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REFLECTIVE KLEISLI SUBCATEGORIES OF THE CATEGORY OF
EILENBERG-MOORE ALGEBRAS FOR FACTORIZATION MONADS

MARCELO FIORE AND MATÍAS MENNI

Abstract. It is well known that for any monad, the associated Kleisli category is
embedded in the category of Eilenberg-Moore algebras as the free ones. We discovered
some interesting examples in which this embedding is reflective; that is, it has a left
adjoint. To understand this phenomenon we introduce and study a class of monads
arising from factorization systems, and thereby termed factorization monads. For them
we show that under some simple conditions on the factorization system the free algebras
are a full reflective subcategory of the algebras. We provide various examples of this
situation of a combinatorial nature.
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1. Motivation, overview, and examples

We give an overview of our results discussing them in the context of the motivating
example and some new ones.
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Motivating example. Let B be the category of finite sets and bijections. One of the
fundamental ideas of Joyal in [10, 11] is that SetB, the category of species of structures , is a
category of combinatorial power series in which the algebra of formal power series acquires
structural combinatorial meaning leading to bijective proofs of combinatorial identities.
For example, in this view, a covariant presheaf P on B can be seen as corresponding to
the exponential power series

∑
n∈N

|P [n] | xn

n!
and the coproduct and tensor product of

species respectively correspond to the addition and multiplication of power series. The
impact of this theory and its extensions on combinatorics can be appreciated from the
book [2].

A closely related category is the Schanuel topos Sch (see, e.g., [15, 9]). It has at least
four well-known characterizations. It is: (1) the category of continuous actions for the
topological group of bijections on N, with the product topology inherited from

∏
N

N;
(2) the classifying topos for the theory of an infinite decidable object; (3) the category
of pullback-preserving covariant presheaves on the category of finite sets and injections I;
(4) the topos of sheaves for the atomic topology on Iop.

In [5, 18], we observed that the Schanuel topos can be further described as the Kleisli
category associated to the monad on the topos SetB of species induced by the inclu-
sion B �� I. This is surprising, for Kleisli categories do not inherit, in general, much of
the structure of their base categories. Moreover, this presentation provides a nice con-
ceptual picture of the Schanuel topos as a category of combinatorial power series (see [5]
and Example 1.14 below).

In investigating why this particular Kleisli category is a topos we noted that the
associated sheaf functor SetI �� Sch is a reflection for the embedding of the Kleisli
category into the category of Eilenberg-Moore algebras. Following [5], we subsequently
realized that its existence follows as an example of general abstract considerations in the
context of an essentially small category (in this case Iop) equipped with a factorization
system (in this case the all-iso factorization system) satisfying some simple conditions.
This development is the subject of the paper.

Overview. Recall that every functor φ : C �� D induces the well-known adjoint situ-
ation φ! � φ∗ : D̂ �� Ĉ. We will consider presheaf categories as categories of algebras in
the light of the following observation.

1.1. Proposition. Let φ : C �� D be a functor between essentially small categories.
The adjunction φ! � φ∗ : D̂ �� Ĉ is monadic if and only if every object of D is a retract
of one in the image of φ.

Proof. As D̂ has reflexive coequalizers and φ∗ preserves them, the adjunction is monadic
if and only if φ∗ is conservative. In turn, this is equivalent to the condition stated, see [9,
Example A4.2.7(b)].

This result will be applied to a functor induced by a factorization system [7], the definition
of which we recall.
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1.2. Definition. A factorization system on a category C is given by a pair (E ,M)
of classes of morphisms of C such that: (1) every isomorphism belongs both to E and M,
(2) both E and M are closed under composition, (3) every e in E is orthogonal to every
m in M, and (4) every f in C can be factored as f = m e, with e in E and m in M.

Let (E ,M) be a factorization system on C. In this context we will also write E and M
for the subcategories of C respectively determined by the E-maps and M-maps. Further,
we write I for their intersection; i.e., the groupoid underlying C. With this notation, the
uniqueness of factorizations up to isomorphism can be expressed as an isomorphism as
follows.

1.3. Lemma. The canonical family of maps{∫ I∈I E(E, I) ×M(I,M) �� C(E,M)
}

E∈E,M∈M

induced by composition is a natural isomorphism.

1.4. Definition. We define the factorization monad associated to an (E ,M) fac-

torization system on an essentially small category C as the monad on M̂ induced by the
adjunction ι! � ι∗ : Ĉ �� M̂ where ι is the inclusion functor M �� C.

Note that, by Proposition 1.1, the category AlgM of algebras for the factorization monad

on M̂ is (equivalent to) the presheaf category Ĉ. We denote the Kleisli category for a
factorization monad associated to (E ,M) as KlM.

Factorization monads have a simple description. Indeed, the left adjoint ι! : M̂ �� Ĉ,
henceforth denoted ( ) !, is given by left Kan extending presheaves Mop �� Set along
Mop �� Cop. It is however more revealing to calculate the following explicit description
of it. For P a presheaf on M, we have the following bijective correspondence of sets

P !X ∼= ∫ M∈M
PM × C(X,M)

∼= ∫ M∈M
PM × ( ∫ I∈I E(X, I) ×M(I,M)

)
, by Lemma 1.3

∼= ∫ I∈I ( ∫ M∈M
PM ×M(I,M)

) × E(X, I)

∼= ∫ I∈I
PI × E(X, I)

which yields a natural isomorphism with respect to the action on { ∫ I∈I
PI×E(X, I) }X∈C

given by

C(Y,X) × ∫ I∈I
PI × E(X, I) ��

∫ J∈I
PJ × E(Y, J)

( f , [I, p, ε] ) � �� [J, p ·P m, e]

where Y e �� J m �� I is an
(E ,M)-factorization of εf

Thus, it is justified to think of free factorization-monad algebras as combinatorial power
series with basis given by the structure of the E-maps in C and with coefficients (which,
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by Corollary 2.14(2), are unique up to isomorphism) given by the restriction of presheaves
on M to I. We found this intuition motivating and useful at work. In fact, the methods
of Section 2 are generalized from [11].

A key observation is that in some cases KlM is equivalent to the subcategory of
presheaves that preserve certain kind of limits. In this case, it happens that the embedding
KlM

� � �� AlgM � Ĉ is reflective. Most of our work is devoted to recognize these situations.

Let qEx(Ĉ) be the full subcategory of Ĉ determined by those presheaves that (are quasi
E-exact in the sense that they) map pushouts along E-maps in C to quasi pullbacks in
Set. We have the following factorizations (which are proved at the end of Section 2).

1.5. Proposition. The Yoneda embedding C � � �� Ĉ factors through KlM
� � �� Ĉ which

in turn factors through qEx(Ĉ) � � �� Ĉ.

One of our main results will characterize when the embedding KlM
� � �� qEx(Ĉ) is

actually an equivalence relying on the following finiteness condition.

1.6. Definition. A category equipped with a factorization system (E ,M) is said to
be E-well-founded if in it every chain

X0
e0 �� X1

�� · · · �� Xn
en �� · · · (n ∈ N)

of E-maps is eventually constant (in the sense that there is an n0 ∈ N such that en is an
iso for all n ≥ n0).

We state our first main result (which is proved in Section 3).

1.7. Theorem. If C has pushouts along maps in E then C is E-well-founded if and
only if every section is in M and the embedding KlM

� � �� qEx(Ĉ) is an equivalence.

Let us see how this theorem allows us to obtain examples of Kleisli categories equivalent
to full reflective subcategories of presheaf categories. Let Ex(Ĉ) be the full subcategory of

Ĉ determined by those presheaves that (are E-exact in the sense that they) map pushouts

along E-maps in C to pullbacks in Set, and let Pp(Ĉ) be the full subcategory of Ĉ of
pullback-preserving presheaves. The following lemma states two conditions ensuring that
qEx(Ĉ) is a category of functors that preserve some kind of limits.

1.8. Lemma. Every presheaf in qEx(Ĉ) maps epis in E to injections. It follows that

qEx(Ĉ) = Ex(Ĉ) if every map in E is epi and that Ex(Ĉ) = Pp(Ĉ) if E is given by the epis
and M by the isos.

Thus, known results about presheaves preserving certain kind of limits allow us to
conclude the following.
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1.9. Corollary.

1. If every map in E is epi, and C has pushouts along E-maps and it is E-well-founded,
then the embedding KlM

� � �� Ĉ of free factorization-monad algebras in algebras is
reflective.

2. Further, if C has binary products and, for all X ∈ C, the endofunctor ×X on C pre-
serves E-maps and pushouts along E-maps, then the reflective embedding KlM

� � �� Ĉ
is an exponential ideal and hence the reflection Ĉ �� KlM preserves finite products.

Proof. For the first part note that Theorem 1.7 and Lemma 1.8 imply that KlM is
equivalent to Ex(Ĉ), which is a full reflective subcategory of Ĉ by results in [12]. The
second part follows from results in [4, Subsection 11.2, § Orthogonality and cartesian
closure].

Our second main result (which is proved in Section 4) replaces the well-founded hy-
pothesis with a wide-completeness one.

1.10. Theorem. If every map in E is epi, and C has pushouts along E-maps and wide
pushouts of E-maps, then the embedding KlM

� � �� Ĉ of free factorization-monad algebras
in algebras is reflective.

Proof. Corollary 2.17 and Proposition 4.3 imply that KlM is equivalent to the full
subcategory of Ĉ of those presheaves that preserve pullbacks along E-maps and wide
pullbacks of E-maps; this is reflective by results in [12].

Examples. Examples to which Theorem 1.10 applies follow.

1.11. Example. The all-iso factorization on a category of epis with wide pushouts.
Like the opposite of the category of countable sets and injections, and posets with bounded
sups.

Let us now consider examples to which Corollary 1.9(1) applies. First, there are
posetal ones.

1.12. Example. Any co-well-founded poset with bounded binary sups with the all-iso
factorization.

To ease the presentation of the rest of the examples we note the result below, which
further exploits the coend description of factorization monads.

1.13. Lemma. We have that

P !X ∼=
∐

[I]∼= ∈C/∼=

PI ⊗I Eop(I,X)

where the sum ranges over the isomorphism classes of C and where ⊗I is the tensor product
of the obvious actions

PI × I(I, I) �� PI
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and

I(I, I) × Eop(I,X) �� Eop(I,X) (1)

over the automorphism group of I. Further, if the hom-actions (1) are free, then

P !X ∼=
∐

[I]∼= ∈C/∼=

PI × Eop(I,X)/I(I,I) (2)

Note that if every map in E is epi then the hom-actions are free.

Let F be the category of finite sets and functions and I, S, and B the subcategories
of F determined by injections, surjections, and bijections respectively.

1.14. Example. Consider Iop equipped with the all-iso factorization system. The
hom-actions are free and I(I,X)/B(I,I) can be described as the set Sub|I|(X) of subsets of
X of the same cardinality as I. Thus, the free algebras for the factorization monad are
combinatorial power series I �� Set of the form

P !X =
∐

i∈N
P [i] × Subi(X)

where P is a species B �� Set. These are the combinatorial presheaves of [5, Defini-
tion 1.1], and correspond to formal power series of the form∑

i∈N
pi

(
x
i

)
which, as recently pointed out to us by Steve Schanuel, for pi ∈ N are Myhill’s combina-
torial functions [20] (see also [3]).

In this case the factorization monad is given by ( ) ·exp where · denotes the multiplica-
tion (tensor product) of species and where exp is the exponential (terminal) species (see [2]).
Further, KlB is equivalent to the Schanuel topos.

1.15. Example. Let Ford be the category of finite linear orders and strictly order-
preserving maps, and consider Fordop with the all-iso factorization system. The au-
tomorphism groups Ford(I, I) are trivial and the homs Ford(I,X) are isomorphic to
Sub|I|(X). Thus, the free algebras for the factorization monad are combinatorial power
series Ford �� Set of the form

P !X =
∐

i∈N
P (i) × Subi(X)

where P is a linear species N �� Set (see [10, Section 4]). They are similar to the ones
in the previous example but with simpler coefficients.

The Kleisli category in this example is the topos of sheaves for the atomic topology
on Fordop studied by Johnstone in [8] which, as it is explained there, has many analogies
with the Schanuel topos.

We now introduce an analog of the above two examples in the context of linear algebra.
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1.16. Example. Let Iq be the category of finite dimensional vector spaces over a
finite field Fq of order q and linear monomorphisms, and let Bq be its underlying groupoid.
Consider Iq

op with the all-iso factorization. The hom-actions are free and Iq(I,X)/Bq(I,I)

can be described as the set Subdim(I)(X) of subspaces of X of the same dimension as
I. Thus, the free algebras for the factorization monad are combinatorial power series
Iq

�� Set of the form
P !X =

∐
i∈N

P (Fq
i) × Subi(X)

where P : Bq
�� Set. These correspond to formal q-power series of the form

∑
i∈N

pi

[
x
i

]
q

where the q-binomial coefficient
[

x
i

]
q

is given by

[x]q [x − 1]q . . . [x − i + 1]q
[i]q!

with [z]q = qz−1
q−1

and [n]q! = [n]q [n − 1]q . . . [1]q.

We now provide two examples in which M is not a groupoid.

1.17. Example. Consider Fop equipped with the epi-mono factorization (Iop,Sop).
The hom-actions are free and I(I,X)/B(I,I) can be described as Sub|I|(X). Thus, the free
algebras for the factorization monad are combinatorial power series F �� Set of the form

P !X =
∐

i∈N
P [i] × Subi(X)

where P : S �� Set. These are similar to those of Example 1.14 but with more sophisti-
cated coefficients.

1.18. Example. Consider the category F equipped with the surjection-injection
factorization. The hom-actions are free and S(X, I)/B(I,I) can be described as the set
Part|I|(X) of partitions of X of the same cardinality as I. Thus, the free algebras for the
factorization monad are combinatorial power series Fop �� Set of the form

P !X =
∐

i∈N
P [i] × Parti(X)

where P : Iop �� Set. These are analogous to the Stirling power series of Paré [22], and
correspond to formal power series of the form∑

i∈N
pi S(x, i)

where S denotes the Stirling numbers of the second kind. Since by results in [22], pushouts

of surjections in F are absolute, it follows that a presheaf in F̂ is a free factorization-monad
algebra if and only if it maps pushouts of surjections along injections to pullbacks.
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In the above two examples Corollary 1.9(2) applies. Thus the reflective embeddings

KlSop
� � �� F̂op and KlI

� � �� F̂ are exponential ideals. Further, the latter is a subtopos;
unlike the former. The topos-theoretic aspects of the present work, however, will be the
subject of a companion paper.

Readers interested in further examples from combinatorics may wish to look in [21,
1, 17, 16], where variations on the theory of species suitable for modeling other types of
power series are developed. (See also [19, 6].)

For applications in combinatorics it is useful that the above combinatorial presheaves
have enough structure to interpret the common operations in algebras of formal power
series. Our results allow us to derive totality, a very strong form of completeness and
cocompleteness (see, e.g., [23]).

1.19. Corollary. If every map in E is epi, C has pushouts along E-maps, and either
C is E-well-founded or C has wide pushouts of E-maps, the Kleisli category for the induced
factorization monad is total (in the sense of Street and Walters [24]).

Proof. Because either by Corollary 1.9(1) or by Theorem 1.10, we have that KlM is

equivalent to a full reflective subcategory of Ĉ (see, e.g., [13, Theorem 6.1]).

It follows from this result that limit and colimit operations on diagrams of free alge-
bras (combinatorial power series) in KlM induce operations on diagrams of presheaves (of

coefficients) on M. Indeed, for every D : ∆ �� M̂ we have

lim D !
∼= (D) ! and colim D !

∼= (D) !

for essentially unique presheaves (of coefficients) D and D on M. For instance, as ( ) ! is a
left adjoint, we have as a general rule that the coefficients of the coproduct of combinatorial
presheaves are the coproduct of the coefficients:

P ! + Q !
∼= (P + Q) !

The situation with limits and coequalisers is more interesting. For example, in the context
of Joyal species and the Schanuel topos (Example 1.14) we have that

1 ∼= I !

where I is the representable species B(∅, ), and that

P ! × Q !
∼= (P ∗ Q) !

where, for species P and Q, the species P ∗ Q is given by

(P ∗ Q)(U) =
∐

U1∪U2=U P (U1) × Q(U2)

with action

(U1, U2, p, q) ·P∗Q σ =
(
σ(U1) , σ(U2) , p ·P (σ�U1) , q ·Q (σ�U2)

)
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for all σ : U ∼= �� V in B. The above yield a monoidal structure on species; which, as far
as we know, is new.

In all the above examples Corollary 1.19 is applicable. On the other hand, the following
natural factorization system is neither well-founded, nor it admits wide pushouts.

1.20. Example. Consider Fop equipped with the all-iso factorization. In this case,
free algebras are combinatorial functors F �� Set of the form

P !X =
∐

i∈N
P [i] ⊗Si

X i

for P a species B �� Set. These are equivalent to Joyal’s analytic functors [11], and for
free symmetric group actions

P [i] × Si
�� P [i]

amount to combinatorial power series of the form

P !X =
∐

i∈N
P [i]/Si

× X i

corresponding to formal exponential power series

∑
i∈N

pi
xi

i!

Joyal [11] shows that analytic functors can be characterized by both left and right-
exactness conditions. We wonder whether our results can be extended to include this
example.

Organization of the paper. In Section 2 we provide a characterization of Kleisli
categories for factorization monads and prove Proposition 1.5. In Section 3 we prove the
equivalence described in Theorem 1.7. In Section 4 we prove Theorem 1.10.

2. Characterization of free factorization-monad algebras

We give an intrinsic characterization of free factorization-monad algebras, which is both
convenient and interesting in its own right. We discuss the statement of the result now
and leave the details of the proof to the rest of the section.

2.1. Definition. The category of elements
∫

F of a presheaf F on the essentially small
category C has objects given by pairs (X, x) with X in C and x ∈ FX, and morphisms
f : (X, x) �� (Y, y) given by maps f : X �� Y in C such that x = (Ff)y. For convenience
we will write (Ff)y as y ·F f , or simply as y · f .

Let C be an essentially small category with an (E ,M) factorization system.
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2.2. Definition. For a presheaf F on C, we say that (X, x) is E-generic if for
every e : (Z, z) �� (Y, y) in

∫
F with e in E and f : (Z, z) �� (X, x) in

∫
F there exists

g : (Y, y) �� (X, x) in
∫

F such that the diagram

(Z, z)

f �����������
e∈E �� (Y, y)

g
∃

��� �
�

�
�

(X, x)

commutes.

This is a natural generalization of Joyal’s definition in [11, Appendice].

2.3. Definition. For a presheaf F on C we say that (X, x) in
∫

F is engen-
dered (resp. E-engendered) by (Y, y) in

∫
F if there exists a map (X, x) �� (Y, y) in∫

F (that is in E).

If x is engendered by y via the map f , then x is E-engendered by y · m via the
map e where (e,m) is an (E ,M)-factorization of f . Further, if y is E-generic then also
y · m is E-generic (see Lemma 2.5), and so an element is engendered by an E-generic
element if and only if it is E-engendered by an E-generic element in an essentially unique
way (see Corollary 2.6).

2.4. Definition. A presheaf is said to be E-generically engendered if every element
in it is engendered by an E-generic element.

For example, the E-generic elements of representable presheaves are the M-maps and
the representable presheaves are E-generically engendered. These two facts are essentially
the first part of Proposition 1.5. Details are given at the end of this section (see Propo-
sition 2.18) after we establish the following characterization of the Kleisli category: a
presheaf is free as an algebra for the factorization monad if and only if it is E-generically
engendered (see Corollary 2.17).

Generic elements. We provide various basic properties of generic elements and then
study the restriction of presheaves to presheaves of generic elements.

2.5. Lemma. Let F be a presheaf on the essentially small category C and let

f : (X, x) �� (Y, y)

in
∫

F .

1. For f in E the following hold.

(a) If (X, x) is E-generic then f is a split mono.

(b) If (X, x) and (Y, y) are E-generic then f is an iso.

2. If (Y, y) is E-generic then (X, x) is E-generic iff f ∈ M.
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Proof. (1) If (X, x) is E-generic then

(X, x)
f∈E ��

id �����������
(Y, y)

∃
r

��� �
�

�
�

(X, x)

and hence f is a split mono and r a split epi. Moreover, r is in E because both f and
r f = id are. Further, if (Y, y) is E-generic we have that

(Y, y)
r∈E ��

id ����
��

��
��

�
(X, x)

∃��� �
�

�
�

(Y, y)

from which it follows that r, and hence f , is an iso.
(2�� ) Let e : (A, a) �� (B, b) in

∫
F with e in E and (A, a) �� (X, x) in

∫
F . As (Y, y)

is E-generic we have a diagram as on the left below

(A, a)
e∈E ��

��

(B, b)

g∃
���
�
�

(X, x)
f

�� (Y, y)

A
e ��

��

B

h

∃!

���
�

�
�

g

��
X

f
�� Y

and since f is in M there exists a unique h : B �� Y such that the diagram on the right
above commutes. But since x · h = y · f · h = y · g = b we have h : (B, b) �� (X, x) in∫

F , making (X, x) E-generic.
(2 ��) Let

X
f ��

e∈E 		�
��

��
��

Y

Z
m∈M



�������

be an (E ,M)-factorization. Since (Y, y) is E-generic and m ∈ M it follows from (2�� )
that (Z, y · m) is E-generic. Further, since both (X, x) and (Z, y · m) are E-generic and
e : (Y, y) �� (Z, x · m) in

∫
F with e ∈ E it follows from (1b) that e is an iso. Hence, we

have f in M.

2.6. Corollary. For (X, x) e�� (Y, y) e′ �� (X ′, x′) in
∫

F with both e and e′ in E, if
(X, x) and (X, x′) are E-generic then they are isomorphic.

Proof. Since (X, x) is E-generic and e′ is in E , e factors through e′; say as e = f e′. In
addition, as e′ and f e′ = e are both in E then so is f . Finally, since moreover (X, x) and
(X ′, x′) are E-generic, by Lemma 2.5 (1b), we have that f is in fact an iso.
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Since E-generic elements are closed under the action of maps in M (see Lemma 2.5(2)),
the following definition is natural.

2.7. Definition. For a presheaf F on C, the presheaf F ◦ on M is given by setting

F ◦X = {x ∈ FX | x is E-generic } (X in M)

with action as for F .

We now identify a subcategory of Ĉ on which the operation ( )◦ on presheaves can be
extended to a functor.

2.8. Definition. A natural transformation ϕ : F �� G : Cop �� Set is quasi E-cartesian
if for every map e : X �� Y in E , the naturality square

FY
ϕY ��

Fe
��

GY

Ge
��

FX ϕX

�� GX

is a quasi pullback.

The interest in quasi E-cartesian natural transformations at this stage is the following
remark.

2.9. Lemma. Quasi E-cartesian natural transformations in Ĉ preserve E-generic
elements.

Proof. Let ϕ : F �� G be a quasi E-cartesian natural transformation, and as-
sume that (X, x) ∈ ∫

F is E-generic. To prove that (X,ϕx) in
∫

G is E-generic consider
e : (Z, z′) �� (Y, y′) in

∫
G with e in E and f : (Z, z′) �� (X,ϕx) in

∫
G. As ϕ is quasi

E-cartesian, there exists y ∈ FY such that y · e = x · f and ϕy = y′. Hence we have the
following situation

(Z, y · e) e∈E ��

f ������������
(Y, y)

∃
g

��� �
�

�
�

(X, x)

in
∫

F . We further have g : (Y, y′) �� (X,ϕx) in
∫

G, showing that ϕx is E-generic.

By Lemma 2.9, we thus obtain a functor ( )◦ : Ĉ� qEc
�� M̂ (see Definition 2.7),

where Ĉ� qEc denotes the subcategory of Ĉ consisting of the quasi E-cartesian natural
transformations.
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Free factorization-monad algebras. We have seen that factorization monads have
a simple description using coends. Below we will use the following explicit description of
the free functor. For C an essentially small category with an (E ,M) factorization system,

the left adjoint ( ) ! : M̂ �� Ĉ induced by the inclusion functor M �� C is given (for P

in M̂ and C in C) by the quotient

∐
X,Y ∈C PX ×M(Y,X) × C(C, Y )

λ ��

ρ
��
∐

Z∈C PZ × C(C,Z) �� �� P !C

where λ(x,m, f) = (x ·P m, f) and ρ(x,m, f) = (x,m f). The equivalence class of the pair
(x, f) is denoted x⊗f . Naturally, for h : D �� C in C we have that (x⊗f) ·P !

h = x⊗ (f h).

2.10. Definition. For P a presheaf on M, f : C �� X and g : C �� Y in C, x ∈ PX,
and y ∈ PY we define (x, f) ∼ (y, g) if there exists a map m : Y �� X in M such that
x · m = y and f = m g.

2.11. Lemma.

1. For f in C and m in M, we have that x⊗ (m f) = (x · m)⊗f .

2. Let e0 : E �� X0 and e1 : E �� X1 be in E. Then (x0, e0) ∼ (x1, e1) if and only if
there exists an iso i : X1

�� X0 such that x0 · i = x1 and e0 = i e1.

3. Every element of P ! is of the form x⊗e with e in E, and we have that the relation ∼
restricted to pairs (x, e) with e in E is an equivalence relation.

Proof. (1) Trivial. (2) The relationship (x0, e0) ∼ (x1, e1) holds if and only if there
exists a map m : X1

�� X0 in M such that x0 · m = x1 and m e1 = e0; or equivalently,
since m is then necessarily both in M and E , that there exists an iso i : X1

�� X0 such
that x0 · i = x1 and e0 = i e1. (3) Follows from the other two.

In particular, if m0 e0 and m1 e1 are (E ,M) factorizations of f0 and f1 respectively,
then x0 ⊗f0 = x1 ⊗f1 if and only if there exists an iso i such that x0 · m0 · i = x1 · m1 and
e0 = i e1.

We characterize generic elements of free factorization-monad algebras.

2.12. Lemma. Let P be a presheaf on M and let f : Z �� X in C.

1. The element (X, x⊗ id) in
∫

P ! is E-generic.

2. The element (Z, x⊗f) in
∫

P ! is E-generic iff f is in M.
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Proof. (1) Let h : (Z, x⊗f) �� (Y, y⊗g) in
∫

P ! with h in E . Thus, for (e,m) an (E ,M)
factorization of f , we have that (x · m)⊗e = y⊗ (g h). By Lemma 2.11(1) we can assume
that g is in E and, from Lemma 2.11(2), we can conclude that there exists an iso i such
that x · m · i = y and e = i g h. It follows that

(Z, x⊗f)

f 											
h∈E �� (Y, y⊗g)

m i g��











(X, x⊗ id)

commutes in
∫

P !.
(2) We have f : (Z, x⊗f) �� (X, x⊗ id) in

∫
P ! and as, by (1), x⊗ id is E-generic then,

by Lemma 2.5 (2), x⊗f is E-generic iff f ∈ M.

We further study how natural transformations act on generic elements.

2.13. Proposition. For P a presheaf on M and G a presheaf on C, if the natural
transformation ϕ : P !

�� G in Ĉ preserves E-generic elements then it is quasi E-cartesian.

Proof. For e : X �� Y in E , consider the naturality square

P !Y
ϕY ��

P !e
��

GY

Ge

��
P !X ϕX

�� GX

and let z⊗f ∈ P !X (with z ∈ PZ and f : X �� Z) and y ∈ GY be such that ϕ(z⊗f) =
y · e. By Lemma 2.12(1) and hypothesis, ϕ(z⊗ id) is E-generic and we have the following
situation

(X,ϕ(z⊗f))
e∈E ��

f ��������������
(Y, y)

∃g��� � � � � �

(Z,ϕ(z⊗ id))

in
∫

G. The element z⊗g ∈ P !Y has the property that (z⊗g) · e = z⊗f and that ϕ(z⊗g) =
ϕ(z⊗ id) · g = y. Thus ϕ is quasi E-cartesian.

2.14. Corollary.

1. For every natural transformation ρ : P �� Q in M̂, the natural transformation
ρ ! : P !

�� Q ! in Ĉ is quasi E-cartesian.

2. For P and Q in M̂, P !
∼= Q ! in Ĉ iff P ∼= Q in M̂.

Thus, the free-algebra functor ( ) ! : M̂ �� Ĉ is conservative and factors through the

inclusion functor Ĉ� qEc
�� Ĉ.
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2.15. Proposition. The functor ( ) ! : M̂ �� Ĉ� qEc is an embedding and has

( )◦ : Ĉ� qEc
�� M̂ as right adjoint.

Proof. For a presheaf P on M and X in C we have a function ηPX : PX �� (P !)
◦X

mapping x to x⊗ id which, since (x · m)⊗ id = x⊗m for m in M, yields a natural transfor-

mation ηP : P �� (P !)
◦ in M̂, that is also natural in P by construction. Further, since by

Lemma 2.12 every element of (P !)
◦ is of the form x⊗ id, by Lemma 2.11(2), ηP is clearly

an iso.
On the other hand, for F in Ĉ� qEc and X in C, by Lemma 2.11, the assignment

(x⊗f) ∈ (F ◦) !X
� �� x · f ∈ FX

yields a function εFX : (F ◦) !X
�� FX, which, by Lemmas 2.5(2) and 2.12(2), and Propo-

sition 2.13. gives a quasi E-cartesian natural transformation εF : (F ◦) !
�� F , that is nat-

ural in F by construction.
Finally we show that η and ε satisfy the triangle identities. Indeed, for a presheaf P

on M we have

εP !
(η !(x⊗f)) = εP !

((ηx)⊗f) = (x⊗ id) · f = x⊗f

for all x⊗f in P !; whilst, for a presheaf F on Ĉ� qEc, we have

ε◦(ηF ◦(x)) = ε◦(x⊗ id) = x · id = x

for all x in F ◦.

Note that Lemma 2.12(1) implies that free algebras are E-generically engendered.

Thus, the embedding KlM
� � �� Ĉ factors through the embedding Eng(Ĉ) � � �� Ĉ, where

Eng(Ĉ) denotes the full subcategory of Ĉ determined by the E-generically engendered

presheaves, and the embedding ( ) ! : M̂ � � �� Ĉ� qEc factors through the embedding

Eng(Ĉ)� qEc
� � �� Ĉ� qEc, where Eng(Ĉ)� qEc denotes the intersection of Eng(Ĉ) and Ĉ� qEc.

2.16. Proposition. The adjunction M̂ � � ��	
�� Ĉ� qEc cuts down to an equivalence

M̂ � Eng(Ĉ)� qEc.

Proof. For F ∈ Eng(Ĉ)� qEc and X ∈ C, by Corollary 2.6 and Lemma 2.5, the assignment

x ∈ FX � �� (x′ ⊗e) ∈ (F ◦) !X

where e : (X, x) �� (X ′, x′) in
∫

F with e in E and (X ′, x′) E-generic, yields a function
which is an inverse for the counit of the adjunction (see Proposition 2.15).

2.17. Corollary. The embedding KlM
� � �� Eng(Ĉ) is an equivalence.

Proof. As the functor
( ) ! : M̂ �� Eng(Ĉ)� qEc

is an equivalence and the functor Eng(Ĉ)� qEc
�� Eng(Ĉ) is bijective on objects, the em-

bedding KlM
� � �� Eng(Ĉ) is essentially surjective; so it is an equivalence.
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Summarizing, we have the following situation.

M̂� �

( ) !

��

�� KlM� �


��

Eng(Ĉ)� qEc� �

��

�� Eng(Ĉ)� �

��
Ĉ� qEc

�� Ĉ
With the characterization of free factorization-monad algebras in terms of generic

elements we can now prove the first part of Proposition 1.5; that is, that the Yoneda
embedding factors through KlM

� � �� Ĉ.

2.18. Proposition. A map with codomain C in C is E-generic for the presheaf on C
represented by C if and only if it is in M. Moreover, representable presheaves on C are
E-generically engendered.

Proof. From the definition of E-generic element one deduces that a map is E-generic
if and only if it is weakly orthogonal to every map in E . Thus, M-maps are E-generic.
Further, since every map in C is engendered by its M factor (via its E factor), representable
presheaves are E-generically engendered and, by Corollary 2.5(1b), E-generic elements are
in M.

Finally, we prove the second part of Proposition 1.5; that is, that the embedding
KlM

� � �� Ĉ factors through qEx(Ĉ) � � �� Ĉ.

2.19. Lemma. Every E-generically engendered presheaf on C maps pushouts along
E-maps in C to quasi pullbacks in Set.

Proof. Let F be an E-generically engendered presheaf and let the square below be a
pushout in C

Z

f
��

e∈E �� Y

p

��
X q

�� U

(3)

with e, and hence also q, in E . Moreover, let x ∈ FX and y ∈ FY be such that x · f = y · e.
As F is E-generically engendered there exists a map e′ : (X, x) �� (X ′, x′) in

∫
F with e′

in E and (X ′, x′) E-generic. Hence, we have the following situation

(Z, z)

f
��

e∈E �� (Y, y)

g∃
���
�
�

(X, x)
e′

�� (X ′, x′)

and the pushout property of (3) gives a map h : U �� X ′ such that e′ = h q and g = h p.
Finally, since for u = x′ · h ∈ FU we have that u · q = x and u · p = y, we are done.
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3. First main result

Minimal elements. We have described generators of free algebras for factorization
monads via the notion of generic element. In the situations we are interested in the
generators have an alternative description which is important to study.

Let C be an essentially small category with an (E ,M) factorization system.

3.1. Definition. For a presheaf F on C, we say that (X, x) in
∫

F is E-minimal if
the following equivalent conditions hold.

1. Every (X, x) �� (Y, y) in
∫

F which is in E is an iso.

2. Every (X, x) �� (Y, y) in
∫

F is in M.

We characterize minimal elements of free factorization-monad algebras. To do this, it
is convenient to prove the following result.

3.2. Lemma. For a presheaf P on M and x ∈ PX (X in C), the element (X, x⊗ id)
in

∫
P ! is E-minimal iff every section X �� Y is in M.

Proof. ( ��) Because for every section s : X �� Y in E with retraction r : Y �� X in C
we have that s : (X, x⊗ id) �� (Y, x⊗r) in

∫
P !.

(�� ) Because every s : (X, x⊗ idX) �� (Y, y⊗g) in
∫

P ! is a section and so, by hypothesis,
is in M.

We can now give a characterization of minimal elements in free factorization-monad
algebras.

3.3. Corollary. Let P be a presheaf on M, x ∈ PX (X in C) and f : Z �� X in
C. The element (Z, x⊗f) in

∫
P ! is E-minimal iff f is in M and every section Z �� Y is

in M.

Proof. As usual we have f : (Z, x⊗f) �� (X, x⊗ id) in
∫

P ! so, if (Z, x⊗f) is E-minimal,
f is in M. As (x · f)⊗ idZ = x⊗f , by Lemma 3.2, every section with domain Z is in
M. Conversely, if every section with domain Z is in M then, again by Lemma 3.2,
x⊗f = (x · f)⊗ idZ is E-minimal for any f ∈ M.

3.4. Corollary. In free factorization-monad algebras, E-minimal implies E-generic.

Proof. Compare the characterizations in Corollary 3.3 and Lemma 2.12.

In general the converse does not hold but using Corollary 3.3 it is easy to characterize
the situation when E-minimal and E-generic elements coincide.

3.5. Definition. A presheaf on C is unbiased if its E-minimal and E-generic elements
coincide.
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3.6. Corollary. The following are equivalent.

1. Every section is in M.

2. For every presheaf on C, E-generic elements are E-minimal.

3. Free factorization-monad algebras are unbiased.

Proof. To prove that (1) implies (2) use Lemma 2.5. Corollary 3.4 shows that (2)
implies (3). To prove that (3) implies (1), consider the presheaf 1 ! which is unbiased by
hypothesis. For X in C, the element (X, ∗⊗ id) is E-generic by Lemma 2.12(1). It is then
E-minimal and so every section with domain X is in M by Lemma 3.2.

3.7. Definition. A presheaf is said to be E-minimally E-engendered if every element
in it is E-engendered by an E-minimal element.

3.8. Lemma. Let P be a presheaf on C such that its E-minimal elements are E-generic.
If P is E-minimally E-engendered then it is unbiased.

Proof. We need to show E-generic implies E-minimal in P . So let (X, x) be E-generic.
By hypothesis, there exists a map e : X �� Y in E and an E-minimal element (Y, y) such
that e : (X, x) �� (Y, y). But (Y, y) is E-generic by hypothesis so Lemma 2.5 implies that
e is an iso and so, (X, x) is E-minimal.

Now E-well-foundedness (Definition 1.6) enters the picture.

3.9. Lemma. Every presheaf on an E-well-founded C is E-minimally E-engendered.

Proof. Let F be a presheaf on C, and let (X, x) in
∫

F . If (X, x) is not E-minimal
then there exists a map e : (X, x) �� (X ′, x′) in

∫
F with e in E not an iso. If (X ′, x′) is

E-minimal then the result is proved. If not, repeat the process. The E-well-foundedness
assumption on C ensures that we reach an E-minimal element in a finite number of steps.
As E-maps are closed under composition, the result follows.

We are ready to prove the implication stated in Theorem 1.7 with E-well-foundedness
as hypothesis.

3.10. Corollary. If C is E-well-founded then every section is in M.

Proof. By Corollary 3.6 it is enough to prove that free factorization-monad algebras
are unbiased. By Corollary 3.4 E-minimal implies E-generic in free factorization-monad
algebras. As C is E-well-founded, Lemma 3.9 implies that free factorization-monad alge-
bras are E-minimally E-engendered and so, by Lemma 3.8, we obtain that E-generic and
E-minimal elements coincide.
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It remains to show that the embedding KlM
� � �� qEx(Ĉ) is an equivalence.

3.11. Lemma. If C has pushouts along E-maps then, for presheaves in qEx(Ĉ),
E-minimal elements are E-generic.

Proof. Assume that C has pushouts along E-maps and let F be a presheaf on C mapping
these pushouts to quasi pullbacks. For an E-minimal element (X, x) in

∫
F , to prove that

it is E-generic, let e : (Z, z) �� (Y, y) in
∫

F with e in E and f : (Z, z) �� (X, x) in
∫

F .

Take the pushout of e along f in C as below

Z

f

��

e∈E �� Y

p

��
X q

�� U

where q necessarily belongs to E . As F maps this pushout to a quasi pullback, there is
an element u ∈ FU such that the diagram

(Z, z) e ��

f
��

(Y, y)

p

��
(X, x) q

�� (U, u)

commutes in
∫

F . Since (X, x) is E-minimal and q is in E , we have that q is an iso and
hence that (X, x) has the property of being E-generic.

Together with Corollary 3.10 the following result establishes one half of the equivalence
in Theorem 1.7.

3.12. Corollary. If C has pushouts along E-maps and it is E-well-founded then the
vertical functors in the diagram below are equivalences.

M̂
( ) !

��

�� KlM� �

��

qEx(Ĉ)� qEc
�� qEx(Ĉ)

Proof. By Lemma 3.9 every presheaf in qEx(Ĉ) is E-minimally E-engendered. From
Lemma 3.11 we have that every such presheaf is E-generically engendered, and hence,
by Lemma 2.19, that Eng(Ĉ) = qEx(C). Finally, Proposition 2.16 and Corollary 2.17
establish the result.
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The presheaf of chains. For (E ,M) a factorization system on an essentially small
category C, we prove the remaining part of Theorem 1.7; namely, that if every section
is in M and the embedding KlM

� � �� qEx(Ĉ) is an equivalence then C is E-well-founded.
The idea of the proof is to construct a particular presheaf R that maps pushouts to quasi
pullbacks and such that R being E-generically engendered, together with the assumption
that split monos are in M, implies that C is E-well-founded. The rest of the section builds
such an R and proves the relevant properties.

A chain in C is a functor from the linear order ω = (0 ≤ 1 ≤ · · · ≤ n ≤ · · · ) (n ∈ N)
to C. Note that a category is defined to be E-well-founded if every chain consisting of
maps in E is eventually a sequence of isos.

For any chain α we let α↓0 = idα0 and α↓(j+1) = α(j ≤ j + 1) α↓j : α0 �� α(j + 1)
for all j ∈ N. We also define α↑j (j ∈ N) to be the chain such that for every m,n ∈ N,
α↑j(m ≤ n) = α(j + m ≤ j + n).

We now define an equivalence relation ∼ on the sets of chains with the same initial
domain. For such chains α and β, i.e. such that α0 = β0, we let α ∼ β if and only if
there exists j, k ∈ N such that α↓j = β↓k and α↑j = β↑k.

3.13. Lemma. The relation ∼ is an equivalence relation.

Proof. The relation is clearly reflexive and symmetric. For transitivity assume that
α ∼ β is witnessed by j, k ∈ N such α↓j = β↓k, α↑j = β↑k and that β ∼ γ is witnessed by
l,m in N such that β↓l = γ↓m and β↑l = γ↑m. Then, the relationship α ∼ γ is witnessed
by j + l,m + k ∈ N.

For a chain α and a map f : X �� α0, we let α · f be the chain determined by the
identities (α · f)(0 ≤ 1) = f and (α · f)(n + 1 ≤ n + 2) = α(n ≤ n + 1) for all n ∈ N.

3.14. Lemma. The following hold for any chains α and β with α0 = β0.

1. For any f : X �� α0, α ∼ β implies α · f ∼ β · f .

2. α ∼ α · idα0

3. For any g : Y �� X and f : X �� α0, α · (f g) ∼ (α · f) · g.
For X ∈ C, we let RX be the quotient of the set of chains with domain X by the

equivalence relation ∼; that is,

RX = {α : ω �� C | α0 = X }/∼
and denote the equivalence class of a chain α as [α]. By Lemma 3.14, for every map
f : X �� Y in C, the assignment

[α] � �� [α · f ] (α0 = Y )

yields a function Rf : RY �� RX that makes R into a presheaf on C.
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3.15. Lemma. The presheaf R maps pushouts to quasi pullbacks.

Proof. For a pushout square as on the left below

Q

q

��

r �� Z

g

��

RP

Rf

��

Rg �� RZ

Rr
��

Y
f

�� P RY
Rq

�� RQ

we need to prove that the square on the right is a quasi-pullback. So let [α] ∈ RY and
[β] ∈ RZ be such that [α] · q = [β] · r. There exist j, k ∈ N such that (α · q)↓j = (β · r)↓k
and (α · q)↑j = (β · r)↑k. It follows that there exist j, k ∈ N such that α↓j · q = β↓k · r
and α↑j = β↑k. Then the pushout property implies that there exists a map t such that
t f = α↓j and t g = β↓k. Now consider Γ · t ∈ RP for Γ = [α↑j] = [β↑k]. We have that
(Γ · t) · f = [α↑j] · α↓j = [α] and, similarly, that (Γ · t) · g = [β]. So R maps the above
pushout to a quasi-pullback.

That is, R is in qEx(Ĉ). Notice that if the embedding KlM
� � �� qEx(Ĉ) is an equivalence

then, by Corollary 2.17, R is E-generically engendered. The rest of the section shows
that under the further assumption that split monos are in M we obtain that C is E-well-
founded.

3.16. Lemma. Let (Y, [β]) in
∫
R be E-generic and for every k ∈ N let (ek,mk) be

the (E ,M)-factorization of β↓k. Then ek is split mono for every k. In particular, if split
monos are in M then β↓k is in M for every k. If, moreover, every map in β is in E then
every map in β is an iso.

Proof. It is clear that, for any k, [β] = [β↑k] · (β↓k) = ([β↑k] · mk) · ek so, as [β] is
E-generic, ek is a split mono by Lemma 2.5. If split monos are in M then ek is an iso and
so β↓k is in M. Finally, assume that every map in β is in E and proceed by induction. We
have that β(0 ≤ 1) is both in E and M so it is an iso. Now consider β(n + 1 ≤ n + 2).
By the first part of the lemma we have that β↓(n+2) =

(
β(n + 1 ≤ n + 2)

)
β↓(n+1) is in M.

As by inductive hypothesis β↓(n+1) is an iso, it follows that β(n + 1 ≤ n + 2) is in M and
hence an iso.

Now we know what is needed about the generic elements of R.

3.17. Lemma. If sections are in M and R is E-generically engendered then C is
E-well-founded.

Proof. Let α be a chain such that every map in it is in E . By hypothesis there exists a
map e : α0 �� Y in E and an E-generic [β] ∈ RY such that [β] · e = [α]. Thus, there exist
j, k ∈ N such that α↓j = (β · e)↓k and α↑j = (β · e)↑k. It follows that there exist j, k ∈ N

such that α↓j = β↓k · e and α↑j = β↑k. As both α↓j and e are in E , so is β↓k. But β↓k is in
M by Lemma 3.16 so it is an iso. We then have that [β↑k] is E-generic. But as α↑j = β↑k,
every map in β↑k is in E so Lemma 3.16 implies that every map in β↑k is an iso. That is,
α is eventually a sequence of isos.

Theorem 1.7 is proved.
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4. Second main result

This section establishes Theorem 1.10.

Let C be an essentially small category with an (E ,M) factorization system.

4.1. Proposition. Every E-generically engendered presheaf maps wide pushouts of
E-maps in C to quasi wide pullbacks in Set.

Proof. Consider the wide span { ei : Z �� Xi in E }i∈I and, for F an E-generically
engendered presheaf, let z ∈ FZ and xi ∈ FXi (i ∈ I) be such that z = xi · ei (i ∈ I).

For each i ∈ I, let qi : (Xi, xi) �� (Yi, yi) in
∫

F with qi in E and (Yi, yi) E-generic. By
Corollary 2.6, we have the following situation

(Xi, xi)
qi �� (Yi, yi)

∼=
��

(Z, z)

ei ��

ej
�������

(Xj, xj) qj

�� (Yj, yj)

for every i, j ∈ I. It follows that there exists { q′i : (Xi, xi) �� (Y, y) }i∈I in
∫

F with q′i in
E and (Y, y) E-generic such that the diagram in

∫
F

(Xi, xi)
q′i

��������

(Z, z)

ei
��������

ej ��������
(Y, y)

(Xj, xj)
q′j

��������

commutes for all i, j ∈ I. By the wide pushout property, there exists a unique u : X �� Y
in C such that q′i = u fi for all i ∈ I, where { fi : Xi

�� X } is the wide pushout of
{ ei : Z �� Xi in E }i∈I . Hence, y · u ∈ FX is such that y · u · fi = xi for all i ∈ I.

4.2. Proposition. Assume that every map in E is epi. For a presheaf F on C and
an element (Z, z) in

∫
F , if the wide span

{ ei : Z �� Xi in E | ei : (Z, z) �� (Xi, xi) in
∫

F }i∈I

has a wide pushout in C and F maps it to a quasi wide pullback in Set then (Z, z) is
E-minimally E-engendered.

Proof. Let

Z
···

ei

����
��

� ej

		�
��

��
··· ···

Xi

···
fi 		�

��
�� ···

Xj

fj����
��

�
···

X
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be a wide pushout, and let x ∈ FX be such that x · fi = xi for all i ∈ I.

For i ∈ I, let (qi, pi) be an (E ,M) factorization of fi. Since, for all i, j ∈ I, we have
the following situation

Z
ei

����
��

��
� ej

���
��

��
��

Xi

qi

���
��

��
�

fi

		

Xj

qj

����
��
��

fj

��

Yi

pi

��
�

���
��

∼= Yj

pj
��

����

X

there exist q′i ∈ E (i ∈ I) and p ∈ M such that the diagram

Z
ei

����
��

��
�� ej

		�
��

��
��

�

Xi

q′i
��

�

		�
��

fi

��

Xj

q′j
���

�����

fj

��

Y

p

��
X

commutes for all i, j ∈ I. Note that we have q′i : (Xi, xi) �� (Y, x · p) in
∫

F for all i ∈ I.

By the wide pushout property, we have that there exists a unique u : X �� Y such
that q′i = u fi (i ∈ I), and also that p u = id.

Further, since q = q′i ei : Z �� Y (i ∈ I) is a map (Z, z) �� (Y, x · p) in
∫

F which
is in E , the definition of the collection { ei }i∈I implies that there exists k ∈ I such that
ek = q. In particular, ek = q′k ek and, as ek is epi, we have that q′k = id and hence that
fk = p q′k = p. Thus, u p = u fk = q′k = id, and so p is an iso and fi = p q′i is in E for all
i ∈ I. It follows that (Z, z) is E-engendered by (X, x) via the map fi ei : Z �� X (i ∈ I).

Finally, we show that (X, x) is E-minimal. To this end, let e : (X, x) �� (X ′, x′) in∫
F be in E . Since e p q : (Z, z) �� (X ′, x′) in

∫
F is in E , there exists  ∈ I such that

e� = e p q. Thus,

f� e p q = f� e� = p q′� e� = p q

and, as p q in E is epi, we have f� e = id, making e in E a split mono and hence an iso.

4.3. Proposition. If every map in E is epi, and C has pushouts along E-maps
and wide pushouts of E-maps, then for a presheaf F on C the following statements are
equivalent.
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1. F maps pushouts along E-maps to (quasi) pullbacks and wide pushouts of E-maps
to (quasi) wide pullbacks.

2. F maps pushouts along E-maps to (quasi) pullbacks and is E-minimally E-engendered.

3. F is E-generically engendered.

Proof. (1) �� (2) By Proposition 4.2. (2) �� (3) By Lemma 3.11. (3) �� (1) By
Lemma 2.19 and Proposition 4.1. Notice also that (3) �� (2) by Lemma 2.19 and Corol-
lary 3.6.

Theorem 1.10 now appears as a corollary of Corollary 2.17 and Proposition 4.3.

Acknowledgments. We thank Ross Street for his proficient handling of the paper and
the anonymous referee for pointing out that not only completeness and cocompleteness
but further totality (Corollary 1.19) followed from our results.
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