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QUASI LOCALLY CONNECTED TOPOSES

MARTA BUNGE AND JONATHON FUNK

Abstract. We have shown [2, 4] that complete spreads (with a locally connected
domain) over a bounded topos E (relative to S ) are ‘comprehensive’ in the sense that
they are precisely the second factor of a factorization associated with an instance of the
comprehension scheme [8, 12] involving S -valued distributions on E [9, 10]. Lawvere has
asked whether the ‘Michael coverings’ (or complete spreads with a definable dominance
domain [3]) are comprehensive in a similar fashion. We give here a positive answer to
this question. In order to deal effectively with the comprehension scheme in this context,
we introduce a notion of an ‘extensive topos doctrine,’ where the extensive quantities
(or distributions) have values in a suitable subcategory of what we call ‘locally discrete’
locales. In the process we define what we mean by a quasi locally connected topos, a
notion that we feel may be of interest in its own right.

Introduction

Complete spreads over a bounded S -topos E with locally connected domain [2, 4] are
motivated by the complete spreads of R. H. Fox [6] in topology, and shown therein to
be precisely the supports of S -valued Lawvere distributions [9, 10] on E . In particular,
the pure, complete spread (with locally connected domain) factorization is ‘comprehen-
sive’ in the sense of [12], (associated with a comprehension scheme [8]) with respect to
distributions on E with values in discrete locales.

E. Michael [11] has generalized complete spreads to the general (non locally connected)
case. We have likewise generalized complete spreads in topos theory over an arbitrary
base topos S [3], under an assumption (‘definable dominance’ [5]) on the domains which
essentially corresponds to the classical property of composability of complemented sub-
objects.

Our goal here is to explain in what sense the hyperpure, complete spread factorization
of geometric morphisms [3] is ‘comprehensive’ with respect to distributions with values in
0-dimensional, rather than just discrete, locales. For this purpose we introduce what we
shall call an ‘extensive topos doctrine’ in order to discuss the (restricted) comprehension
scheme in topos theory and its associated factorization. There are several examples.

In the process, we define what we shall call a ‘quasi locally connected topos,’ to mean
roughly the existence of a 0-dimensional locale reflection, by analogy with the existence
of a discrete locale reflection in the case of a locally connected topos.

Received by the editors 2007-01-30 and, in revised form, 2007-04-23.
Transmitted by Robert Paré. Published on 2007-04-23.
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An outline of the paper follows.
In § 1 we describe the 0-dimensional locale reflection for definable dominances in terms

of a close analysis of the pure, entire factorization [5, 4] over an arbitrary base topos S .
In § 2 we revisit the hyperpure, complete spread factorization [3], and compare it with

the pure, entire factorization. This gives another perspective on the 0-dimensional locale
reflection for definable dominance toposes, since it identifies the latter with the locale
of quasicomponents of the topos. In the locally connected case, this gives the familiar
discrete locale of components.

We are thus led, in § 3, to introduce ‘locally discrete’ locales and the concept of a ‘V-
determined’ topos for suitable subcategories V of locally discrete locales. For instance,
the locally connected toposes are the same as S -determined toposes (identifying S with
the category of discrete locales).

In § 4 we introduce and study V- initial geometric morphisms, by analogy with initial
functors [12].

The notion of a comprehensive factorization was modelled after logic and stated in
the context of a hyperdoctrine, or of an eed (elementary existential doctrine) [8]. In § 5
we use the term ‘extensive topos doctrine’ (ETD) for a variant of a hyperdoctrine (or of
an eed) that retains only the covariant aspects of the latter. An ETD consists (roughly)
of a pair (T,V), where T is a 2-category of V-determined toposes.

In the framework of an ETD, a (restricted) ‘comprehension scheme’ can be stated.
The ‘support’ of a V-distribution is constructed in § 6, and leads to a ‘comprehensive
factorization’ in § 7. In § 8 we characterize those V-distributions on a topos E that are
‘well-supported’ in the sense that the support over E has a V-determined domain topos.

Finally, in § 9 we define the notion of a quasi locally connected topos and use it to
establish the desired result, namely, that ‘Michael coverings’ [3] are comprehensive.

1. The 0-dimensional locale reflection

Fox [6] has introduced spreads in topology as a unifying concept encompassing all sin-
gular coverings, whether the singularities be branchings or folds. A continuous mapping

Y
f // X is said to be a spread, or 0-dimensional, if the topology of Y is generated by the

clopen subsets of inverse images f−1U , for U ranging over the opens in X [6].
If Y is locally connected, we can rephrase the definition of a spread with respect to

the connected components of the f−1U . A point x ∈ X is said to be an ordinary point if
it has a neighborhood U in X that is evenly covered by f , that is, if f−1U is non-empty
and each component of it is mapped topologically onto U by f . All other points of X

are called singular points. For Y
f // X to be a spread it is necessary that f−1(x) be

0-dimensional for every point of x ∈ f(Y ). This may be expressed intuitively by saying
that Y lies over the image space of f in thin sheets.

Here are some examples.

1. Any covering projection (locally constant) overX is a spread overX with no singular
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points.

2. The shadow of a floating balloon over the earth, regarded as a map S2 // S2, is
a spread whose singular set is a circle in the codomain 2-sphere.

3. A finitely punctured 2-sphere U � � // S2 has a universal covering projection P
p // U

. The composite P
p // U � � // S2 is a spread (the composite of two spreads). Its

completion Y
ϕ // S2 is a (complete) spread obtained by canonically providing fibers

for the deleted points.

Let TopS denote the pseudo slice category of bounded toposes over a base topos
S . The objects of TopS may be thought of as generalized spaces, and the geometric
morphisms between them as generalized continuous mappings. We next recall one way to
define spreads in topos theory [2, 4].

Over an arbitrary base topos S , definable subobjects [1] generalize clopen subsets.

A morphism X
m // Y in a topos F is definable if it can be put in a pullback square as

follows.

f ∗A f ∗B
f∗n
//

X

f ∗A
��

X Y
m // Y

f ∗B
��

A definable subobject is a monomorphism that is definable. It is easy to see that definable
morphisms (and subobjects) are pullback stable.

Let F
f // S be an object of TopS . Denote by

τ : f ∗ΩS
// ΩF

the characteristic map of f ∗1
f∗t // f ∗ΩS . Then f is said to be subopen if τ is a monomor-

phism [7]. If f is subopen, then the pair 〈f ∗ΩS , f
∗t〉 classifies definable subobjects in

F .
Consider a diagram

SS

F

S

f

��

F E
ψ // EE

of geometric morphisms. Let H denote ψ∗f
∗ΩS in E . It follows that H is a Heyting

algebra in E since ΩS is a Heyting algebra in S and the functor ψ∗f
∗ : S // E is

left exact. E Hop γ // E denotes the topos of presheaves associated with H regarded as a
poset in E .

Suppose now that E = Sh(C, J), where 〈C, J〉 is a site, so that E // // P(C) is a
subtopos of the presheaf topos P(C) = S Cop

. Sometimes we notationally identify the
objects C of C with the representable functors hC in E , after sheafification.
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Associated with H and C is a category H whose objects are pairs (C, x), such that

C x // H is a morphism in E . A morphism

(C, x) m // (D, y)

of H is a morphism C
m // D in C such that x ≤ y ·m. The functor H // C such that

(C, x) 7→ C induces a geometric morphism P(H)
p // P(C).

When f is subopen there is an alternative description of H in which the objects
are pairs (C,U), such that U // // ψ∗C is a definable subobject. The passage from one
interpretation of H to the other uses the adjointness ψ∗ a ψ∗, via the following pullback
diagram:

ψ∗C f∗ΩS
x̂ //

U

ψ∗C

��

��

U 1// 1

f ∗ΩS

��
t
��

(1)

where ψ∗C x̂ // f ∗ΩS is the transpose of C x // H = ψ∗f
∗ΩS . This determines a definable

subobject U // // ψ∗C.
Consider the following diagram in TopS . The inner square is a pullback.

E P(C)// //

E Hop

E

γ

��

E Hop
P(H)// // P(H)

P(C)

p

��

F

P(H)

q

((QQQQQQQQQQQQQQQQQQF

E Hop

σ
??

??

��?
??

?

F

E

ψ

��/
//

//
//

//
//

//
//

//
/

(2)

We explain the rest of the diagram. There is a flat functor

Q : H // F

such that Q(C, x) = U , where U is the definable subobject (1) associated with x. The
functor Q induces the geometric morphism q in (2). Since the inner square is a pullback,
there is induced a geometric morphism σ as depicted.

A definable dominance [5] is a subopen topos F
f // S in which definable subobjects

compose.

1.1. Remark. A locally connected topos is a definable dominance [1]. Any topos over
a Boolean base topos S is a definable dominance, as in that case definable subobobject
means complemented.

We say that a geometric morphism F
ψ // E over S is a spread if it has an S -

definable family that generates F relative to E [4]. It follows that if F is a definable

dominance, then a geometric morphism F
ψ // E is a spread iff σ in (2) is an inclusion.
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The notion of a spread in topos theory is the natural generalization of that of a spread
in topology. In passing from spaces (and continuous maps) to more general toposes (and
geometric morphisms), the intuitive description of spreads given earlier is often lost. For

instance [4], any geometric morphism F
ϕ // E over the base topos S , with F

f // S
locally connected, gives rise to a (complete) spread over E , namely, the support of the
distribution f! · ϕ∗ : E // S .

1.2. Definition. A locale X in S is said to be 0-dimensional if its topos of sheaves
Sh(X) // S is a spread with a definable dominance domain. We denote by Loc0 the
category of 0-dimensional locales.

In order to construct the 0-dimensional localic reflection we recall some details regard-
ing the pure, entire factorization of a geometric morphism whose domain is a definable
dominance [5, 4].

A poset P in a topos E over S is said to be ΩS -cocomplete if for any definable
monomorphism α : B // // A in E , the induced poset morphism

E (α, P ) : E (A,P ) // E (B,P )

has a left adjoint
∨
α satisfying the BCC.

1.3. Proposition. Let F
ψ // E be a geometric morphism over S , whose domain f is

a definable dominance. Then Heyting algebra H = ψ∗f
∗ΩS , as a poset, is ΩS -cocomplete.

Proof. Let m : E // // F be definable in E .
∨
m : HE // HF arises as follows. A

generalized element X // HE is the same as a definable subobject S // // ψ∗(X × E) in
F . We compose this with the definable subobject ψ∗(X × m) to produce a definable
subobject of ψ∗(X × F ), which is the same as a generalized element X // HF .

An ΩS -ideal of an ΩS -cocomplete poset P in E is a subobject of P such that:

1. its classifying map P
χ // ΩE is order-reversing, in the sense that it satisfies (p ≤

q) ⇒ (χ(q) ⇒ χ(p)), and

2. for any definable subobject α : X // // Y in E , the diagram

ΩE
X ΩE

Y∧
α

//

PX

ΩE
X

χX

��

PX P Y

∨
α // P Y

ΩE
Y

χY

��

commutes.



214 MARTA BUNGE AND JONATHON FUNK

1.4. Proposition. If F
f // S is a definable dominance, then the canonical order-

preserving map τ : f ∗ΩS
// // ΩF preserves finite infima. If the domain of a geometric

morphism F
ψ // E is a definable dominance, then the Heyting algebra H = ψ∗f

∗ΩS is
a sub-Heyting algebra of the frame ψ∗ΩF .

Proof. The second statement follows easily from the first. To prove the first, recall that,
since f is subopen, 〈f ∗(ΩS ), f∗(t)〉 classifies definable subobjects in F . Consider now any
two definable subobjects A // // C and B // // C of an object C of F . Then A ∧ B // // C
is definable, as follows from the pullback diagram

B C// //

A ∧B

B

��

��

A ∧B A// // A

C

��

��

using that definable subobjects are pullback stable and compose.

We denote by IdlΩS
(H) the subobject of ΩE

H in E of all ΩS -ideals of the ΩS -
cocomplete poset H. Since H is an ΩS -distributive lattice, then the poset IdlΩS

(H)
is a frame [5, 4], in fact, the free frame on H.

Suppose that the domain of F
ψ // E is a definable dominance. Let H = ψ∗f

∗ΩS .
Then there is a commutative diagram

F

E
ψ ##GGGGGGGGF Sh(IdlΩS

(H))
π // Sh(IdlΩS

(H))

E
ϕ{{ww

ww
ww

w

(3)

where π is induced by the morphism IdlΩS
(H) // ψ∗ΩF of frames, in turn the result of

the freeness of IdlΩS
(H) on H, and the ∧-preserving map ψ∗τ : ψ∗f

∗ΩS
// // ψ∗ΩF .

A geometric morphism F
ρ // E (over S ) is said to be pure if the unit

ηe∗ΩS
: e∗ΩS

// ρ∗ρ
∗e∗ΩS

of adjointness ρ∗ a ρ∗ at e∗ΩS is an isomorphism.

1.5. Theorem. [5] Any geometric morphism over S whose domain is a definable domi-
nance admits a pure, entire factorization. Its construction is given by diagram (3).

Factoring the pure factor of a geometric morphism ψ into its surjection, inclusion parts
gives the pure surjection, spread factorization of ψ.

In particular, we may consider the pure surjection, spread factorization of a definable
dominance as in the following diagram.

F

S
f ##GG

GG
GG

GG
F X

ρ // // X

S
{{www

ww
ww

w
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It follows that X is again a definable dominance. We shall refer to X as the 0-dimensional
locale reflection of F . More generally, for any object Y of F , we may consider the 0-
dimensional locale reflection of F/Y , denoted XY .

We shall see in § 2 that the pure factor of a definable dominance f is already a
surjection.

Notation: henceforth we shall usually write X in a topos diagram, as above, when of
course we mean Sh(X).

2. Complete spreads revisited

In this section we explain how the 0-dimensional locale reflection of a topos F may be
understood as the locale of quasicomponents of F [3]. This explanation involves complete
spreads.

Let F
ψ // E be a geometric morphism whose domain is subopen. As in § 1, if

E = Sh(C, J), then H denotes the category of pairs (C,U), such that U // // ψ∗(C) is a
definable subobject in F . Consider the Grothendieck topology in H generated by the
sieves

{(C,Ua)
1C // (C,U)}a∈A

such that U =
∨
A Ua in SubF (ψ∗(C)). Such a sieve can be expressed with the following

diagram in F , in which the top horizontal morphism is an epimorphism, and the bottom
square is pullback. Let V denote the coproduct

∐
A Ua in F .

f ∗A× ψ∗(C) ψ∗(C)//

V

f ∗A× ψ∗(C)

��

��

V U// // U

ψ∗(C)

��

��

f ∗A 1//f ∗A
��

1
��

Moreover, V // // f ∗A×ψ∗(C) is a definable subobject since each Ua // // ψ
∗(C) is definable.

More generally, the following diagram depicts what we have termed a weak ψ-cover in
F [3].

ψ∗E ψ∗Cψ∗E ψ∗C

V

ψ∗E

��

��

V U// // U

ψ∗C

��

��

f ∗A f ∗B
f∗l //f ∗A

ψ∗x

��

ψ∗m //

f ∗B

ψ∗y

��
e∗A e∗B

e∗l //

E

e∗A

x

��

E C
m // C

e∗B

y

��
(4)

The subobjects V // // ψ∗E and U // // ψ∗C are definable, and the square coming from E
(above right) is a pullback.
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A ψ-cover in F is a diagram

ψ∗E ψ∗Cψ∗E ψ∗C

V

ψ∗E

��

��

V U// // U

ψ∗C

��

��

f ∗A f∗B
f∗l //f ∗A

ψ∗x

��

ψ∗m //

f ∗B

ψ∗y

��
e∗A e∗B

e∗l //

E

e∗A

x

��

E C
m // C

e∗B

y

��
(5)

where the subobjects V // // ψ∗E and U // // ψ∗C are definable, but m is not required to
be definable. Thus, weak ψ-covers are ψ-covers.

Let Z // // P(H) denote the subtopos of sheaves for the topology in H generated by
the weak ψ-covers. The topos of sheaves on H for the ψ-covers is the image topos of

F
q // P(H), which is a subtopos of Z since every weak ψ-cover is a ψ-cover.

We may now factor ψ as follows, refining diagram (2).

E Hop
P(H)// //

X

E Hop

��

��

X Z// // Z

P(H)

��

��

E P(C)// //E
��

P(C)
��

F
ρ //F

ψ

��3
33

33
33

33
33

33
33

33
33

(6)

2.1. Definition. [3] We shall say that F
ρ // E is hyperpure if any weak ρ-cover

ρ∗E ρ∗C
ρ∗m //

V

ρ∗E

��

��

V ρ∗U// // ρ∗U

ρ∗C

��
ρ∗u

��

f ∗A f∗B//f ∗A
��

f ∗B
��

(7)

is given locally by a diagram in E , where m and u are definable. This means that there
is a collective epimorphism

e∗B′ e∗B//

C ′

e∗B′
��

C ′ C// // C

e∗B
��
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in E such that the pullback of (7) to f ∗B′ is given by a diagram

E ′ C ′m′
//

V ′

E ′

��

��

V ′ U ′// // U ′

C ′

��
u′

��

e∗A′ e∗B′//e∗A′
��

e∗B′
��

(8)

over e∗B′.
We also require a uniqueness condition: for any two representations (8) of a given (7),

the two witnessing collective epimorphisms have a common refining collective epimorphism
such that the pullback of the two representing diagrams (8) to the refinement are equal.

2.2. Remark. Hyperpure geometric morphisms are pure. In fact, the direct image functor
of a hyperpure geometric morphism preserves S -coproducts [3], and any such geometric
morphism is pure.

We shall say that a geometric morphism F
ψ // E over S is a complete spread if ρ in

diagram (6) is an equivalence. When F is a definable dominance, the factorization (6) is
the essentially unique factorization of ψ into its hyperpure and complete spreads factors,
said to be its hyperpure, complete spread factorization [3].

2.3. Proposition. Every complete spread (whose domain is a definable dominance) is a
spread.

Proof. This follows from the characterization of spreads given in terms of σ in diagram
(2).

In particular, we may consider the hyperpure, complete spread factorization of a de-

finable dominance F
f // S (E = S in this case).

F

S
f ##GG

GG
GG

GG
F X

ρ // X

S
{{www

ww
ww

w

(9)

We call X the locale of quasicomponents of F , as its construction clearly justifies this
terminology.

2.4. Remark. A point 1 // X (should it exist) is a filter (upclosed and closed under
finite infima) of definable subobjects of 1F that is inaccesible by joins in F . In topology
[13], this agrees with the usual notion of quasicomponent.

2.5. Lemma. The hyperpure ρ in (9) is a surjection.

Proof. If we take 1 as a site for S , then H consists of the definable subobjects of 1F .
The f -covers (5) and the weak f -covers (4) generate the same topology in H because
every morphism in S is S -definable.
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By Remark 2.2, Prop. 2.3, and Lemma 2.5 we have the following.

2.6. Corollary. The hyperpure, complete spread factorization of a definable dominance
coincides with its pure surjection, spread factorization. In particular, the locale of quasi-
components of a definable dominance agrees with its 0-dimensional locale reflection.

2.7. Remark. A pure surjection whose domain is a definable dominance is hyperpure.
Indeed, a pure surjection can have no non-trivial complete spread factor since a complete
spread is a spread. Hence, it must be hyperpure. For surjections, hyperpure, pure, and
direct image functor preserves S -coproducts are equivalent.

3. V-determined toposes

Let S denote a topos, called the base topos. Let Loc denote the category of locales in
S , where for any object A of S , regarded as a discrete locale, we define

LocA = Loc/A .

Loc has Σ satisfying the BCC. Loc also has small hom-objects, as an S -indexed category.
The interior of a localic geometric morphism Y // E is an object Y of E such that

E /Y Y//E /Y

E
$$JJJJJJJJJJJJ
Y

E
��

commutes, and any E /Z // Y over E factors uniquely through E /Y . The interior of
a localic geometric morphism always exists. The terminology ‘interior’ is suggested by
the idea that an étale map over a locale is a generalized open part of the (frame of the)
locale, so that the largest such is a generalized interior.

If F is a topos over a base topos S , then there is an S -indexed functor

F ∗ : Loc // F

such that F ∗(X) is the interior of the topos pullback below, left.

F S
f //

F ×X

F
��

F ×X X// X

S
��

F S
f //

F/F ∗(X)

F
��

F/F ∗(X) X// X

S
��

Note: throughout we often write X in a topos diagram when we mean Sh(X), for a locale
X. We have a commutative square of toposes above, right. We refer to the top horizontal
in this square as a projection. For any object Y of F , we have natural bijections
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Y // F ∗(X) in F
geometric morphisms F/Y // X over S

locale morphisms L(Y ) // X ,

where L(Y ) denotes the localic reflection of Y : O(L(Y )) = SubF (Y ). These bijections
are not equivalences of categories, when the 2-cell structure of Loc is taken into account:
we say locale morphisms

m ≤ l : W // X

if m∗U ≤ l∗U , for any U ∈O(X). Then F (Y, F ∗X) is discrete in this sense, but
Loc(L(Y ), X) may not be - for instance, take X to be Sierpinski space. Thus, F ∗ forgets
2-cells.

These remarks motivate the introduction of the following terminology.

3.1. Definition. We shall say that a locale Z is locally discrete if for every locale X the

partial ordering in Loc(X,Z) is discrete. Likewise, a map Z
p // B is locally discrete if

for every X
q // B, Loc/B(q, p) is discrete.

3.2. Example. Spreads and étale maps (of locales) are locally discrete maps. In partic-
ular, 0-dimensional locales and discrete locales are locally discrete.

Let LD denote the category of locally discrete locales in S . It is easy to verify that
LD may be likewise regarded as an S -indexed category. As such LD has Σ satisfying
the BCC, and small hom-objects. LD is closed under limits, which are created in Loc.
LD has the following additional properties:

1. If Y // Z is a locally discrete map, and Z is locally discrete, then Y is locally
discrete.

2. If Y is locally discrete, then any locale morphism Y // Z is locally discrete.

3. The pullback of a locally discrete map along another locally discrete map is again
locally discrete.

4. If Z is locally discrete, then any sublocale S // // Z is also locally discrete.

3.3. Example. Peter Johnstone communicated to us an example of an étale map Y // X
into a 0-dimensional locale X, for which Y is not 0-dimensional. X is the subspace
{0} ∪ { 1

n
| n ≥ 1} of the reals, and Y = X + X/ ∼, indentifying the two 1

n
’s, for every

n. The topology on Y is T1, but not Hausdorff. The map Y // X identifying the two
0’s is étale, X is 0-dimensional, but Y is not. However, according to 1 above, Y is locally
discrete. Y is also locally 0-dimensional in the sense that its 0-dimensional open subsets
form a base. In general, if Y // X is étale and X is locally 0-dimensional, then so is Y .
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3.4. Assumption. In what follows, V denotes an S -indexed full subcategory of LD,
with Σ satisfying the BCC, which is also:

1. closed under open sublocales, and

2. closed under pullbacks

Y X
p //

W

Y

n

��

W Z
q // Z

X

m

��

in Loc in which p is étale.

3.5. Example. The categories LD, Loc0, and S are all instances of such a V.

We use the same notation F ∗ when we restrict F ∗ to V.

3.6. Definition. A topos F
f // S is said to be V-determined if there is an S -indexed

left adjoint F! a F ∗ : V // F , such that ‘the BCC for opens’ holds, in the sense that for

any open U // p // Y with Y in V (hence U in V), the transpose (below, right) of a pullback
square (below, left) is again a pullback.

E F ∗Y
m //

P

E

��
q

��

P F ∗U// F ∗U

F ∗Y

��

F ∗p

��
F!E Y

m̂ //

F!P

F!E

��
F!q

��

F!P U// U

Y

��
p

��

Denote by TV the full sub 2-category of TopS whose objects are the V-determined
toposes.

3.7. Remark. A topos is S -determined iff it is locally connected.

In effect, the BCC for opens means that the transpose locale morphism m̂ is defined
by the formula: m̂∗ = F!m

∗, when we interpret m as a geometric morphism F/E // Y .
We say that a locale X is V-determined if Sh(X) is V-determined.

3.8. Remark. To say that F! is S -indexed is the property that if a square, below left,
is a pullback in F , then so is the right square in V, where A,B are discrete locales.

D f ∗B
m //

C

D

q

��

C f∗A// f ∗A

f ∗B

f∗p

��
F!D B

m̂ //

F!C

F!D

F!q

��

F!C A// A

B

p

��

The BCC for opens is thus a strengthening of this property.



QUASI LOCALLY CONNECTED TOPOSES 221

3.9. Lemma. F! a F ∗ satisfies the BCC for opens iff for any unit D // F ∗(F!D) and any

open U // p // F!(D), the transpose of the left-hand pullback is again a pullback.

D F ∗(F!D)//

P

D

��

��

P F ∗U// F ∗U

F ∗(F!D)

��
F ∗p

��
F!D F!D

1 //

F!P

F!D

��
F!q

��

F!P U// U

F!D

��
p

��

This holds iff the transpose F!P // U is an isomorphism.

Proof. The condition is clearly necessary. To see that it is sufficient consider an arbitrary

open U // // Y and D m // F ∗Y , which factors as the bottom horizontal in the following
diagram.

D F ∗(F!D)//

P

D

��

��

P F ∗W// F ∗W

F ∗(F!D)

��
F ∗q

��
F ∗Y

F ∗m̂ //

F ∗U// F ∗U

F ∗Y

��

��
F!D Y

m̂ //

W

F!D

��
q

��

W U// U

Y

��

��

First form the pullback W . The maps m̂ and U // // Y are locally discrete, and so is U .
The pullback W is locally discrete, and q is open. This pullback remains a pullback under
F ∗. We are assuming that the transpose of the left-hand square involving P is a pullback.
Thus, we have F!P ∼= W over F!D.

3.10. Remark. F!(q) is an open sublocale in Def. 3.6; however, in general we cannot
expect F! to carry opens to opens. Indeed, take for F the topologist’s sine curve Y =
Sh(Y ), which is connected but not locally connected. Let U ⊂ Y be any open sufficiently
small disk centered on the y-axis. Then Y!(U) // Y!(1) = 1 is not étale because Y!(U) is
not a discrete space.

3.11. Definition. For any object D of a V-determined topos F , there is a geometric
morphism that we denote

ρD : F/D // F/F ∗(F!D) // F!(D)

obtained by composing the projection with the unit of F! a F ∗.

3.12. Remark. In slightly more practical terms, the adjointness F! a F ∗ says that for
any locale W in V, every geometric morphism F/D // W factors uniquely through ρD.

F!(D) W∃!
//

F/D

F!(D)

ρD

��

F/D

W

∀

$$JJJJJJJJJJJJ
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3.13. Lemma. Let F be V-determined. Let X denote F!(1F ) and ρ = ρ1F
. Then the

inverse image functor of F
ρ // X may be described as follows: if Y

p // X is étale (i.e.,
an object of Sh(X)), then ρ∗(p) is the pullback

1 F ∗X//

ρ∗(p)

1
��

ρ∗(p) F ∗Y// F ∗Y

F ∗X

F ∗p

��

in F . Moreover, if p is an open U // // X, then the transpose F!ρ
∗(p) // U of the top

horizontal is an isomorphism of open sublocales of X.

Proof. In the following diagram, the outer rectangle, the middle square, and the right-
hand square are all topos pullbacks (the middle one since p is étale).

F F/F ∗X//

F/ρ∗(p)

F
��

F/ρ∗(p) F/F ∗Y// F/F ∗Y

F/F ∗X
��

F ×X//

F × Y// F × Y

F ×X
��

X//

Y// Y

X

p

��

Therefore, the left-hand square is a pullback. The second statement follows from the BCC
for opens.

3.14. Proposition. Let F be V-determined. Then for any D of F , ρD is a surjection.

Proof. The property F!ρ
∗(U) ∼= U for opens U // // X = F!(1F ) implies that the locale

morphism from the localic reflection of F to X is a surjection. Hence, ρ is a surjection.

3.15. Remark. It is tempting to require the BCC for all étale maps Z // Y in Def. 3.6,
not just opens U // // Y . We feel this is too strong since Lemma 3.13 would imply that
the ρD’s are connected, which excludes some examples.

4. V-initial geometric morphisms

If F
ψ // E is a geometric morphism over S , and Z is a locale in V, then there is a geo-

metric morphism F/ψ∗(E∗Z) // F × Z, which factors through F ∗(Z) by a morphism
ψ∗(E∗Z) // F ∗(Z) in F since F ∗(Z) is the interior of F × Z. Thus, there is a natural
transformation

ψ∗E∗ +3 F ∗ , (10)

which is an isomorphism when restricted to discrete locales. It is also an isomorphism
when ψ is étale. Another fact about (10) is the following.

4.1. Lemma. The naturality square of ψ∗E∗ +3 F ∗ for an étale map is a pullback.
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Proof. Suppose that Z // Y is an étale map of locales. In the following diagram we
wish to show that the left-hand square is a pullback.

F/ψ∗E∗Y F/F ∗Y//

F/ψ∗E∗Z

F/ψ∗E∗Y
��

F/ψ∗E∗Z F/F ∗Z// F/F ∗Z

F/F ∗Y
��

F × Y//

F × Z// F × Z

F × Y
��

E × Y//

E × Z// E × Z

E × Y
��

The right-hand square is clearly a pullback, and the middle square is one if Z // Y is
étale. Thus, it suffices to show that the outer rectangle is a pullback. This rectangle is
equal to the outer rectangle below.

F/ψ∗E∗Y E /E∗Y//

F/ψ∗E∗Z

F/ψ∗E∗Y
��

F/ψ∗E∗Z E /E∗Z// E /E∗Z

E /E∗Y
��

E × Y//

E × Z// E × Z

E × Y
��

Both squares in this rectangle are pullbacks, so we are done.

4.2. Definition. We shall say that F
ψ // E is V-initial if the transpose E∗ +3 ψ∗F

∗

of (10) under ψ∗ a ψ∗ is an isomorphism.

4.3. Remark. The transpose in Def. 4.2 may be explicitly described as follows. We have

E (D,E∗(Z)) = Frm(O(Z), SubE (D)) ,

and
E (D,ψ∗F

∗(Z)) ∼= F (ψ∗D,F ∗(Z)) = Frm(O(Z), SubF (ψ∗D)) .

The restriction of ψ∗ to subobjects is a frame morphism SubE (D) // SubF (ψ∗D) for each
D, natural in D, which induces the desired natural transformation.

4.4. Proposition. The pullback of a V-initial geometric morphism along an étale geo-
metric morphism is V-initial.

Proof. This is a straightforward diagram chase, using the fact that (10) is an isomor-
phism when ψ is étale.

4.5. Lemma. Consider a triangle of geometric morphisms

X Z//
τ

//

F

X

η

��

F

Z

p

$$JJJJJJJJJJJJJ

in which τ is an inclusion.

1. If p and τ are both V-initial, then so is η.

2. If p is V-initial and τ ∗Z∗ +3 X∗ is an isomorphism, then η is V-initial.
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Proof. 1. Consider

τ∗X
∗ τ∗η∗F

∗+3

Z∗

τ∗X
∗
��

Z∗

τ∗η∗F
∗

 (IIIIIIIII

IIIIIIIII

If p = τη is V-initial, then the hypotenuse is an isomorphism. If τ is V-initial, then the
vertical is an isomorphism. Therefore, the horizontal is an isomorphism, and therefore η
is V-initial since τ is an inclusion.

2. Applying τ ∗ to the isomorphism Z∗ ∼= p∗F
∗ ∼= τ∗η∗F

∗ gives the top horizontal in
the following diagram, which is an isomorphism.

X∗ η∗F
∗+3

τ ∗Z∗

X∗
��

τ ∗Z∗ τ ∗τ∗η∗F
∗+3 τ ∗τ∗η∗F
∗

η∗F
∗
��

The right vertical is the counit of τ ∗ a τ∗, which is an isomorphism since τ is an inclusion.
The left vertical is an isomorphism by assumption. We conclude the bottom horizontal is
an isomorphism, which says that η is V-initial.

4.6. Remark. Suppose that E and F are ‘quasi V-determined’ toposes, in the sense
that the BCC for opens is not required, just the adjointness. Then a geometric morphism

F
ψ // E is V-initial iff the natural transformation

ξ : F!ψ
∗ +3 E!

obtained by twice transposing ψ∗E∗ +3 F ∗ (under F! a F ∗ and E! a E∗) is an isomorphism.
This holds by transposing to right adjoints. Equivalently, ψ is V- initial iff F!ψ

∗ a E∗.

4.7. Proposition. The direct image functor of a V-initial geometric morphism preserves
S -coproducts.

Proof. This is clear by restricting to discrete locales.

4.8. Proposition. A topos F is V-determined iff for every object D of F , there is a

locale XD in V and a V-initial geometric morphism F/D
ρD // XD (natural in D), in

which case every locale F!(D) = XD is V-determined.

Proof. Suppose that F is V-determined. Then of course XD = F!(D). Consider the
case D = 1F , ρ = ρ1, and X = F!(1F ). We claim that F!ρ

∗ a X∗. This will show at
once that X is V-determined, and that ρ is V-initial. The BCC for opens holds for X

because it holds for F . If Y
p // X is étale, and Z is a locale in V, we wish to show that

morphisms p // X∗Z over X are in bijection with locale morphisms F!ρ
∗(p) // Z. We

have
p ∼= lim //

A

Ua,
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where {Ua // // X} is a diagram of open sublocales of X. We may forget that this diagram
is over X, so that

Y ∼= lim //
A

Ua

in Loc. Locale morphisms Y // Z are thus in bijection with cocones {Ua // Z}. Since
F!ρ

∗(Ua) ∼= Ua, the colimit of such a cocone regarded in V is

lim //
A

F!ρ
∗(Ua) ∼= F!ρ

∗( lim //
A

Ua) ∼= F!ρ
∗(p) .

(Note: this also shows that the colimit exists in V. Warning: the colimit in V need not
be isomorphic to Y , in general.) The first isomorphism holds by the BCC for opens and
Lemma 3.13. Thus, cocones {Ua // Z} are in bijection with morphisms F!ρ

∗(p) // Z.
This shows F!ρ

∗ a X∗.
For the converse, we wish to show first that F!(D) = XD is left adjoint to F ∗. If W is

in V, then we have natural bijections

locale maps XD
// W

global sections of X∗
D(W ) ∼= (ρD)∗F

∗
D(W )

global sections of F ∗
D(W ) in F/D

maps D // F ∗(W ) in F .

As for the BCC for opens, by Lemma 3.9 it suffices to show that it holds for units
D // F ∗(F!D) only. We shall establish this first for D = 1F by essentially reversing

the argument in the first paragraph. Let U // p // F!(1F ) = X be open. The statement
F!ρ

∗ a X∗ implies that for any locale Z in V, locale morphisms U // Z bijectively
correspond to locale morphisms F!ρ

∗(U) // Z. But F!ρ
∗(U) and U are both in V, so we

have F!ρ
∗(U) ∼= U . This concludes the argument for D = 1F . When D is arbitrary, we

localize to F/D and repeat this argument for the V-initial ρD.

5. Extensive topos doctrines

Lawvere [8] has described a ‘comprehension scheme’ in terms of an ‘elementary existential
doctrine’, motivated by examples from logic, in which covariant and contravariant aspects
coexist and interact. For our purposes, we retain just the covariant aspects: we do not
start with a fibration that is also an opfibration, but directly with just the latter. In
addition, we interpret the categories of ‘predicates’ or ‘properties’ of a certain type, as
categories of ‘extensive quantities’ of a certain type, and we do not assume the existence
of a terminal ‘extensive quantity’ for each type.

Let V be a category of locales satisfying Assumption 3.4.

5.1. Definition. A V-distribution on a topos E is an S -indexed functor µ : E // V
with an S -indexed right adjoint µ a µ∗.
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For E an object of TopS , let EV(E ) denote the category of V-distributions and natural

transformations on E . A 1-cell F
ϕ // E of TopS induces a ‘pushforward’ functor

EV(ϕ) : EV(E ) // EV(F )

that associates with a V-distribution F ν // V on F the V-distribution

E
ϕ∗
// F ν // V

on E , i.e., EV(ϕ)(ν) = νϕ∗. We have a 2-functor

EV : TopS
// Cat

Given any object F of TopS , we may restrict F ∗ : Loc // F to any S -indexed
subcategory V � � // Loc, using the same notation

F ∗ : V // F . (11)

5.2. Definition. An extensive topos doctrine (ETD) is a pair (T,V) consisting of

1. a full sub-2-category T of TopS , and

2. a full 2-subcategory V of LD satisfying Assumption 3.4.

This data subject to the additional condition that for each F in T, F is V-determined.
An ETD is said to be replete if the converse of this condition holds, i.e., if every V-
determined F is an object of T - equivalently, if T = TV.

5.3. Proposition. If (T,V) is an ETD, then for any topos F in T, and each object Y
of F , there is a canonical geometric morphism

ρY : F/Y // F!(Y )

in T. Moreover, ρY is natural in Y .

Proof. This is in more generality the same as Def. 3.11.

If E is an object of TopS , then T/E shall denote the comma 2-category of geometric
morphisms over E whose domain topos is an object of T.

5.4. Lemma. If F
γ // G is a geometric morphism over S , then there exists a canonical

natural transformation ξγ : F!γ
∗ +3 G!.

Proof. As in Remark 4.6, ξγ is obtained by twice transposing the canonical γ∗G∗ +3 F ∗.
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5.5. Remark. Let (T,V) be an ETD. For each object F of T, denote the V-valued
distribution F! : F // V on F by tF . By doing so we are not assuming that this is the
terminal V-valued distribution. The notation tF is meant to suggest an analogy with the
case of Lawvere hyperdoctrines [8], where the terminal property of any given type is given
as part of the data.

For any E in TopS , we have a 2-functor

ΛE ,V = ΛE : T/E // EV(E )

such that

ΛE (F
ψ // E ) = EV(ψ)(tF ) = F!ψ

∗ .

For a 1-cell (γ, t) of T/E , i.e.,

F

E
ψ ##GGGGGGGGF G

γ // G

E
ϕ

{{wwwwwwww
t +3

where t is a natural isomorphism, ΛE (γ, t) is the natural transformation

F!ψ
∗ F!γ

∗ϕ∗
F!t +3F!ψ

∗

G!ϕ
∗

Λ(γ,t)
�&

EE
EE

EE
EE

EE

EE
EE

EE
EE

EE
F!γ

∗ϕ∗

G!ϕ
∗

ξϕ∗

��

where ξγ : F!γ
∗ +3 G! (Lemma 5.4).

5.6. Definition. An ETD (T,V) is said to satisfy

1. the comprehension scheme (CS) if for each E of TopS , ΛE has a fully faithful pseudo
right adjoint

{ }E : EV(E ) // T/E .

2. the restricted comprehension scheme (RCS) if for each E of TopS , confining ΛE to
its image has a fully faithful pseudo right adjoint

{̂ }E : ÊV(E ) // T/E

5.7. Definition. Let (T,V) be an ETD that satisfies the (restricted) comprehension
scheme.

1. A geometric morphism F
γ // G in T is said to be V-initial if the canonical natural

transformation ξγ : EV(γ)(tF ) +3 tG in EV(G ) is an isomorphism.

2. An object D
ϕ // E of T/E is called a V- fibration if the unit of the (restricted)

comprehension 2-adjunction ΛE a { }E evaluated at ϕ is an isomorphism. V-Fib/E
denotes the category of V-fibrations with codomain E .
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5.8. Proposition. If (T,V) is an ETD that satisfies the comprehension scheme, then
the biadjoint pair

ΛE a { }E : EV(E ) // T/E

induces an equivalence of categories

EV(E ) ' V-Fib/E .

A similar but less striking statement can be made in the case of an ETD that satisfies
the restricted comprehension scheme.

5.9. Proposition. Let (T,V) be an ETD that satisfies the (restricted) comprehension

scheme. Then any object F
ψ // E of T/E admits a factorization

F

E
ψ ##GGGGGGGGF D

η // D

E
ϕ{{wwwwwwww

(12)

into a first factor η given by the unit of the adjointness ΛE a {̂ }E , and a V-fibration ϕ.
Furthermore, ΛE (η) is an isomorphism.

5.10. Definition. The factorization (12) arising from the (restricted) comprehension
scheme satisfied by an ETD (T,V) is said to be comprehensive in T/E relative to V if

the unit of the 2-adjointness ΛE a {̂ }E has V-initial components.

6. The support of a V-distribution

We now consider what we shall call the support of a V-distribution µ on a topos E . This
construction is always available, although it is not evident that it does not always depend
on the site chosen for E .

Let µ be a V-distribution on E ' Sh(C, J). Let M be the category in S with objects

(C,U) with U ∈ O(µ(C)), and morphisms (C,U) // (D,V ) given by C m // D in C such
that U ≤ µ(m)∗(V ). For U ∈ O(µ(C)), denote by U // // µ(C) the corresponding open
sublocale.

Let Z be the topos of sheaves for the topology on M generated by the following
families, which we call weak µ-covers: a family

{(C,Ua)
1C // (C,U) | a ∈A}

is a weak µ-cover if
∨
Ua = U in O(µ(C)). As usual there is a functor M // C that

induces a geometric morphism P(M) // P(C), and hence one Z // P(C).
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6.1. Definition. Let µ be a V-distribution on E . The geometric morphism ϕ in the
topos pullback

E P(C)// //

X

E

ϕ

��

X Z// // Z

P(C)
��

is said to be the support of µ, denoted {µ}E .

Going hand-in-hand with the support ϕ = {µ}E are geometric morphisms

σ(C,U) : X /(C,U) // U ,

for every object (C,U) of M. In fact, these geometric morphisms are an important part of
the support associated with µ. The inverse image functor of such a geometric morphism
is defined by

σ∗(C,U) : O(U) // M/(C,U) Yon // P(M)/(C,U) // X /(C,U)

such that V ≤ U (in O(µ(C)) goes to the (C, V )
1C // (C,U) in M/(C,U). Moreover, if t

is the top element of O(µ(C)), then

σ(C,t) = σC : X /ϕ∗C // µ(C) . (13)

For any (C,U), the following is a pullback in X .

ϕ∗C X∗(µ(C))//

σ∗C(C,U)

ϕ∗C

��

��

σ∗C(C,U) X∗U// X∗U

X∗(µ(C))

��

��

where the bottom morphism corresponds to σC . Note: we have not assumed that the
locale U is a member of V; however, this is an important consideration that enters the
picture in the next two sections.

Next observe that the σC ’s induce a natural transformation

µ∗ +3 ϕ∗X
∗ . (14)

Indeed, for any W in V, and C in C, we pass from C // µ∗(W ) to µ(C) // W
to X /ϕ∗C // W by composing with σC . In turn this corresponds to a morphism
ϕ∗C // X∗W in X , and hence to one C // ϕ∗X

∗(W ) in E . This gives a morphism
µ∗(W ) // ϕ∗X

∗(W ) in E , which is a component of (14).
The natural transformation (14) is the adjoint transpose of the counit of the pseu-

doadjointness studied in § 7, evaluated at µ.
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7. A comprehensive factorization

If F is V-determined, then for any K in F we have a factorization of F/K // S into
a V-initial geometric morphism and a locale XK in V

F/K
ρK // XK

// S ,

where XK = F!(K). The V-initial ρK is a surjection in this case.

Consider a topos E ' Sh(C, J). Suppose that F is V-determined and F
ψ // E

is a geometric morphism. Let µ = ΛE (ψ) = F!ψ
∗. As in Def. 6.1, we may consider the

category M, and the support associated with µ. In this case there is a functor

P : M // F/ψ∗C
Σψ∗C // F

such that P (C,U) = Σψ∗Cρ
∗
ψ∗C(U). P is filtering, so P corresponds to a geometric

morphism F
p // P(M), which makes the following diagram commute.

E P(C)// //

F

E

ψ

��

F P(M)
p // P(M)

P(C)

γ

��

7.1. Lemma. For any object (C,U) of M, P (C,U) = p∗(C,U) is the following pullback.

ψ∗C F ∗(Xψ∗C)//

p∗(C,U)

ψ∗C

��

��

p∗(C,U) F ∗U// F ∗U

F ∗(Xψ∗C)

��

��

The bottom horizontal is a unit of F! a F ∗, where Xψ∗C denotes the locale F!(ψ
∗C) in V.

For every (C,U), we have F!p
∗(C,U) ∼= U .

Proof. By Lemma 3.13 for ρψ∗C , the left vertical in the diagram is precisely ρ∗ψ∗C(U).
The second statement follows from the BCC for opens.

7.2. Lemma. Let (C,U) be any object of M. Let W be a locale in V. Then geometric
morphisms F/p∗(C,U) // W are in natural bijection with locale morphisms U // W .
Equivalently, p∗(F

∗W ) is the presheaf on M:

p∗(F
∗W )(C,U) = V(U,W ) .

Proof. We have natural bijections

F/p∗(C,U) // W
p∗(C,U) // F ∗W (in F )
U ∼= F!p

∗(C,U) // W .
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7.3. Lemma. F
p // P(M) factors through the subtopos Z for the weak µ-covers, by a

geometric morphism we denote q. Hence, we have the following diagram.

P(M)P(M)

XXX Z// // Z

P(M)

��

��

E P(C)// //EE P(C)

γ

��

F
η //F

ψ

��3
33

33
33

33
33

33
33

33
33

q

**

��

ϕ

(15)

Moreover, for any (C,U),

F/p∗(C,U) X /(C,U)
η(C,U) //F/p∗(C,U)

U

ρp∗(C,U)

����

X /(C,U)

U

σ(C,U)
wwwwooooooooooooooo

(16)

commutes. (Note: U ∼= F!p
∗(C,U) = Xp∗(C,U), so ρp∗(C,U) does indeed land in U .)

Proof. Clearly p∗ inverts the weak µ-covers.

Let X /(C,U)
g // W be a geometric morphism into a locale W in V. Since U ∼=

F!p
∗(C,U) = Xp∗(C,U), there is an essentially unique locale morphism U

ĝ // W such that

U W
ĝ //

F/p∗(C,U)

U

ρp∗(C,U)

����

F/p∗(C,U) X /(C,U)
η(C,U) // X /(C,U)

W

g

��
(17)

commutes (Remark 3.12).

7.4. Lemma. For any (C,U), we have a pullback

p∗(C,U) F ∗U//

η∗(C,U)g
∗V

p∗(C,U)

��

��

η∗(C,U)g
∗V F ∗ĝ∗V// F ∗ĝ∗V

F ∗U

��

��

in F . Consequently, by the BCC for opens, ĝ∗V ∼= F!(η
∗
(C,U)g

∗V ).

Proof. This follows from (17), and Lemma 3.13.
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7.5. Lemma. For any g and ĝ as in (17), we have g ∼= ĝ σ(C,U).

Proof. We claim that
g ≤ ĝ σ(C,U) . (18)

The lemma follows from this since W is in V, hence W is locally discrete. Let V be an
open of W . Then σ∗(C,U)(ĝ

∗V ) is the (associated sheaf) of

(C, ĝ∗V ) // // (C,U) .

Let i denote the inclusion X // // P(M). From a given element (D,U ′) m // i∗g
∗V

(D,U ′) i∗g
∗V

m //(D,U ′)

(C,U)

m̃
$$JJJJJJJJJJJ
i∗g

∗V

(C,U)

��

��

we obtain a morphism p∗(D,U ′) // F ∗ĝ∗V by first applying p∗(C,U)
∼= η∗(C,U)i

∗ to m, and
then composing with the top horizontal in Lemma 7.4. The transpose under F! a F ∗ of
this morphism is a morphism U ′ // ĝ∗V such that m̃ factors through (C, ĝ∗V ). Thus, we
have subobjects

i∗g
∗V

(C,U)

��

��?
??

??
??

?
i∗g

∗V (C, ĝ∗V )// // (C, ĝ∗V )

(C,U)

��

����
��

��
��

in P(M). We apply i∗ to this, so that for every open V // // W , we have a subobject
g∗V // // σ∗(C,U)ĝ

∗V in X , establishing (18).

7.6. Proposition. The geometric morphism η is V-initial, and X is V-determined.

Proof. We must show that F!η
∗ a X∗. We first show that for any W in V, and an object

(C,U) of M, we have a natural bijection

locale morphisms F!η
∗(C,U) ∼= U // W

geometric morphisms X /(C,U) // W
morphisms (C,U) // X∗W in X .

We pass from a locale morphism U // W to a geometric morphism

X /(C,U) // W

by composing with σ(C,U). Composing this with η(C,U) returns us to the given U // W .
On the other hand, if we start with a geometric morphism

X /(C,U)
g // W ,
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giving U
ĝ // W as in (17), then by Lemma 7.5, composing with σ(C,U) returns us to g.

This establishes the above bijection. If X! denotes F!η
∗, then X! a X∗ follows from the

above bijection by a straightforward colimit argument. Finally, the BCC for opens holds
for X! a X∗ since it holds for F! a F ∗.

7.7. Theorem. For any topos E of TopS , ΛE : TV/E // ÊV(E ) has a full and faithful
pseudo right adjoint

{̂ }E : ÊV(E ) // TV/E .

8. Well-supported V-distributions

In this section we attempt to learn more about when a given V-distribution µ on a topos
E may be resolved by a V-determined topos, in the sense that there is a V-determined

topos F and a geometric morphism F
ψ // E such that µ ∼= F!ψ

∗.

8.1. Definition. We shall say that a V-distribution µ on a topos E is well-supported if
for every C, σC (13) is V-initial (Def. 4.2).

8.2. Proposition. Let µ be a V-distribution on E , with support X
ϕ // E . Then the

following are equivalent:

1. µ is well-supported;

2. (14) is an isomorphism;

3. X is V-determined, and X!(C,U) = U ;

4. µ may be resolved by a V-determined topos.

Proof. 1 and 2 are equivalent because the hypothesis that µ is well-supported amounts
to the assertion that composition with a σC induces a bijection between locale morphisms
µ(C) // W and geometric morphisms X /ϕ∗C // W , for any locale W in V.

1 +3 3. First observe that every σ(C,U) is V-initial since

U µ(C)// //

X /(C,U)

U

σ(C,U)

��

X /(C,U) X /ϕ∗C// // X /ϕ∗C

µ(C)

σC

��

is a topos pullback, so that Prop. 4.4 applies. This gives a bijection between U // W and
X /(C,U) // W , for any locale W in V. Then the colimit extension of X!(C,U) = U is
left adjoint to X∗ by the usual colimit argument, as in the proof of Prop. 7.6. The BCC
for opens also holds for X! a X∗.

3 +3 4 is clear.
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4 +3 1. A distribution F!ψ
∗ is well-supported, since σC for its support X coincides

with ρ(C,t) for X :
σC = ρ(C,t) : X /ϕ∗C // F!ψ

∗C = µ(C) .

We have seen that X is V-determined, so its ρ’s are V-initial.

We conclude this section by briefly investigating some special necessary structure
that well-supported V-distributions have. We begin by reminding the reader that an

S -indexed functor E
µ // V is a functor

µA : E /e∗A // V/A

for every A of S , commuting with the pullback functors.
If an S -indexed functor µ preserves Σ, then µA(D // e∗A) can be written µ(D) // A.

Then since µ is S -indexed, we see that for any morphism B
p // A of S and any pullback

pullback square below left, the transposed one is also a pullback.

D e∗(A)
m //

P

D

q

��

P e∗(B)// e∗(B)

e∗(A)

e∗(p)

��
µ(D) A

m̂ //

µ(P )

µ(D)

µ(q)

��

µ(P ) B// B

A

p

��
(19)

8.3. Proposition. Suppose that E
µ // V is an S -indexed functor that preserves Σ.

Then there is a unique S -indexed natural transformation

t : µe∗ +3 id .

We have m̂ = tA · µ(m) in (19), and a component morphism tA is part of a pullback

µ(1) 1
t1=! //

µ(e∗A)

µ(1)
��

µ(e∗A) A
tA // A

1
��

in V. In other words, µ(e∗A) ∼= µ(1)× A.

We shall say that a natural transformation µE∗ +3 id is an extension of the unique
µe∗ +3 id if they agree on the discrete locales.

8.4. Definition. A special V-distribution µ on a topos E is a pair 〈µ, t〉 consisting of a
V-distribution µ together with an extension

t : µE∗ +3 id (equivalently E∗ +3 µ∗)
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of µe∗ +3 id, such that the BCC for opens holds: this means that if a square (below, left)
is a pullback, then so is the one on the right, where p is an open sublocale.

D E∗(Y )
m //

P

D

��
q

��

P E∗U// E∗U

E∗(Y )

��
E∗(p)

��
µ(D) Y

m̂ //

µ(P )

µ(D)

��
µ(q)

��

µ(P ) U// U

Y

��
p

��

The locale morphism m̂ equals tY · µ(m).
A morphism 〈µ, t〉 // 〈ν, s〉 of such pairs is a natural transformation µ +3 ν that com-

mutes with t and s. Special V-distributions on a topos E and their morphisms form a
subcategory of all V-distributions.

8.5. Remark. If µ is a special V-distribution, and Y is in V, then the naturality square
of t for an open sublocale U // // Y is a pullback.

µ(E∗Y ) Y
tY //

µ(E∗U)

µ(E∗Y )

��

��

µ(E∗U) U
tU // U

Y

��

��

In other words, the frame morphism tY
∗ satisfies tY

∗U = µ(E∗U).

8.6. Proposition. Suppose that F is V-determined. Let F
ψ // E be a geometric

morphism over S . Let
ε : F!ψ

∗E∗ +3 F!F
∗ +3 id

denote the composite of (10) with the counit of F! a F ∗. Then 〈F!ψ
∗, ε〉 is a special

V-distribution on E .

Proof. We have F!ψ
∗ a ψ∗F

∗. Clearly ε extends the canonical (F!ψ
∗)e∗ ∼= F!f

∗ +3 id.
We verify the BCC for opens.

D E∗(Y )
m //

P

D

��
q

��

P E∗U// E∗U

E∗(Y )

��
E∗(p)

��
ψ∗(D) F ∗(Y )

ψ∗(m)//

ψ∗(P )

ψ∗(D)

��
ψ∗(q)

��

ψ∗(P ) F ∗U// F ∗U

F ∗(Y )

��
F ∗(p)

��
F!ψ

∗(D) Y
m̂ //

F!ψ
∗(P )

F!ψ
∗(D)

��
F!ψ

∗(q)

��

F!ψ
∗(P ) U// U

Y

��
p

��

If the far-left square is a pullback in E , then by Lemma 4.1, and since ψ∗ is left exact, so
is the center one. Then the right square is pullback by the BCC for opens for F! a F ∗.
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8.7. Remark. Proposition 8.6 shows that well-supported V-distributions are special. The
converse is an interesting question that we shall leave open. Another way to interpret
the fact that well-supported V-distributions are special is to observe that in any case we
always have natural transformations

µ∗ ϕ∗X
∗+3µ∗µ∗

E∗E∗E∗

ϕ∗X
∗
��

The horizontal one is (14), which is an isomorphism if µ is well-supported. In this case,
we evidently have a natural transformation E∗ +3 µ∗ that extends the unique e∗ +3 µ∗, so
that µ is special.

9. Michael coverings are comprehensive

The general theory of an extensive topos doctrine immediately gives the following instance
of a comprehensive factorization already established in [2] with a different proof.

9.1. Theorem. The pure, complete spread factorization of a geometric morphism with a
locally connected domain is comprehensive.

Proof. If L denotes the full sub-2-category of TopS whose objects are locally con-
nected, then clearly (T,V) = (L,S ) is a replete ETD that satisfies the (unrestricted)
comprehension scheme. The pure, complete spread (with locally connected domain) fac-
torization [2, 4] is comprehensive because pure geometric morphisms are precisely the
S -initial ones (between locally connected toposes). ΛE (ϕ) = f! · ϕ∗ in the context of an
ETD agrees with that of Lawvere’s hyperdoctrines and eeds [8] because the connected

components functor F
f! // S is known a priori to be the terminal Lawvere distribution

on a locally connected topos F .
It is our aim to show that Michael coverings are comprehensive, in the sense that the

hyperpure, complete spread factorization of [3] is comprehensive. This is a new result
even in the classical case [11].

The general theory applies here with the example of V = Loc0, the category of 0-
dimensional locales.

9.2. Definition. A topos f : F // S is called quasi locally connected if it is Loc0-
determined. Denote by Q the full sub 2-category of TopS whose objects are the quasi
locally connected toposes.

9.3. Corollary. A topos F in TopS is quasi locally connected iff for every object
D of F , there is a 0-dimensional locale XD and a Loc0-initial geometric morphism

F/D
ρD // XD (natural in D), in which case every locale F!(D) = XD is quasi locally

connected.

Proof. This follows from Proposition 4.8 for V = Loc0.
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In order to apply Corollary 9.3 we need to compare the hyperpure geometric morphisms
with the Loc0-initial ones.

9.4. Proposition. A hyperpure geometric morphism between definable dominances is
Loc0-initial.

Proof. We may use Remark 4.6. Assume that F
ψ // G is hyperpure. Let U be an

object of G . Consider the hyperpure, (complete) spread factorizations.

F/ψ∗U F!(ψ
∗U)

ρψ∗U //F/ψ∗U

S
fU ''OOOOOOOOOO

F!(ψ
∗U)

S
��

G /U G!U
ρ′U //G /U

S
gU ''OOOOOOOOOOO G!U

S
��

If ψ is hyperpure, then so is ψ/U , and therefore so is the composite ρ′U · ψ/U , both facts
by known properties [3]. Hence, ξU : F!(ψ

∗U) // G!(U) must be an equivalence by the
uniqueness of the hyperpure, complete spread factorization of fU [3].

F!(ψ
∗U) G!(U)//

F/ψ∗U

F!(ψ
∗U)

ρψ∗U

��

F/ψ∗U G /U
ψ/U // G /U

G!(U)

ρ′U
��

S SS
��

S
��

Thus, ξU is an isomorphism of 0-dimensional locales.

9.5. Proposition. A definable dominance is quasi locally connected.

Proof. We have shown that hyperpure geometric morphisms are Loc0-initial, so Corol-
lary 9.3 applies.

We end this paper with the result that motivated it, namely that Michael coverings
are comprehensive.

9.6. Theorem. The factorization of a geometric morphism with a definable dominance
domain into a hyperpure geometric morphism followed by a complete spread is compre-
hensive. Furthermore, this factorization is the one associated with the (restricted) com-
prehension scheme satisfied by the ETD (Q,Loc0).

Proof. We need only observe that the comprehensive factorization for objects of Q/E
coincides with the hyperpure, complete spread factorization of [3]. This is because the
constructions of the support of a Loc0-distribution of the form µ = F!ψ

∗ are the same
in both cases. However, it should be noted that the site H used in [3] is not exactly the
same as the site M used here. It is not hard to see that the resulting topos X is the same
in both cases.
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Final remarks.

1. We have introduced here a notion of quasi locally connected topos and investigated
its relevance for the hyperpure, complete spread factorization [3]. In particular, we
have shown that both factorizations are comprehensive.

2. Whereas over a Boolean topos the two weakenings of the notion of a locally con-
nected topos, given respectively by definable dominance (geometric aspect) and
by quasi locally connected (logical aspect), are equivalent and add nothing to the
notion of a bounded S -topos, we believe that working constructively reveals new
information.

3. It may be possible to characterize the notion of a quasi locally connected topos in
terms of sites in a manner analogous to the well-known site characterization of local
connectedness [1]. This would give a further insight into this notion.

4. Applications of the present investigation may stem naturally from the various as-
pects of complete spreads and distributions that we have treated in our book [4].
The machinery is in place for dealing with a notion of the fundamental groupoid
of a quasi locally connected topos, as are applications to knot theory and branched
coverings in the non-locally connected case. We anticipate no lack of interesting and
challenging questions lying ahead in this program.
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