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MOORE CATEGORIES

DIANA RODELO

Abstract. In 1970, M. Gerstenhaber introduced a list of axioms defining Moore cat-
egories in order to develop the Baer Extension Theory. In this paper, we study some
implications between the axioms and compare them with more recent notions, showing
that, apart from size restrictions, a Moore category is a pointed, strongly protomodular
and Barr-exact category with cokernels.

1. Introduction

For several years many category theorists were focused on defining an axiomatic context
that would reflect the properties of groups and rings as the abelian categories do for
abelian groups and modules. The difficulty found in weakening the axioms of abelian cat-
egories contributed for the arising of many different approaches, from the 1950’s through
the 1970’s. Some were designed to represent a good context for non-abelian homology,
such as Moore categories, while others were developed to capture more or less algebraic
properties, such as Barr-exact Maltsev categories. So, unlike the abelian case, there was
no outstanding theory that could be considered as a “good” generalization of groups.

In [Bourn, 1991], the author introduced the notion of a protomodular category, whose
outstanding example is the category of groups. Later in [Bourn, 2000], he defined the
notion of strong protomodular categories which capture some more group-like properties.
Also based on protomodular categories, the new concept of semi-abelian categories ap-
peared in [Janelidze, Márki, Tholen, 2002]. At this time the “old” complicated axioms
from the earlier years were compared with more recent notions, establishing the existence
of many disguised similarities.

Since recent notions had already appeared much earlier, although in disguised forms,
we are interested in analyzing Moore categories. This notion was introduced as a cate-
gory suitable for developing the Baer Extension Theory in [Gerstenhaber, 1970]. Having
in mind the next higher cohomology group, containing the obstructions to extensions
problems, he was concerned in giving a good context for the cohomology of groups. For
these reasons, the categorical setting given is based on the categories of groups and rings.
Like most of the theories of this time, the definition of a Moore category is also given by
long list of entangled axioms. But, after the successful comparison of the “old” and “new”
theories done for the semi-abelian categories, we expect to achieve some simplifications by
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translating the old axioms into more recent notions and discarding the needless axioms by
studying their dependencies. As shown in the sequel, a Moore category turns out to be a
pointed, strongly protomodular and Barr-exact category with cokernels. We conclude by
presenting other examples of Moore categories besides the categories of groups and rings.

We thank the referee for all the careful explanations and suggestions made.

2. Moore Categories

We denote kernels by � �� �� and cokernels by � �� . The notion of a normal monomor-
phism will be used in the sense of protomodularity, i.e. with respect to an equivalence
relation (Section 4). We write k � R when a monomorphism k is normal to an equiva-
lence relation R. The kernel equivalence relation of a morphism f is represented by R[f ].

A short exact sequence A � �� k ��B
p � ��Q , where k = ker(p) and p = coker(k), will also

be called an extension (of Q by A). Moreover, if p · s = 1Q, then we call the diagram

A � �� k ��B
p � ��Q��
s

�� a split extension.

The notion of a Moore category introduced in [Gerstenhaber, 1970] is the following:

2.1. Definition. A category C with zero object, kernels and cokernels is called a
Moore category if the following axioms hold:

M1.1 (3 × 3 lemma) Consider a commutative diagram

A
k ��

α

��

B
p ��

β

��

Q

γ

��
A′ k′

��

α′
��

B′ p′ ��

β′

��

Q′

γ′
��

A′′
k′′

�� B′′
p′′

�� Q′′

where the three rows and two columns are extensions. If the third column
is a zero morphism, then it is also an extension;

M1.2 In the commutative diagram

A
� �� k ��

���
α

��

B
p � ��

β

��

Q

∼=γ

��
A′ � ��

k′
�� B′

p′
� �� Q′

where both rows are extensions, the composition k′ · α is a kernel;

M2.1 C has pullbacks;
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M2.2 The pullback of a cokernel is a cokernel;

M2.3 The intersection of two kernels is a kernel;

M3 Given a split extension A � �� k ��B
p � ��Q��
s

�� , the pair of morphisms (k, s) is

jointly epimorphic;

M4.1 There is a representative set under the equivalence relation for the ex-
tensions of Q by A;

M4.2 The equivalence classes of subobjects of an object form a set.

We first note that a Moore category has finite limits, since it is pointed and has
pullbacks. So it is unnecessary to refer the kernels in the beginning of the definition.

In the next sections we are focused on proving that a Moore category is a pointed,
strongly protomodular and Barr-exact category with cokernels. During this process we
shall see that M2.3 and M3 are redundant.

3. Protomodularity

We will start by analyzing the properties obtained from M1.1.

3.1. Definition. A category C with pullbacks is called protomodular if the change of
base functors, with respect to the fibration

π : PtC −→ C,

B
p �� �� Q��
s

�� �−→ Q where p · s = 1Q

are conservative.

There are several alternative definitions for protomodularity. We will use the following
three:

3.2. Proposition. [Proposition 7 of [Bourn, 1991]] A category with pullbacks is pro-
tomodular if and only if the pullback cancellation property holds: for every diagram
where p · s = 1Q and the downward squares are commutative

A ��

��
1

B ��

p
����

2

C

��
P �� Q

�� s

��

�� R,

if 1 and 1 2 are pullbacks, then 2 is a pullback.
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When C is pointed and has pullbacks, protomodularity can also be characterized by
the split short five lemma: given a commutative diagram where the rows are split
extensions,

A
� �� k ��

∼=α

��

B
p � ��

β

��

Q��
s

��

∼=γ

��
A′ � ��

k′
�� B′

p′ � �� Q′,��
s′

��

(1)

if α and γ are isomorphisms, then so is β (Theorem 2.3 (h) of [Bourn, Janelidze, 1998].).

A pair of morphisms (x : X ��A, y : Y ��A) is jointly strongly epimorphic when-
ever a monomorphism j : J �� ��A is an isomorphism provided that its pullbacks along x
and y are isomorphisms. In the presence of equalizers, this notion implies that (x, y) is
jointly epimorphic.

3.3. Lemma. [see [Bourn, 2001], p. 781] A category with pullbacks is protomodular if
and only if for every pullback diagram with p · s = 1Q

A
a ��

��

B

p
����

P �� Q,

�� s

��

the pair (a, s) is jointly strongly epimorphic.

3.4. Proposition. A pointed category satisfying M2.1 and M1.1 is protomodular.

Proof. Consider the diagram (1) and apply M1.1 to the commutative diagram

0���
0A

��

0���
0B

��

0���
0Q

��
A

� �� k ��

∼=α

��

B
p � ��

β

��

Q

∼=γ

��
A′ � ��

k′
�� B′

p′
� �� Q′

to conclude that the second column is an extension, thus β is an isomorphism.

At this point, in a category satisfying M2.1 and M1.1, we may identify regular epi-
morphisms with cokernels, one of the well known properties of pointed protomodular
categories (Corollary 14 of [Bourn, 1991].).

3.5. Remark. A pointed category satisfying M2.1 and M1.1 also satisfies M3, by
Lemma 3.3 for P = 0.
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4. Barr-exactness

We will use some of the properties of normal monomorphisms in pointed protomodular
categories to prove the Barr-exactness of a Moore category.

We say that a morphism f : X ��A is normal to an equivalence relation (r1 r2) :

R �� ��A × A if X is an equivalence class of R, i.e. if there exists a morphism f̃ such that
the first diagram commutes and the second is a pullback:

X × X
f̃ �� R

��

��
X × X

f×f
�� A × A

X × X
f̃ ��

π1

��

R

r1

��
X

f
�� A.

A normal morphism is always a monomorphism (Lemma 1 of [Bourn, 2001].) and it is
a kernel if and only if R = R[g], for some morphism g (Proposition 4 of [Bourn, 2001].).

Given two equivalence relations (r1 r2) : R �� ��A × A and (s1 s2) : S �� ��A × A ,
the double relation R�S is given by the pullback

R�S ��

��

S × S

(s1 s2)×(s1 s2)

��
R × R

(r1×r1 r2×r2)
�� A × A × A × A.

Using elements, (x, y, z, w) ∈ R�S if and only if (x, y), (z, w) ∈ R and (x, z), (y, w) ∈ S,
which is denoted by

xR y
S S
z Rw.

4.1. Theorem. [Theorem 11 of [Bourn, 2001]] In a pointed protomodular category,

consider (X �� x ��A) � R and (Y �� y ��A) � S. When X ∧Y = 0, there is a unique normal
monomorphism γ : X × Y ��A such that γ · (1 0) = x and γ · (0 1) = y. Moreover,
for the double relation R�S the morphism

R�S −→ A × A
xR y
S S �−→ (x,w)
z Rw

is a monomorphism and presents R�S as an equivalence relation on A such that RS =
SR = R ∨ S = R�S and γ � (R�S).
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4.2. Lemma. In a pointed category satisfying M2.1 and M1.1, given a commutative
diagram

0
� �� ��

���

��

Y���
y

��
1

Y

y

��
X

� �� x �� A
r � ��

s
���

B

s���
2

X
x

�� C
r

� �� D

where the first and second lines (rows and columns) are extensions, 1 is a pullback

and 2 is a pushout, then all rows and columns are extensions. Moreover, there ex-
ists a unique morphism γ : X × Y ��A such that γ · (1 0) = x, γ · (0 1) = y and

X × Y � �� γ ��A r·s � ��D is an extensions.

Proof. We have x � R[r], y � R[s] such that X ∧ Y = 0. Applying Theorem 4.1, there
exists γ : X × Y �� ��A such that γ ·(1 0) = x, γ ·(0 1) = y and γ � (R[r]∨R[s]). Since

2 is a pushout, we have R[r] ∨ R[s] = R[t], for the cokernel t = r · s, thus γ = ker(t).
Applying M1.1 to the commutative diagram

Y
� �� (0 1)�� X × Y

π1 � ��
���

γ

��

X

x
��

Y
� �� y ��

��

A
s � ��

t���

C

r
��

0 �� D D

where all rows, the first and second columns are extensions and the third column is a

zero sequence, we prove that X � �� x ��C
r � ��D is an extension. Finally, we conclude that

Y � �� y ��B s � ��D is an extension by applying M1.1 to the original diagram.

4.3. Lemma. In a pointed category with cokernels satisfying M2.1 and M1.1, any
monomorphism y that factorizes as y = r · y, with r a cokernel and y a kernel, is also a
kernel.

Proof. Consider x = ker(r), s = coker(y) and s = coker(y). From s · r · y = 0, we get
a unique morphism r such that r · s = s · r. We have the diagram of Lemma 4.2 with 1

a pullback, since y is a monomorphism, and 2 a pushout, since s = coker(y).

4.4. Proposition. In a pointed category with cokernels satisfying M2.1 and M1.1,
reflexive relations are effective equivalence relations.
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Proof. Suppose (r1 r2) : R �� ��A × A is a reflexive relation, i.e. there exists a
monomorphism e : A �� ��R such that r1 · e = r2 · e = 1A. For k = ker(r1), the pair (k, e)
is jointly epimorphic.

The composition r2·k is a monomorphism, since r2·k·x = r2·k·y implies (r1 r2)·k·x =
(r1 r2) · k · y, allowing us to conclude that x = y. This monomorphism r2 · k factors by
a cokernel and a kernel, thus by Lemma 4.3 is also a kernel. Consider q = coker(r2 · k).
We have q · r1 = q · r2 by the fact that (k, e) is jointly epimorphic and

q · r1 · k = 0 = q · r2 · k
q · r1 · e = q = q · r2 · e.

Applying the pullback cancellation property of protomodular categories to the commuta-
tive diagram

K
� �� k ��

��

R
r2 � ��

r1
����

A

q
���

2

0 ��

1

A q
� ��

��
e

��

Q

we conclude that 2 is a pullback.

As a consequence, in a category satisfying M2.1 and M1.1, we may identify kernels
with normal monomorphisms.

4.5. Remark. A pointed category with cokernels satisfying M2.1 and M1.1 also
satisfies M2.3, since the stability for finite intersections holds for normal monomorphisms
(f � R and g � S, imply that (f ∧ g) � (R ∧ S)).

To prove that a Moore category is regular, we will use the pullback property of M2.2.

4.6. Proposition. A pointed category with cokernels satisfying M2.1, M1.1 and M2.2
is protomodular and regular.

Proof. Based on Proposition 3.2 of [Janelidze, Márki, Tholen, 2002], if C is a pointed
category with kernels, cokernels of kernels, such that the pullback of a cokernel is a cokernel
and ker(f) = 0 if and only if f is a monomorphism, then C has a pullback-stable (coker-
nel, monomorphism)-factorization system (the pullback of a (cokernel, monomorphism)-
factorization is also such a factorization).

Conversely, a pointed protomodular and regular category satisfies M1.1 (Theorem 12
of [Bourn, 2001]) and the pullback of a cokernel is a cokernel, since they coincide with
the regular epimorphisms.

4.7. Proposition. A pointed category with cokernels satisfying M2.1, M1.1 and M2.2
is protomodular and Barr-exact.

Proof. By Propositions 4.6 and 4.4.
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5. Strong Protomodularity

Condition M1.2 is finally used in order to establish strong protomodularity.

5.1. Definition. A category C with finite limits is called strongly protomodular if
the change of base functors, with respect to the fibration π : PtC ��C , are left exact,
conservative and reflect normal monomorphisms.

We have seen that normal monomorphisms in C are kernels. Normal monomorphisms
in the category of pointed objects have the following characterization:

5.2. Proposition. [Proposition 2.1 of [Bourn, 2000]] When a category C is quasi-
pointed and protomodular, a map

X
j ��

f ���
��

��
��

� Y

g
����

��
��

�

Q

is a normal monomorphisms in C/Q if and only if j · ker(f) is a normal monomorphism
in C. The same result holds in PtC[Q].

So, j is a normal monomorphism in C/Q (or PtC[Q]) if and only if j ·ker(f) is a kernel
in C.

5.3. Proposition. A pointed category with cokernels satisfying M2.1, M1.1 and M1.2
is strongly protomodular.

Proof. Since the category is pointed and protomodular, it suffices to prove that the
change of base functors

(0Q)∗ : PtC[Q] −→ C
B

p �� ��

β

��

Q��
s

��

B′
p′ �� �� Q��
s′

��

�−→ A = ker(p)

α

��
A′ = ker(p′)

reflect normal monomorphisms. This is given by M1.2.

Conversely, we have:

5.4. Proposition. A pointed, strongly protomodular and Barr-exact category with
cokernels satisfies M1.2.
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Proof. The diagram of M1.2 induces the commutative diagram

A
� ��

(0 k)
Q ��

���
α

��

R[p]
p1 �� ��

1A×Qβ

��

B��
(1B 1B)

Q

��

A′ � ��
(0 k′)

Q

�� B ×Q B′ π1 �� ��
B.��

(1B β)
Q

��

Since the category is strongly protomodular and α is a kernel, the composite (0 k′)
Q
·α =

1A ×Q β · (0 k)
Q

is a kernel. By Lemma 4.3 applied to the monomorphism k′ · α =
π2 · ((0 k′)

Q
· α) is a kernel.

Our results can be gathered into the following characterization:

5.5. Theorem. Consider the following conditions for a category C:

(i) C is a Moore category;

(ii) C is pointed, strongly protomodular and Barr-exact with cokernels.

Then (i) implies (ii).

5.6. Remark. The reverse implication of Theorem 5.5 holds provided that C satisfies
M4.1 and M4.2, which is in particular the case when C is a variety. Condition M4.2
holds because varieties are well-powered. To see that condition M4.1 is satisfied, we
use a consequence of Theorem 1.1 in [Bourn, Janelidze, 2002] that characterizes these
varieties by the existence of binary terms t1, · · · , tn and an (n + 1)-ary term t such that
t(x, t1(x, y), · · · , tn(x, y)) = y and ti(x, x) = 0, for all i = 1, · · · , n. Note that x = y if and
only if ti(x, y) = 0, for all i = 1, · · · , n, since

y = t(x, t1(x, y), · · · , tn(x, y)) = t(x, 0, · · · , 0) = t(x, t1(x, x), · · · , tn(x, x)) = x.

Given an extension A � �� k ��B
p � ��Q of Q by A, we have an equivalence relation

x ∼ y ⇔ p(x) = p(y) ⇔ ti(x, y) ∈ A, for all i = 1, · · · , n.

So y is in the equivalence class of x implies that y = t(x, t1(x, y), · · · , tn(x, y)) is in
t({x} × A × · · · × A), thus the equivalence class of x has at most the cardinality of An.
Finally, the cardinality of B is less or equal than the cardinality of Q × An, proving that
the equivalence classes of extensions of Q by A form a set.

6. Mo(o)re Examples

1. Grp, Rng.
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2. Abelian categories. They are pointed and have cokernels by definition. They are
also essentially affine, since they are additive and have finite limits (Corollary 5
of [Bourn, 1991]), thus strongly protomodular ([Bourn, 2000]). Finally, they are
Barr-exact by the Tierney equation.

3. Heyting semilattices (definitions and omitted proofs in this example can be found in
[Johnstone, 1982]). It is proven in [Johnstone] that the category HSLat of Heyting
semilattices (meet-semilattices with implication) is semi-abelian.

Before proving the strong protomodularity of HSLat, we first note that a morphism
α : A ��A′ is a normal monomorphism in HSLat if and only if α(A) is a filter in
A′. In fact, if α � R, then (α(a1), α(a2)) ∈ R, for every pair of elements (a1, a2) of
A, and (α(a), a′) ∈ R implies a′ ∈ α(A). Since 1A′ = α(1A), we get (1A′ , a′) ∈ R if
and only if a′ ∈ α(A). Finally, α(A) is a filter in A′ because 1A′ ∈ α(A), α is closed
for meets and given a ∈ A, a′ ∈ A′ such that α(a) ≤ a′, we have

(α(a), 1A′), (a′, a′) ∈ R ⇒ (α(a) → a′, 1A′ → a′) ∈ R
⇒ (1A′ , a′) ∈ R
⇒ a′ ∈ α(A).

Conversely, if α(A) is a filter in A′, then S = {(a′
1, a

′
2) ∈ A′ × A′ : a′

1 → a′
2, a

′
2 →

a′
1 ∈ α(A)} is an equivalence relation on A′ (see [Johnstone, 1982] VI-2.10 for a

proof which applies as such to Heyting semilattices). Moreover, (1A′ , a′) ∈ S if and
only if a′ ∈ α(A) and (α(a1), α(a2)) ∈ S, for every pair (a1, a2) of elements of A,
since α preserves the implication. Hence, there exists a morphism α̃ : A × A ��S ,
with α̃(a1, a2) = (α(a1), α(a2)). Furthermore, given a ∈ A and a′ ∈ A′ such that
(α(a), a′) ∈ S, by transitivity we have (1A′ , α(a)), (α(a), a′) ∈ S implies (1A′ , a′) ∈ S,
so that a′ ∈ α(A). Hence, α � S.

For any Heyting semilattice Q, we must prove that the change of base functor of
Proposition 5.3 reflects normal monomorphisms. Note that A = {b ∈ B : p(b) =
1Q}, k : A ↪→ B is an inclusion and α(a) = β(a), for every element a of A. Suppose
α(A) = β(A) is a filter in A′. Since A′ is a filter in B′, we conclude that β · k(A) =
β(A) is a filter in B′.

4. Grp(C), Rng(C), for an elementary topos C with a natural number object. They
are obviously pointed and the existence of cokernels is guaranteed by the natural
number object (see [Johnstone, 2002], for instance). When C is finitely complete,
the categories of internal groups and rings are strongly protomodular (Corollary 4.2
of [Bourn, 2000]). They are Barr-exact because C is also Barr-exact.

5. PtC[Q], for C strongly protomodular, Barr-exact with coequalizers. They are obvi-
ously pointed and coequalizers in C give cokernels in the category of pointed objects.
Finally, since C is strongly protomodular and Barr-exact, the same holds for PtC[Q]
(see Corollary 5.6 of [Bourn, 2000] for the strong protomodularity).
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