

is
) = (γβ1

i1
· · · γβh

ih
)λ′(γβh+1

jh+1
· · · γβs

js
)λ′′, (48)

γα1
i1

· · · γαh
ih

= γβ1

i1
· · · γβh

ih
λ′ : 2p−s+h → 2p−s, (49)

γα1
i1

· · · γαh
ih

= γβ1

i1
· · · γβh

ih
λ′ : 2p → 2p−h. (50)

(For the last passage, apply −� 2s−h.)
Now, we cannot invoke again the inductive assumption, since we do not know whether

k < s. But, recalling that i1, . . . , ih are consecutive, we can easily reduce (50) to case
(a) (i.e., i1 = 1), applying degeneracies. Therefore, also the initial segments of α and β
coincide (this was already known for i and j) and λ′ ∈ Sp(i1, . . . , ih; α1, . . . , αh). Finally,
λ = λ′λ′′ ∈ Sp(i1, . . . , is; α1, . . . , αs).

8.2. Theorem. [The extended cubical site] The category K can be characterised as:

(a) the subcategory of Set with objects 2n, generated by all faces, degeneracies, connec-
tions and interchanges (31);

(b) the subcategory of Set with objects 2n, closed under the binary-product functor (re-
alised as 2p � 2q = 2p+q), and generated by the basic faces, degeneracy, connections
and interchange (δα, ε, γα, σ; cf. (12));

(c) the category generated by the graph formed with faces, degeneracies, connections and
interchanges, subject to the extended cocubical relations (5), (16), (28)–(30);

(d) the free strict monoidal category with an assigned internal symmetric cubical monoid,
(2, δα, ε, γα, σ);

(e) the classifying category of the monoidal theory K of symmetric cubical monoids.

The embedding K → Set used above is the pointwise one (Section 3).
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Proof. K is defined as described in (a), which is plainly equivalent to (b). The
equivalence of (a), (c), (d) follows from the previous theorem, as in Theorem 4.2. Finally,
the theory of symmetric cubical monoids is defined in 10.1(c); the equivalence between its
models and symmetric cubical monoids, as defined in Section 6, is explained in 10.2(c);
thus, statement (e) reduces to Proposition 10.6.

8.3. Remark. Define a subcube of 2n to be any n-ary product of objects {0}, {1}, 2,
i.e. the image of any composed face δα1

j1
· · · δαs

js
: 2n−s → 2n. The image of a map of K is a

subcube (by Theorem 8.1), hence any mapping of K takes subcubes to subcubes by direct
image and preserves the product order. However, these properties are not sufficient to
characterise our mappings in Set. For a counterexample, consider the function ϕ : 23 → 2
defined by the formula

ϕ(x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3), (51)

and represented graphically by the diagram below; ϕ attains value 0 on hollow nodes and
1 on filled nodes.

• �� •

◦
�������

�� •
�������

◦

��

�� •

��

◦

��

�������
�� ◦

��

�������

(52)

It is clear that ϕ preserves order and subcubes; however, it does not belong to K. If it
did, we could apply the factorisation Theorem 8.1 to obtain a canonical factorisation of ϕ.
However, in this factorisation no degeneracy can occur as ϕ depends on all variables. The
symmetry can be taken to be the identity, as all the variables appear symmetrically. And
no face can appear as ϕ is surjective. In other words, ϕ should be a composite connection.
However, were this the case, ϕ should be of the form xi∧ (. . .) or xi∨ (. . .), with the outer
terms possibly permuted. In the first case the set of points on which ϕ is true would
be confined to a 2-face; in the second it would contain a 2-face. And the diagram above
shows that this is not the case.

9. The reversion

We end by dealing briefly with the reversion ρ : 2 → 2 (12), and the reversible extended
cubical site !K which it produces. In a monoidal category A = (A,⊗, E), an involutive
symmetric cubical monoid is a symmetric cubical monoid A with involution (or reversion)

ρ : A → A, (53)
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under the following additional axioms (after (14) and (26))

ρρ = 1, ερ = ε, ρδ− = δ+,

ργ− = γ+(ρ⊗ ρ), σ(A⊗ ρ) = (ρ⊗A)σ.
(54)

Higher reversions are constructed as usual

ρi = Ai−1 ⊗ ρ⊗An−i : An → An (1 � i � n), (55)

and satisfy the following additional relations (after (5), (16), (28)–(30))

ρiρj =

{
1, i = j

ρjρi, i �= j
εjρi =

{
εi, i = j

ρiεj, i �= j
ρiδ

α
j =




δα
j ρi−1, j < i

δ−α
i , j = i

δα
j ρi, j > i

ρiγ
α
j =




γα
j ρi+1, j < i

γ−α
i ρiρi+1, j = i

γα
j ρi, j > i

ρiσj =




σjρi, j < i − 1 or j > i

σjρj, j = i − 1

σiρi+1, j = i.

(56)

!K will thus be the subcategory of Set consisting of the elementary cubes 2n, together
with the maps generated by faces, degeneracies, connections, main transpositions and
reversions

ρi = 2i−1 � ρ� 2n−i : 2n → 2n (1 � i � n). (57)

Using the previous relations, all such maps can be rewritten in the following form, under
the same restrictions of the canonical form in K; moreover, µ is a composed reversion

f = (δβ1

k1
· · · δβt

kt
)(γα1

j1
· · · γαs

js
)λµ(εi1 · · · εir) : 2m → 2p → 2p → 2p−s → 2n. (58)

Proving a “canonical form theorem”, as in the previous cases, would produce also here a
characterisation theorem for !K. (Because of (56), one can see that 2n is acted upon by
the hyperoctahedral group (Z/2)n � Sn, the group of isometries of the n-cube; one might
say that !K is a “PROC”, where C stands for cube.)

As for the other cubical sites, there is a monoidal algebraic theory !K of involutive
symmetric cubical monoids. This is obtained from K adding a unary operation ¬ and the
axioms listed in (70), which correspond to the algebraic part of (54). Involutive symmetric
cubical monoids in a monoidal category A are then precisely the models of !K in A.
Since we do not have a canonical form theorem, however, the arguments used in Section
10 cannot be applied to prove that !K is the classifying category of !K. Nevertheless,
a classifying category of !K can be constructed syntactically and will be proved to be
equivalent to !K [29]. It follows that !K, defined above as a subcategory of Set, is the
category generated by faces, degeneracies, connections, interchanges and reversions under
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the relations (5), (16), (28)–(30), (56); so that the corresponding cubical sets are indeed
functors on !Kop.

Again, the mappings of !K preserve subcubes (though not the order), but this property
does not characterise them. For a counterexample, consider the arrow f : 22 → 2 depicted
below, where f attains value 0 on hollow nodes and 1 on filled nodes.

• �� ◦

◦ ��

��

•

�� (59)

If f were in !K it could be written, by (58), either as t1 ∧ t2 or as t1 ∨ t2 where each ti
is either a variable or its negation. In the first case, f would attain value 1 on a single
point; in the second on 3 points. And this is false.

10. Appendix: monoidal algebraic theories

In this section we provide an analysis of the cubical sites from a logical point of view. We
show how the various classes of cubical monoids can be interpreted as models of suitably
defined monoidal algebraic theories and how the corresponding cubical sites can be in-
terpreted as classifying categories for these theories. This allows to recover the universal
property of the cubical sites and to exhibit them as presentation-free versions of the the-
ories. The exposition is modelled on the case of algebraic theories in cartesian categories
[9, 20, 25] with the necessary generalisations; some of the ideas behind the analysis can
be found in [2] and [21]. For conciseness, we restrict here to the framework needed to
discuss the cubical sites. Thus, the signatures are single sorted and the languages only
allow weakening and exchange as structural rules; moreover, we focus essentially on the
semantical aspects of the theory. For a more general analysis, the reader is referred to
[29].

10.1. Monoidal languages. Let Σ be a finitary, single sorted, algebraic signature.
From Σ and from a countable set of variables we define a monoidal language L. The raw
terms of L are defined inductively via the BNF grammar

t := x | f(t, . . . , t). (60)

Note that we treat individual constants as a special case of functional constants. The
terms of L are sequents

(x1, . . . , xn) � t, (61)

which are derivable in the term calculus described below. In the sequent (61), the context
Γ = (x1, . . . , xn) is a finite sequence of distinct variables and t is a raw term. We will
occasionally abbreviate the term (61) by t when the context is understood. Contexts can
be concatenated, provided the variables remain distinct after concatenation; this condition
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will be tacitly assumed throughout. Note that we never mention types, as we are dealing
with a single sorted signature.

There are two sets of rules for the term calculus: functional rules and structural rules.
We always insist that the functional rules be present. However, only a subset of structural
rules need to be present, so that the same signature Σ generates more than one monoidal
language, depending on the subset we choose . The functional rules are

−
x � x

(variables), (62)

Γ1 � t1, . . . , Γn � tn
Γ1, . . . , Γn � f(t1, . . . , tn)

(functional constants), (63)

where f in (63) is a functional constant of arity n. The structural rules are

(. . . , xi−1, xi+1, . . .) � t

(. . . , xi−1, xi, xi+1, . . .) � t
(weakening), (64)

(. . . , xi, xi+1, . . .) � t

(. . . , xi+1, xi, . . .) � t
(exchange), (65)

(. . . , xi, xi+1, . . .) � t

(. . . , xi, x̂i+1, . . .) � t[xi/xi+1]
(contraction). (66)

The language L is purely monoidal when only the functional rules are allowed in the term
calculus. By contrast, L is a monoidal language with weakening when both the functional
rules and weakening (64) are allowed. The terminology for the other structural rules is
similar. The contraction rule (66) is mentioned here only for completeness and will play
no role. The formulas of L are sequents

Γ � t1 = t2, (67)

for which both Γ � t1 and Γ � t2 are derivable in the term calculus. Again, the context
in formulas will often be dropped. Note that the formulas of a purely monoidal language
have substantial limitations, as the variables declared in Γ are required to occur both
in t1 and t2 exactly once and exactly in the order in which they have been declared.
Thus, formulas like x ∧ ⊥ = ⊥ and x ∧ y = y ∧ x are not expressible if L is purely
monoidal. In fact, structural rules are introduced precisely to account for formulas of this
type. Weakening allows dummy variables, which are declared in the context but which
do not explicitly appear in the raw terms, as in the right member of (x) � x ∧ ⊥ = ⊥.
Exchange allows variables to appear in an order different from the one declared in the
context, as in (x, y) � x∧y = y∧x. Finally, contraction is intended to allow repetitions of
variables. A monoidal algebraic theory T is assigned by a set of formulas in L, the axioms.
The theorems of T are generated from the axioms by means of equality, substitution and
structural rules; the reader is referred to [29] for more details. Here are the theories of
interest to us.
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(a) The theory I of bipointed objects. Here Σ = {�,⊥} is the signature consisting of
two individual constants and L is the monoidal language with weakening generated
by Σ. The terms of L are thus given by the two individual constants and by the
variables, over a possibly weakened context. I is formulated in L and has no axiom.

(b) The theory J of cubical monoids. Here Σ = {�,⊥,∧,∨}, where meet and join
are binary functional constants and L is the monoidal language with weakening
generated by Σ. The axioms of J are:

(x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z) (associativity),

x ∧ � = x = � ∧ x, x ∨ ⊥ = x = ⊥ ∨ x (unit),

⊥ ∧ x = ⊥ = x ∧ ⊥, � ∨ x = � = x ∨ � (absorbing element).

(68)

Note that the axioms have been stripped of their context; this is (x, y, z) for asso-
ciativity and (x) in the other cases.

(c) The theory K of symmetric cubical monoids. Σ is the signature of cubical monoids;
the language L, however, is the monoidal language with weakening and exchange
generated by Σ. The axioms of K are those listed in (68) supplemented by

x ∧ y = y ∧ x, x ∨ y = y ∨ x (commutativity). (69)

(d) The theory !K of involutive, symmetric, cubical monoids. Here Σ = {�,⊥,∧,∨,¬},
where negation is a unary functional constant. The language L is again the monoidal
language with weakening and exchange generated by Σ. The axioms of !K are those
in (68) and (69) supplemented by

¬¬x = x (involution),

¬(x ∨ y) = ¬x ∧ ¬y, ¬(x ∧ y) = ¬x ∨ ¬y (De Morgan),

¬� = ⊥.

(70)

The use of the weakening rule in the language of bipointed objects will be justified from
a semantical point of view. Note also that in the theory of involutive symmetric cubical
monoids, half of De Morgan’s axiom is redundant in presence of the involution axiom.

10.2. Monoidal semantics. Monoidal languages are intended to be interpreted
in monoidal categories. When structural rules are present, the background category is
required to have additional structure. However, this additional structure is “local” in
character. This means that, for example, we want to be able to interpret symmetric
monoids in monoidal categories without requiring the category to be symmetric, as was
explained in the introduction. Rather, we wish to impose the symmetry conditions only
on the data which interpret the monoid.
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We fix a monoidal category V; its associativity and unit isomorphisms are always
understood and do not appear explicitly in the formulas and diagrams below; this sim-
plifies the notation and does not cause any problem in view of the coherence theorem for
monoidal categories. Assume first that L is a purely monoidal language generated by a
signature Σ. An L-structure in V is assigned by an object M ∈ V and by an arrow

[[f ]] : Mn → M (71)

for every function symbol f of arity n in Σ; we say briefly that M is an L-structure. Every
L-term (x1, . . . , xn) � t can then interpreted by an arrow

[[t]] = [[(x1, . . . , xn) � t]] : Mn → M. (72)

The interpretation is inductive on the derivation of the term: variables are interpreted as
identities, and the rule for functional constants is interpreted using composition as in the
following diagram.

Mm

[[t1]]⊗···⊗ [[tn]] ��
��

��
��

��
[[f(t1,...,tn)]]

�� M

Mn

[[f ]]

���������

(73)

When L admits structural rules, the definition of an L-structure M requires the assign-
ments in (71) supplemented by the data below.

◦ If L admits weakening, we require the existence of an arrow π : M → 1 to the unit
of the tensor which is compatible with the interpretation of all functional constants.
This means that for every function symbol f of arity n there is a commutative
diagram

Mn
[[f ]]

��

πn

���
��

��
��

��
M

π1

��

1

(74)

The case of individual constants is included provided we let π0 = 1. We refer to π
as the interpretation of weakening in M . The intended meaning of condition (74) is
that applying f and discarding the result is equivalent to discarding the input data
of f .

◦ If L admits exchange, we require the existence of an arrow σ : M2 → M2, which is
involutive, satisfies the Yang-Baxter equation in (26), and is natural with respect
to the interpretation of functional constants, in the sense that the diagram

Mn ⊗M
(1,2,...,n+1)

��

[[f ]]⊗ 1

��

M ⊗Mn

1⊗ [[f ]]
��

M ⊗M
(1,2)

�� M ⊗M

(75)
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commutes for every functional constant f of arity n. Note that the horizontal
arrows can be written as permutations because the involution and Yang-Baxter
axioms imply that the symmetric group Sn operates on the tensor power Mn, as
already observed in Section 6. We refer to σ as the interpretation of exchange in
M .

◦ If L admits contraction, we require the existence of an arrow � : M → M ⊗M
satisfying appropriate conditions.

Finally, when more than one structural rule is used in the term calculus, we impose
compatibility condition between the arrows interpreting the structural rules. In the case
of weakening and exchange — the only one we will consider here — the compatibility
condition is given by the commutative diagram

M ⊗M
σ ��

1⊗π
		

��
��

��
� M ⊗M

π⊗ 1


��

��
��

�

M

(76)

We can now complete the rules for interpretation of terms when L admits structural rules.
Weakening is interpreted by composition with π, exchange by composition with σ and
contraction by composition with �, as shown in the diagrams below.

Mn
[[(...,xi,...)�t]]

��

1⊗πi⊗ 1
���

������� M

Mn−1

[[(...x̂i,...)�t]]

����������

(weakening) (77)

Mn

(i,i+1) ��	
							

[[(...,xi+1,xi,...)�t]]
�� M

Mn
[[(...,xi,xi+1,...)�t]]

����������

(exchange) (78)

Mn−1

1⊗�⊗ 1













[[(...,xi,x̂i+1,...)�t[xi/xi+1]]]
�� M

Mn

[[(...,xi,xi+1,...)�t]]

������������

(contraction). (79)

As usual, satisfaction of a formula in an L-structure M is defined setting

M � t1 = t2 ⇔ [[t1]] = [[t2]], (80)

and M is a model of a theory T if all the axioms of T are satisfied by M . We discuss in
some detail models of the theories defined in 10.1.

(a) Bipointed objects. Since the signature Σ of I has only two individual constants, the
purely monoidal part of the model M is assigned by arrows [[�]], [[⊥]] : 1 ⇒ M . There
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is, however, an additional arrow π : M → 1 interpreting weakening. Compatibility of
weakening with constants (74) amounts to the equations π◦[[�]] = 1 and π◦[[⊥]] = 1.
Since I has no axiom, there is no further requirement and a model of I is precisely
a bipointed object as defined in (3).

(b) Cubical monoids. The signature Σ of J has now two additional binary function
symbols ∧ and ∨, so that M must provide additional arrows [[∧]], [[∨]] : M2 ⇒ M .
Because of the two new operations, there are two additional compatibility equations
for weakening, π ◦ [[∧]] = π2 and π ◦ [[∨]] = π2 from (74). These two equations are the
degeneracy axioms in the original definition of a cubical monoid (14). The remaining
axioms in (14) correspond to the axioms in (68), so that cubical monoids in V are
precisely the models in V of J. As an example, we analyse in detail the first part of
the absorbing element axiom: (x) � ⊥∧x = ⊥. The interpretation [[(x) � ⊥ ∧ x]] of
the first term is the composite arrow top and right in the diagram below, whereas
[[(x) � ⊥]] requires weakening and is the composite left and below

M
[[⊥]]⊗ 1

��

π

��

M2

[[∧]]

��

1
[[⊥]]

�� M

(81)

Thus, [[(x) � ⊥ ∧ x]] = [[(x) � ⊥]] precisely when the diagram commutes and M |=
⊥∧x = ⊥ precisely when the corresponding part of the axiom on absorbing elements
in (14) is satisfied.

(c) Symmetric cubical monoids. The difference with cubical monoids is now the assump-
tion that L admits exchange and that M also satisfies the commutativity axioms
(69). The interpretation of exchange provides an arrow σ : M2 → M2 and the sym-
metry conditions are precisely the first two equations in (26). The compatibility
condition of σ with the operations (75) corresponds to the fourth and sixth equa-
tion in (26), respectively for individual and binary functional constants. The third
equation in (26) is the compatibility condition between weakening and exchange
(76). Finally, the commutativity axiom (69) is the remaining fifth equation in (26).
Thus, symmetric cubical monoids as defined in Section 6 are precisely the models
of K.

The case of involutive, symmetric, cubical monoids is left to the reader as it does not
present any new feature.

10.3. The classifying category. If M and N are L-structures in V, a morphism
of L-structures is an arrow g : M → N in V commuting with the interpretation of all
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constants. That is, for every function symbol f of arity n, the diagram below commutes.

Mn
gn

��

[[f ]]M
��

Nn

[[f ]]N
��

M g
�� N

(82)

When L admits structural rules, g is also required to commute with the interpretation of
the structural rules. L-structures in V and their morphisms form a category Str(L,V).
If T is an algebraic theory in the language L, we write Mod(T,V) for the full subcat-
egory of L-structures generated by the T-models. Every monoidal functor F : V → V′

preserves T-models and therefore induces a functor F∗ : Mod(T,V) → Mod(T,V′). There-
fore, Mod(T, ) is a functor from monoidal categories to categories. When this functor
is representable, we say that T admits a classifying category. Thus, T admits a classifying
category when there exists a monoidal category T and a natural equivalence

E : hom(T,V)
∼−→ Mod(T,V). (83)

The identity on T then corresponds to a T-model G in T, called the generic T-model,
and the functor E in (83) is evaluation at G. Every monoidal algebraic theory admits a
classifying category [29]. However, our aim here is simply to show that the cubical sites
are the classifying categories of the corresponding monoidal algebraic theories, and this
can be proved directly using the results in the previous sections. We discuss the case of
bipointed objects in detail. Observe first that the restricted site I is a monoidal category
and that 2 ∈ I is a bipointed object with [[�]]2 = δ+, [[⊥]]2 = δ− and π2 = ε, as was
remarked in Section 4.

10.4. Proposition. The restricted cubical site I is a classifying category for the theory
I of bipointed objects, and 2 is a generic model.

Proof. We prove that evaluation at 2 induces the equivalence E in (83). Since every
monoidal category is tensor equivalent to a strict monoidal one ([24], corollary 1.4) we may
assume that V is strict. Given M ∈ Mod(I,V), define a strict monoidal functor F : I → V
setting F (2) = M , and mapping the interpretation of constants and of weakening in 2
to the corresponding arrows in M ; this defines F uniquely in view of the factorisation
Lemma 4.1 and clearly E(F ) = M , so that E is surjective on objects.

To prove that E is full and faithful, let F, F ′ : I → V be monoidal functors, M = F (2)
and M ′ = F ′(2) the induced models and g : M → M ′ a morphism of I-models. Let us
first assume that the functors F and F ′ are strict monoidal. If t : F → F ′ is a monoidal
transformation inducing g, then g = t2 and since all the objects of I are of the form 2n

and t is monoidal, we must have t2n = tn2 so that if t exists it is uniquely determined.
It remains to prove that such t is natural; by the factorisation lemma, suffices to prove
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naturality with respect to the interpretation of constants and weakening. Naturality with
respect to � amounts to prove the commutativity of the diagram

F (1)
t1

F [[
]]2
��

F ′(1)

F ′[[
]]2
��

F (2)
t2

�� F ′(2)

(84)

By definition, the vertical arrows are [[�]]M and [[�]]M ′ and the bottom arrow is g; hence
the square commutes because g is a morphism of models. The case of ⊥ and of weakening
is similar. When the functors F and F ′ are not strict it is necessary to insert associativity
and unit isomorphisms: more precisely, t2n is canonically isomorphic to tn2 and diagram
(84) is isomorphic to the corresponding diagram between the models; in any case, this
suffices to prove uniqueness of t and its naturality.

The same result holds for the sites J and K; more precisely, 2 ∈ J is a cubical monoid,
2 ∈ K is a symmetric cubical monoid and the factorisation Theorems 5.1 and 8.1 give

10.5. Proposition. The site J is a classifying category for the theory J of cubical
monoids and 2 ∈ J is a generic model.

10.6. Proposition. The site K is a classifying category for the theory K of symmetric
cubical monoids and 2 ∈ K is a generic model.

The proofs do not present any new feature when compared with 10.4, and are there-
fore omitted. The situation is slightly different for involutive, symmetric, cubical monoids
as the lack of a unique-factorisation theorem for !K does not allow us to use the same
argument. Nevertheless, it will be proved in [29] that the classifying category of !K ob-
tained by purely syntactical means is equivalent to !K, which is therefore the classifying
category. In retrospect, one can first construct syntactically the classifying category of
a monoidal algebraic theory T and then use information on this to obtain factorisation
theorems; however, factorisation theorems obtained in this form are not as sharp as those
proved in the previous sections.
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