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FUNCTIONAL ANALYSIS ON NORMED SPACES: THE BANACH
SPACE COMPARISON

M. SIOEN, S. VERWULGEN

Abstract. It is the aim of this paper to compute the category of Eilenberg-Moore
algebras for the monad arising from the dual unit-ball functor on the category of
(semi)normed spaces. We show that this gives rise to a stronger algebraic structure
than the totally convex one obtained from the closed unit ball functor on the category
of Banach spaces.

1. Introduction and basic notations

It was shown in [5] that contravariant Hom-functors, which we will call dualization func-
tors for the rest of the paper, often give rise to meaningful categorical dualities such as
the celebrated Gelfand-Naimark duality. A beautiful way to infer the Gelfand-Naimark
duality in a purely categorical way is given in [4]. Throughout functional analysis, dual
spaces and dualization functors into the scalar field occur everywhere. Another famous
example is provided by the Riesz representation theorem which describes the dual of the
Banach space of all (necessarily) bounded continuous functions on a given compact Haus-
dorff space in measure-theoretic terms. In all what follows, all modules or vectorspaces
will be considered over R and we will write sNorm1 (resp. Ban1 ) for the category of
seminormed (resp. Banach) spaces and non-expansive linear maps.

Moreover, it is well-known that the topological dual of a seminorned space comes
equipped with a canonical dual norm, making it into a Banach space. This allows for the
formation of (countably infinite) totally convex combinations on the closed dual unit ball,
giving it the algebraic structure of a totally convex module in the sense of [7, 8]. Let us
recall that in [7, 8] the authors showed that the category TC of totally convex modules
and totally affine maps is the category of Eilenberg-Moore algebras for the monad arising
from an adjunction having the closed unit ball-functor from Ban1 to Set as a right adjoint.
Loosely speaking, this expresses the fact that the algebraic structure (i.e. describable in
terms of generators and relations) which is intrinsically present on the closed unit ball of
a Banach space is exactly the one of a totally convex module. Answering the analogous
question for the closed unit ball-functor on the category sNorm1 instead of Ban1, the
authors obtained in [7, 8] the (larger) category AC of absolutely convex modules and
absolutely affine maps as the category of Eilenberg-Moore algebras.
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As shown in [12], the category AC arises also in so called “Quantified Functional Anal-
ysis”. We use this term for the theory of (locally convex) approach spaces as developed
e.g. in [11, 12], where the key idea is to work with canonical numerical structures over-
lying (locally convex) vector topologies, instead of only considering the topological level.
For more information we refer to [11, 12]. In [12] we proved that AC is also the category
of Eilenberg-Moore algebras for the monad arising from a dual adjunction having the
dualization functor HomlcApVec(−, R) on lcApVecop as a right adjoint. Here lcApVec
denotes the category of locally convex approach spaces and contractive linear maps, and
R is equipped with the absolute value as norm.

If we define C : sNormop
1 → Set to be the restriction of HomlcApVec(−, R) to

sNormop
1 , then C is in fact the dualization functor HomsNorm1

(−, R) which is nothing
but the closed dual unit ball functor on sNormop

1 . Again C is the right adjoint of a (dual)
adjunction, giving rise to a monad. The question we address in this paper is finding a
description of the category of Eilenberg-Moore algebras for this monad. Speaking more
loosely as we did above this answers the question of which canonical algebraic structure
is present on the closed dual unit ball of a seninormed space.

From the previous discussion one might be tempted to guess that this category of
Eilenberg-Moore algebras is concretely isomorphic with TC. Quite surprisingly this is
not the case as we shall prove. The resulting category SC of Eilenberg-Moore algebras
has as objects sets which allow for an abstract integration with respect to certain finitely
additive measures, also called charges, of total variation at most one in the sense of [9].
The crucial ingredient to obtain this result is a Riesz-type representation theorem for
charges, to be found in [9] which we state in precise terms later on.

2. Basic definitions

Let S be a set and let F be a field of subsets of S, i.e. a collection F ⊂ 2S satisfying the
following axioms:

1. ∅, S ∈ F ,

2. A ∈ F ⇒ Ac ∈ F ,

3. A, B ∈ F ⇒ A ∪B ∈ F .

A bounded charge on (S,F) is an additive map α : F → R, i.e. a map satisfying
α(A ∪ B) = α(A) + α(B) for all A, B ∈ F with A ∩ B = ∅ (note that then α(∅) = 0
follows), such that the total variation

||α|| := sup{
n∑

i=1

|α(Ai)| | {A1, . . . , An} ⊂ F finite partition of S}

is finite. We write ba(S,F) for the space of all bounded charges on (S,F), equipped with
the total variation norm defined above. To ease the notation we put ba(S) instead of
ba(S, 2S),
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A simple function on (S,F) is a map f : S → R for which there exist a finite partition
{A1, . . . , An} ⊂ F of S and scalars a1, . . . , an ∈ R, such that

f =
n∑

i=1

ai1Ai
.

We put B(S,F) for the closure, with respect to the supremum–norm ‖f‖∞ := sups∈S |f(s)|,
of the set of simple functions on (S,F) in the space of all bounded functions from S to
R. The space (B(S,F)) is equipped with the norm || − ||∞). If F is the collection of all
subsets of S, we write BS instead of B(S,F), which in this case equals the space of all
bounded real valued functions on S.

For α ∈ ba(S,F) and a ∈ B(S,F) the integral
∫

s∈S
a(s)dα(s) can be introduced as

the limit of the integrals of a sequence of simple functions converging uniformly to a [9],
where the integral of a simple function is defined in the obvious way:∫

s∈S

n∑
i=1

ai1Ai
(s)dα(s) :=

n∑
i=1

aiα(Ai).

We will use the notational convention to write OX for the closed unit ball of a semi-
normed space X and CX for the closed dual unit ball, i.e.

CX := {ϕ : X −→ R |ϕ is linear and for all x ∈ X: |ϕ(x)| ≤ ‖x‖}.

In the sequel LCX denotes the topological dual of X, equipped with the dual norm

‖ϕ‖C := inf{k > 0 | 1

k
ϕ ∈ CX}.

The following representation theorem identifies the dual space of (B(S,F), || − ||∞).

2.1. Theorem. [9, 1] The assignment

γ(S,F) : ba(S,F) −→ LC(B(S,F), || − ||∞)
α 7−→

∫
s∈S

ev(−, s)dα(s),
(1)

with
( ∫

s∈S
ev(−, s)dα(s)

)
(a) :=

∫
s∈S

a(s)dα(s) is a linear isometry.

Another notational convention is to put TS for the closed unit ball of ba(S). From
Theorem 2.1 we deduce that the map

γS : TS = Oba(S, 2S) −→ CBS
α 7−→

∫
s∈S

ev(−, s)dα(s)
(2)

is a one-one correspondence.
It is easy to verify that we have an endofunctor

T : Set −→ Set : (S1
f→ S2) 7−→ (TS1

Tf→ TS2)
α 7−→ αf ,

(3)
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with αf (A) := α(f−1(A)) (A ∈ F2).
We put

ηS : S −→ TS : s 7−→ δs, (4)

with δs(A) := 1 if s ∈ A and δs(A) := 0 if s /∈ A.
Recall that for α ∈ ba(S,F) and a ∈ B(S,F), we have∣∣∣∣∫

s∈S

a(s)dα(s)

∣∣∣∣ ≤ ∫
s∈S

|a(s)|d|α|(s),

where |α| is the total variation of α, given by |α| := α++α−, with α+(A) := sup{α(B) |B ∈
F , B ⊂ A} and α− := − inf{α(B) | B ∈ F , B ⊂ A} for each A ∈ F . Also recall that
we have the identity |α|(S) = ||α||. Let β : 2Oba(S,F) → R be in TOba(S,F). Then the
map Oba(S,F) −→ R : α 7−→ α(A) is bounded, because for each α ∈ Oba(S,F) we
have |α(A)| ≤ |α(A)|+ |α(Ac)| ≤ ||α|| ≤ 1. This implies that this map is integrable with
respect to β, i.e. the integral ∫

α∈Oba(S,F)

α(A)dβ(α)

exists and is finite. One moreover shows, in the same way as in any standard measure
theory course, that the assignment∫

α∈Oba(S,F)

α(−)dβ(α) : F −→ R

A 7−→
∫

α∈Oba(S,F)

α(A)dβ(α).

is actually a bounded charge on Oba(S,F). We thus obtain a map∫
Oba(S,F)

: TOba(S,F) −→ Oba(S,F)

β 7−→
∫

α∈Oba(S,F)
α(−)dβ(α).

(5)

which in case F = 2S is denote by

µS : T 2S −→ TS. (6)

2.2. Definition. A space of charges is a pair (M, IM) consisting of a set M and a
structure map

IM : TM −→M : α 7−→ IM(α)

which satisfies

(SC1) for all x ∈M : IM(δx) = x,

(SC2) for all β ∈ T 2M : IM(
∫

α∈TM
α(−)dβ(α)) = (IM ◦ TIM)(β).

A morphism between the spaces of charges (M1, IM1) and (M2, IM2) is a map f : M1 −→
M2 such that IM2 ◦ Tf = f ◦ IM1 and the category of spaces of charges is denoted SC.

These axioms may seem to be far fetched at first sight. However, notice that similar
laws already where obtained in [10], where it was shown that the category of compact
convex sets is monadic over the category of compacta.
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3. On the algebraic structure of linear contractions

On the opposite category of sNorm1, the category of seminormed spaces with linear
non–expansive maps, we consider the following dualisation functor:

C : sNormop
1 −→ Set : (Y

f← X) 7−→ (CY
Cf→ CX),

with Cf(ϕ) := ϕ ◦ f (ϕ ∈ CY ). It immediately follows from the fact that the product∏
s∈S(R, | |) in the category sNorm1 is equal to BS, that the map

η′S : S −→ CBS : s 7−→ ev(−, s) (7)

is universal for C. We therefore obtain a functor

B : Set −→ sNormop
1 : (S1

f→ S2) 7−→ (BS2
Bf→ BS1 : a 7−→ a ◦ f)

that is left adjoint to C. Let T′ := (T ′, η′, µ′) be the monad induced by the adjunction
B a C. So T ′ := CB, η′ is defined above and if µ′ := Cε′B is applied on a set S we have

µ′S : T ′2S −→ T ′S : Ψ 7−→ µ′S(Ψ), (8)

with µ′S(Ψ) : BS −→ R : a 7−→ Ψ(ev(−, a)).
For each point x in a seminormed space X, the map ev(−, x) : CX −→ R is bounded

and therefore integrable w.r.t. any α ∈ TCX, i.e. the integral
∫

ϕ∈CX
ϕ(x)dα(ϕ) exists

and is finite. Moreover, we have the inequality∣∣∣∣∫
ϕ∈CX

ϕ(x)dα(ϕ)

∣∣∣∣ ≤ ||x||||α||.
and, since the assignment

∫
ϕ∈CX

ϕ(−)dα(ϕ) : X −→ R is linear, we therefore have an
action

ICX : TCX −→ CX : α 7−→
∫

ϕ∈CX

ϕ(−)dα(ϕ).

We now come to our main theorem.

3.1. Theorem. The pair ĈX := (CX, ICX) is an object in SC. Moreover, SC is a
representation of the Eilenberg-Moore category of the adjunction B a C and the resp.
comparison functor is given by

Ĉ : sNormop
1 −→ SC : (Y

f← X) 7−→ (ĈY
Cf→ ĈX).
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Proof. The proof is built upon the following series of facts.

Fact 1. Let σS denote the inverse of the map γS given in (2). Then the collection σ :=
(σS)

S∈Set defines a natural transformation σ : T ′ −→ T .

In order to show this, take a map f : S1 −→ S2. We have to verify commutation
of the diagram

T ′S1
T ′f //

σS1

��

T ′S2

σS2

��
TS1 Tf

// TS2,

i.e. σS2 ◦CBf = Tf ◦ σS1 . Since σS1 and σS2 are bijections, this follows since, for
each α ∈ TS1 and ϕ ∈ BS2, the following string of equalities hold:

(CBf ◦ γS1)(α)(ϕ) = CBf(σ−1
S1

(α))(ϕ)

= σ−1
S1

(α)(ϕ ◦ f)

=

∫
S1

ϕ ◦ fdα

=

∫
S2

ϕdαf

= γS2(αf )(ϕ)

= (γS2 ◦ Tf)(α)(ϕ).

Fact 2. The diagram

S
ηS //

η′S !!CC
CC

CC
CC TS.

T ′S

σS

OO (9)

commutes. Indeed, for s ∈ S and ϕ ∈ T ′S we have

(γS ◦ ηS)(s)(ϕ) = γS(δs)(ϕ)

=

∫
t∈S

ϕ(t)dδs(t)

= ϕ(s)

= η′S(s)(ϕ),

from which the desired identity follows since γS is a bijection.

Fact 3. The diagram

T ′2S

σ2
S

��

µ′S // T ′S

σS

��
T 2S µS

// TS

(10)
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is commutative.

Bearing in mind the factorization T ′2S

σ2
S

**

T ′σS

// T ′TS σTS

// T 2S , we have to verify

that σS ◦ µ′S = µS ◦ σTS ◦ T ′σS. Take Φ : BCBS −→ R in T ′2S and A ⊂ S
arbitrary. We have

µS((σTS ◦ T ′σS)(Φ)) =

∫
α∈TS

α(−)d(σTS ◦ T ′σS)(Φ)(α),

so

(µS ◦ σTS ◦ T ′σS)(Φ)(A) =

∫
α∈TS

α(A)d(σTS ◦ T ′σS)(Φ)(α)

=

∫
α∈TS

ev(−, A)(α)dσTS(T ′σS(Φ))(α)

= T ′σS(Φ)(ev(−, A))

= Φ(ev(−, A) ◦ σS).

On the other hand we have that

(σS ◦ µ′S)(Φ)(A) =

∫
s∈S

1A(s)dσS(µ′S(Φ))(s)

= µ′S(Φ)(1A)

= Φ(ev(−, 1A)).

We are done if we show that

ev(−, A) ◦ σS = ev(−, 1A).

This is true since for each ϕ : BS −→ R in T ′S,

(ev(−, A) ◦ σS)(ϕ) = σS(ϕ)(A)

=

∫
s∈S

1A(s)dσS(ϕ)

= ϕ(1A).

Fact 4. For the moment we only know that T′ = (T ′, η′, µ′) is a monad. However, from
a lengthy yet straightforward categorical computation [13] it follows that this
information, together with Facts 1—3 suffice for the triple T = (T, η, µ) to be a
monad too. Moreover, σ : T′ → T is an isomorphism of monads.
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Fact 5. It is another straightforward exercise in category theory to show that the assign-
ment

Iγ : SetT −→ SetT′
:
(
(X, h)

f→ (Y, k)
)
7−→

(
(X, h ◦ γX)

f→ (Y, k ◦ γY )
)

(11)

is an isomorphism of categories.

Fact 6. The category SC equals AlgT by definition [3, 6].

Now we proceed as follows. Let K : sNormop
1 → AlgT′

be the usual comparison functor.
We should compose K with the concrete isomorphism Iγ given above (11), in order to
get the comparison functor of the adjunction B a C in the SC-representation. From the
definition of the comparison functor [3] we see that Iγ ◦K is given by

Iγ ◦K : sNormop
1 −→ SC : X

f→ Y 7−→ (CY, Cε′Y ◦ γCY )
Cf→ (CX, Cε′X ◦ γCX),

so we are done if we show that, for every seminormed space X,

Cε′X ◦ γCX = ICX .

Hereto, fix α ∈ TCX and x ∈ X. Then we obtain that

(Cε′X ◦ γCX)(α)(x) = (Cε′X(γCX(α)))(x)

= (γCX(α) ◦ ε′X)(x)

= γCX(α)(ev(−, x))

=

∫
ϕ∈CX

ev(−, x)(ϕ)dα(ϕ),

which completes the proof.

4. The Banach space connection

We write

O : Ban1 → Set : (X
f→ Y ) 7−→ (OX

f |OX→ OY )

for the closed unit ball-functor. For a set S, put

l1S := {a : S → R | {a 6= 0} is (at most) countable and ||a||1 <∞},

equipped with the sum-norm

||a||1 :=
∑
s∈S

|a(s)|.

Then the functor

l1 : Set→ Ban1 : (S1
g→ S2) 7−→ (l1S1

l1g→ l1S2),
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with l1g(a) :=
∑

s∈S1
a(s)δf

g(s), a ∈ l1S1, is left adjoint to O [7]. The unit of the adjunction
l1 a O is given by

η′′S : S ↪→ Ol1S : s 7−→ δf
s (S ∈ |Set|),

where the Dirac function δf
s is given by

δf
s (t) :=

{
1 if s = t
0 if s 6= t

.

The counit of this adjunction at a Banach space X is given by the assignment

ε′′X : l1OX → X : a 7−→
∑

x∈OX

a(x)x.

Let T′′ be the monad induced by the adjunction l1 a O. We will proceed by providing an
explicit description of E. By definition, an object in AlgT′′

is a pair (N, EN) consisting
of a set N and a structure map

EN : Ol1N −→ N

that satisfies the following equations:

(TCF1) EN(δf
x) = x,

(TCF2) EN(
∑

a∈Ol1N B(a)a(−)) = EN

(∑
x∈N

(∑
a∈Ol1N

x=EN (a)
B(a)

)
δf
x(−)

)
.

4.1. Definition. [7] A totally convex structure is a set M together with, for each
α = (αi)i∈N0 ∈ Ol1N0, an operation α̂ : MN0 →M , such that, with the notation

∞∑
i=1

αixi := α̂((xi)i∈N0),

the following identities are satisfied:

(TC1)
∑∞

i=1 δf
i (k)xi = xk,

(TC2)
∑∞

j=1 βj(
∑∞

i=1 αijxi) =
∑∞

i=1(
∑∞

j=1 βjαij)xi.

A totally affine map f : M → N between totally convex modules is a map between the
underlying sets such that, for all (αi)i ∈ Ol1N0 and for all (xi)i ∈MN0,

f(
∞∑
i=1

αixi) =
∞∑
i=1

αif(xi).

The category of totally convex modules is denoted by TC and we put U : TC −→ Set for
the forgetful functor.



FUNCTIONAL ANALYSIS ON NORMED SPACES: THE BANACH SPACE COMPARISON 111

The closed unit ball of a Banach space X is in a pointwise way a totally convex module,
which is denoted ÔX. Moreover, if f : X → Y is a linear non–expansive map between
Banach spaces, then f |OX : ÔX → ÔY is a totally affine map between totally convex
modules.

Let M be a totally convex module. We put

EM(a) :=
∞∑
i=1

a(xi)xi, (a ∈ Ol1M) (12)

where (xi)i∈N0 is a sequence in M such that {xi | i ∈ N0} contains the support of a.
Conversely, let (N, EN) be in AlgT′′

. Then we define

∞∑
i=1

αixi := EN(a), (13)

where for every (αi)i∈N0 such that
∑∞

i=1 |αi| ≤ 1 and for every (xi)i ∈ NN0 , we put

a(x) :=

{
0 if x /∈ {xn | n ∈ N0}∑

i:xi=x αi otherwise.

We now have the following result.

4.2. Theorem. [7] The correspondences M 7−→ (M, EM) defined in (12) extends to a
concrete isomorphism TC ' AlgT′′

, the inverse of which is described in (13). Moreover,

Ô : Ban1 → TC is the respective comparison functor.

Another important issue in the theory of totally convex modules is the fact that Ô
has a left adjoint S : TC→ Ban1, such that

S ◦ Ô ' idBan1
. (14)

For a more detailed account, we refer to [7].
Note that there is a dualisation functor into the category of Banach spaces:

LC : sNormop
1 −→ Ban1 : (X

f→ Y ) 7−→ (LCY
LCf→ LCX),

with LCf(ϕ) := ϕ ◦ f (ϕ ∈ LCY ). Thus, neglecting the dashed arrow, there is a commu-
tative diagram

Ban1

bO // TC
U

""EE
EE

EE
EE

E

sNormop
1

LC

OO

bC // SC

E

OO

V
// Set,

(15)



112 M. SIOEN, S. VERWULGEN

with V : SC→ Set the canonical forgetful functor. Suppose that we could find a concrete
functor E : SC → TC with the additional property that the square formed in diagram
(15) commutes, then from (14) we see that

LC ' S ◦ E ◦ Ĉ.

In other words, such E would yield a factorization of the dualisation LC via the natural
dual algebraic structure. The sequel of this section is devoted to the comparison of SC,
the algebraic theory of dual unit balls, with TC, the algebraic component of Banach
spaces.

Let (M, IM) be a space of charges and fix a ∈ Ol1M . Then we put

a :=
∑
x∈M

a(x)δx ∈ TM.

As the closed unit ball of ba(M), TM carries a natural totally convex structure, so this
assignment is well defined. Now we define

EIM (a) := IM(a),

so we have a map EIM : Ol1M −→M .

4.3. Theorem. The pair (M, EIM ) is a totally convex module. Moreover, the assignment
(M, IM) 7−→ (M, EIM ) defines a concrete functor

E : SC→ TC

such that the square formed in the diagram (15) commutes.

Proof. First we verify that (M, EIM ) satisfies the axioms for the formal representation
of a totally convex module.

(TCF1) follows trivially from (SC1).
In order to obtain (TCF2), fix B ∈ (Ol1)

2M and define

β :=
∑

a∈Ol1M

B(a)δa ∈ T 2M.

We then obtain that ∑
a∈Ol1M

B(a)a =
∑
x∈M

∑
a∈Ol1M

B(a)a(x)δx

=
∑

a∈Ol1M

B(a)(
∑
x∈M

a(x)δx)

=
∑

a∈Ol1M

B(a)a

=

∫
α∈TM

α(−)dβ(α).
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We also have that for all A ∈ 2M

TIM(β)(A) = β(I−1
M (A))

=
∑

a∈Ol1M

B(a)δc
a(I

−1
M (A))

=
∑
x∈M

∑
a∈Ol1M

IM (a)=x

B(a)δa(I
−1
M (A))

=
∑
x∈M

∑
a∈Ol1M

IM (a)=x

B(a)δx(A)

=
∑
x∈M

(
∑

a∈Ol1M

EIM (a)=x

B(a))δx(A).

Hence

EIM (
∑

a∈Ol1M

B(a)a) = IM(
∑

a∈Ol1M

B(a)a)

= IM

(∫
α∈TM

α(−)dβ(α)

)
= IM(TIM(β))

= IM(
∑
x∈M

∑
a∈Ol1M

EIM (a)=x

B(a)δx)

= IM(
∑
x∈M

(
∑

a∈Ol1M

EIM (a)=x

B(a))δf
x)

= EIM

∑
x∈M

(
∑

a∈Ol1M

EIM (a)=x

B(a))δf
x

 .

To finish the proof, we have to check that for an SC–morphism f : (M, IM) −→
(N, IN), automatically f : (M, EIM ) −→ (N, EIN ) is a TC–morphism. That is, from the
commutation of the diagram

TM
IM //

Tf
��

M

f
��

TN
IN

// N
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we have to show the commutation of

Ol1M
EIM //

Ol1f

��

M

f

��
Ol1N

EIN

// N

.

Take a ∈ Ol1M . Then

(f ◦ EIM )(a) = (f ◦ IM)(a)

= IN(Tf(a))

= IN(Ol1f(a))

= (EIN ◦Ol1f)(a),

where the last but one equality is true because, as one easily verifies, we have Tf(a) =
Ol1f(a).

4.4. Corollary. If (M, IM) and (N, IN) are isomorphic spaces of charges then (M, EIM
)

and (N, EIN
) are isomorphic totally convex structures.

From the above remark, in combination with the following theorem, it is noted that
the SC theory is of strictly stronger nature than the theory of totally convex modules.

4.5. Theorem. The categories SC and TC (with their canonical forgetful functors) are
not concretely isomorphic.

Proof. It is well–known from the general theory of monads (see e.g. [3, 6]) that the
assignment FS := (TS, µS) (S ∈ |Set|) defines a functor F : Set −→ SC that is left
adjoint to V : SC −→ Set. Now suppose SC and TC were concretely isomorphic.
Since adjunctions are determined up to natural isomorphism, this would imply that the
underlying sets of the free TC–object on R (i.e. Ôl1R) and the free SC–object on R (i.e.
FR) would have the same cardinality. Now on the one hand we see that

#Ol1R = #l1R ≤ #(RN × RN) = #R.

On the other hand, we can define for every ultrafilter U on R a charge αU that is an
element of TR by

αU(A) :=

{
1 if A ∈ U ,

0 otherwise,

and it is easy to see that αU 6= αV if U 6= V . If R is equipped with the discrete topology,
it therefore follows from [2], Theorem 9.2, that

#TR = #Oba(R, 2R) ≥ #β(R) = #22R
> #2R.

Hence #Ol1R < #TR, yielding a contradiction.
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It is always nice to have the dual of a normed space represented by a concrete Banach
space. This representation puts, often in a canonical way, an SC–structure on the closed
unit ball of that Banach space. If we apply the forgetful functor E, we see from the
commutation of diagram (15) that we then recover the pointwise TC–structure on the
closed unit ball of the Banach space. As an example we reconsider the representation
theorem 2.1 in this context.

4.6. Theorem. The pair (Oba(S,F),
∫

Oba(S,F)
) is an SC–object and

γ(S,F) : (Oba(S,F),

∫
Oba(S,F)

) −→ ĈB(S,F)

is an SC–isomorphism.

Proof. We only have to show that γ(S,F) is an SC–morphism, that is, we have to show
the commutation of the diagram

TOba(S,F)

R
Oba(S,F)//

Tγ(S,F)

��

Oba(S,F)

γ(S,F)

��
TCB(S,F)

ICB(S,F)

// CB(S,F).

Take β ∈ TOba(S,F) and a ∈ B(S,F). Then on the one hand we have that(
ICB(S,F)(Tγ(S,F)(β))

)
(a) (16)

=
(
ICB(S,F)(βγ(S,F)

)
)

(a) (17)

=

∫
ϕ∈CB(S,F)

ev(−, a)(ϕ)dβγ(S,F)
(ϕ) (18)

=

∫
α∈TOba(S,F)

ev(−, a) ◦ γ(S,F)(α)dβ(α) (19)

=

∫
α∈TOba(S,F)

(∫
s∈S

a(s)dα(s)

)
dβ(α). (20)

Calculating the other way around the diagram, we obtain that(
(γ(S,F) ◦

∫
Oba(S,F)

)(β)

)
(a) (21)

=

(
γ(S,F)(

∫
α∈Oba(S,F)

α(−)dβ(α))

)
(a) (22)

=

∫
s∈S

a(s)d

(∫
α∈Oba(S,F)

α(−)dβ(α)

)
(s). (23)
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We are therefore done if we show that (20) and (23) are equal. Let (an)n be a sequence
of F–simple functions, converging uniformly to a. We write an =

∑mn

i=1 an
i 1An

i
, with all

an
i ∈ R and all An

i ∈ F such that all {An
1 , . . . , A

n
mn
} are a partition of S. Then∫

s∈S

a(s)d

(∫
α∈Oba(S,F)

α(−)dβ(α)

)
(s)

= lim
n→∞

∫
s∈S

an(s)d

(∫
α∈Oba(S,F)

α(−)dβ(α)

)
(s)

= lim
n→∞

mn∑
i=1

an
i

∫
α∈Oba(S,F)

α(An
i )dβ(α)

= lim
n→∞

∫
α∈Oba(S,F)

(
mn∑
i=1

an
i α(An

i )

)
dβ(α)

= lim
n→∞

∫
α∈Oba(S,F)

(∫
s∈S

an(s)dα(s)

)
dβ(α)

=

∫
α∈Oba(S,F)

(∫
s∈S

an(s)dα(s)

)
dβ(α),

where the last step is valid because the sequence (α 7−→
∫

s∈S
an(s)dα(s))n is uniformly

convergent to α 7−→
∫

s∈S
a(s)dα(s).

That Theorem 4.6 is indeed a strengthening of the Riesz–type representation theorem
2.1 is easily seen now since the latter can be obtained as a simple corollary using the
commutative diagram 15.

4.7. Corollary. (ba(S,F), ‖ ‖) and LCB(S,F) are isomorphic Banach spaces.

This is of course not surprising since Corollary 4.7 has served as a starting point for
our theory.
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