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ABSTRACT� In ��	� E� M� Brown constructed a functor P which carries the tower
of fundamental groups of the end of a 
nice� space to the Brown�Grossman fundamental
group� In this work� we study this functor and its extensions and analogues de
ned
for pro�sets� pro�pointed sets� pro�groups and pro�abelian groups� The new versions of
the P functor are provided with more algebraic structure� Examples given in the paper
prove that in general the P functors are not faithful� however� one of our main results
establishes that the restrictions of the corresponding P functors to the full subcategories
of towers are faithful� We also prove that the restrictions of the P functors to the
corresponding full subcategories of 
nitely generated towers are also full� Consequently�
in these cases� the towers of objects in the categories of sets� pointed sets� groups and
abelian groups� can be replaced by adequate algebraic models 
M �sets� M �pointed sets�
near�modules and modules�� The article also contains the construction of left adjoints
for the P functors�

�� Introduction

This article contains a detailed study of the properties of the P functor� An interesting
consequence is that in many cases we can replace an inverse system of sets or groups
by special algebraic models that contain all the information of the corresponding inverse
systems� Firstly we recall the context in which L� R� Taylor and E�M� Brown de�ned the
��homotopy groups and the P functor�
In ����� L�R� Taylor 	Tay
 de�ned the fundamental ��group of a space by taking a

set of base points such that any in�nite path�component of the complement of a compact
subspace contains base points� He used the fundamental groups of these path�components
based at these base points to de�ne the fundamental ��group of a space�
In ����� E�M� Brown 	Br
 de�ned the proper fundamental group of a space with a

base ray by using the string of ��spheres� BS�� which is de�ned by attaching one ��
sphere S� at each positive integer of the half line 	
����� Given a space X with a
base ray� he considered the proper fundamental group �B� �X� � 	

BS��X
� as the set
of germs at in�nity of proper maps from BS� to X� modulo germs at in�nity of proper
homotopies� Let X be a well rayed space �the inclusion of the base ray is a co�bration�
and suppose that � � K� � K� � K� � � � �� is a co�nal sequence of compact subsets�
Denote by Xi � cl�X �Ki��ray and by �X � fXig the associated end tower of X� The
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fundamental pro�group ���X of X is isomorphic to the tower f��Xig� Brown de�ned a
functor P� towGps �� Gps satisfying P���X �� �B� �X�� If one takes a one ended space
having a countable base of neighbourhoods at in�nity� a base ray gives a set of base points
and it can be checked that the fundamental ��group of this space agrees with the global
fundamental Brown group� which is de�ned by considering global proper maps and global
proper homotopies instead of proper germs� see 	H�P
�
Later Grossman 	Gr��� Gr��� Gr��
 developed a homotopy theory for towers of sim�

plicial sets and de�ned the analogues of Brown�s groups for towers of simplicial sets�
Using a well known exact sequence� he proved that his notion of fundamental group�
�G� �Y �� was isomorphic to towGps�cZ� f��Yig�� where cZ is de�ned by �cZ�i � �

j�i
Zj�

where Zj �� Z and � denotes the coproduct in the category of groups� Applying the
Edwards�Hastings embedding theorem 	E�H
 we have that �B� �X�

�� �G� ��X�� Therefore
the Edwards�Hastings embedding relates the Brown de�nition of the P functor and the
functor towGps�cZ���� It is not hard to see that P and towGps�cZ��� are isomorphic
for any tower of groups and then the P functor can be seen as a representable hom�group
functor on the category towGps�
We have considered this last formulation of the P functor in order to de�ne our more

algebraically structured version of the P functor� Next we give some notation and our
de�nition of the P functor and afterwards we establish some of the main results of this
work�
Given an object H of a category C� we can consider the class of objects generated from

it by taking arbitrary sums of copies of H and e�ective epimorphisms� When this class
contains all the objects of the category it is said that H is a generator for the category C�
Notice that the one�point set � is a generator for the category Set of sets� the two�point
set S� is a generator for the category Set� of pointed sets� the in�nite cyclic group Z is a
generator for the category Grp of groups and the in�nite cyclic abelian group� denoted in
this paper by Za� is a generator for the category Ab of abelian groups� We will denote by
C one of the categories� Set� Set�� Grp�Ab� The generator of C will be denoted by G�
Associated with the category C� one has the category� towC� of towers in C and the

category� proC� of pro�objects in C� The object G induces a pro�object cG�N �� C
de�ned by

�cG�i � �
j�i

G� i � N�

Given a pro�object X in proC� one has the canonical action

proC�cG�X� 	 proC�cG� cG� �� proC�cG�X� � �f� ��� f��

For the di�erent cases C � Set� Set�� Grp� Ab� we note that proC�cG�X� is a set� a
pointed set� a group and an abelian group� respectively� On the other hand� PcG �
proC�cG� cG� has respectively the structure of a monoid� a 
�monoid �see section ���
a near�ring and a ring� As a consequence of this fact� we will use di�erent algebraic
categories� but because they have many common functorial properties we will use the
following uni�ed notation�
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�� If C � Set and G � �� CPcG will be the category of PcG�sets� A PcG�set consists
of a set X together with an action of the monoid PcG � proC�cG� cG��
�� If C � Set� and G � S�� CPcG will be the category of PcG�pointed sets� In this

case� the structure is given by an action of a 
�monoid on a pointed set�
�� If C � Grp and G � Z� CPcG will be the category of PcG�groups� Now the structure

is given by an action of a near�ring on a group� see sections � and ��
�� If C � Ab and G � Za� CPcG will be the category of PcG�abelian groups �modules

over the unitary ring PcG��

Using this notation� given a pro�object X in proC� PX � proC�cG�X� provided with
the action of proC�cG� cG� determines an object of the category CPcG� This de�nes the
functor P� proC �� CPcG�
Next we introduce some of the main results of the paper�

Theorem ��� P� towC �� CPcG is a faithful functor�

This establishes that the restriction of the P functor to the full subcategory of towers
in C is a faithful functor� It is interesting to note that the extended P functor� for instance
from pro�abelian groups to modules is not faithful� see Corollary �����
Another important result of the paper states that the restriction of the P functor to

�nitely generated towers is also full�

Theorem ���� Let X be an object in towC� If X is �nitely generated� then X is
admissible in towC� Consequently� the restriction functor P� towC�fg �� CPcG is a full
embedding� where towC�fg denotes the full subcategory of towC determined by �nitely
generated towers�

For �nitely generated towers� we are able to replace a tower of objects by a single object
with some additional algebraic structure� In this paper we have only considered this kind
of construction for towers of sets and towers of groups� however� many of the poofs are
established by using very general functorial methods� Therefore part of the constructions
and results can be extended to towers and pro�objects in more general categories�
For the case C � Grp� the main results of Chipman 	Ch��� Ch��
 stated for towers of

�nitely generated groups� are obtained from Theorem ���� as corollaries� We point out
that the class of �nitely generated towers of groups is larger than the class of towers of
�nitely generated groups�
Fortunately� some very important examples of towers of sets are �nitely generated� for

example� the tower of ���s of the end of a locally compact� ��compact Hausdor� space or
the tower of ���s obtained by the �Cech nerve for a compact metric space� In these cases�
it is easy to prove that the fundamental pro�groups are �nitely generated and therefore
the P functor will work nicely on this kind of pro�group� In the abelian case the towers
of singular homology groups coming from proper homotopy and shape theory are �nitely
generated� However� we do not know if for towers of higher homotopy groups� the abelian
version of the P functor is going to be a full embedding�
As a consequence of Theorem ����� we get a full embedding of the category of zero�

dimensional compact metrisable spaces and continuous maps into the algebraic category
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of Pc��sets� We also obtain similar embeddings for the corresponding categories of topo�
logical groups and topological abelian groups�
In this work� we also give the construction of left adjoints for the P functors�

Theorem ��� The functor P� proC �� CPcG has a left adjoint L�CPcG �� proC�

This left adjoint� for instance for the abelian case� constructs the pro�abelian group
associated with a module over the ring PcZa� It is interesting to note that PcZa is
isomorphic to the ring of locally �nite matrices modulo �nite matrices which was used by
Farrell�Wagoner 	F�W��� F�W��
 to de�ne the Whitehead torsion of an in�nite complex�
Next we include some additional remarks about other results and constructions devel�

oped in this paper�
In section �� we analyse some nice properties of categories of the form proC� Giv�

en a strongly co�nite set I� we prove in Theorem ��� that the full subcategory proIC�
determined by the objects of proC indexed by I� is equivalent to a category of right frac�
tions CI��� in the sense of Gabriel and Zisman 	G�Z
� When the directed set of natural
numbers I � N is considered� the category proNC is usually denoted by towC� From
Theorem ��� we have that towC can be obtained as a category of right fractions of CN�
however� for this case we also prove in Theorem ��� that the category towC is equivalent
to a category of left fractions ���CN� This fact has the following nice consequence� The
hom�set towC�cG�X� can be expressed as a colimit and this gives the de�nition of the P
functor given by Brown or if we use the standard de�nition given as a limit of colimits�
we nearly obtain the de�nition of ��homotopy group �at in�nity� given by Taylor�
When we are working with categories of sets� pointed sets� groups and abelian group�

s we usually consider free� forgetful and abelianization functors� For the corresponding
�towcategories� and �procategories�� we also have analogous induced functors� The di�er�
ent versions of P are functors into categories of Pc��sets� PcS�� pointed sets� PcZ�groups
and PcZa�abelian groups� For these categories� we analyse� in section �� the de�nition
and properties of the analogues of this kind of functor� For example� the left adjoint of the
natural inclusion of the category of PcZa�abelian groups into the category of PcZ�groups
is a kind of �distributivization� functor� Given a PcZ�group X� a quotient dX is de�ned
by considering the relations which are necessary to obtain a right distributive action�
An important result of section � is Theorem ���� In terms of proper homotopy� The�

orem ��� proves that the P functor sends the abelianization of the tower of fundamental
groups to the �distributivization� of the fundamental Brown�Grossman group� It is not
hard to �nd topological examples where the abelianization of the fundamental Brown�
Grossman group produces a type of �rst homology group� which is not naturally isomor�
phic to the �distributivization� of the Brown�Grossman group�
Finally� we have developed section � to solve some of the theoretical questions that

have arisen from writing the paper� We see that the full subcategory of locally structured
topological abelian groups admits a full embedding into the category of global pro�objects
of abelian groups� As a consequence of the relations between these categories we obtain
Corollaries ���
 and ����� which are the main results of the section� In these corollaries it
is proved that neither �towAb�Ab� nor towAb have countable sums� and therefore� neither
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�towAb�Ab� nor towAb are equivalent to a category of modules�

�� Procategories and categories of fractions

The category proC� where C is a given category� was introduced by A� Grothendieck
	Gro
� A study of some properties of this category can be seen in the appendix of 	A�M
�
the monograph of 	E�H
 or in the books of 	M�S
 and 	C�P
�
The objects of proC are functors X� I � C� where I is a small left �ltering category�

and the set of morphisms from X� I � C to Y �J � C is de�ned by the formula

proC�X�Y � � lim
j
colim

i
C�Xi� Yj��

A morphism from X to Y can be represented by ��� ffjg� where ��J � I is a map
and fj�X�j � Yj is a morphism of C such that if j � j� is a morphism of J � there are
i � I and morphisms i� �j� i� �j � such that the composite Xi � X�j � Yj � Yj� is
equal to the composite Xi � X�j� � Yj� �
Notice that if I is a strongly directed set and J is just a set� then Maps�J� I� is also

a directed set� It is easy to see that if I is a strongly directed set and J is a strongly
co�nite directed set� then the natural inclusion IJ �Maps�J� I� is a co�nal functor� see
	M�S� page �
� where IJ denotes the strongly directed set of functors from J to I� As a
consequence of this fact� if I� J are strongly co�nite directed sets� any morphism of proC
from X to Y can be represented by ��� f� where � � IJ and fj� �X��j � Yj is a level
morphism�
Let Cscd denote the category whose objects are functors X� I � C� where I is a

strongly co�nite directed set� and a morphism from X� I � C to Y �J � C is given
by a functor ��J � I and by a natural transformation f �X� � Y � where X� is the
composition of the functors � and X� Given a strongly co�nite directed set I� we also
consider the subcategory CI of Cscd given by objects indexed by I and morphisms of the
form ��� f� where � � idI �
If J � I are strongly co�nite directed sets� then IJ the set of functors from J to I is a

strongly directed set ���� � IJ � � 
 � if ��j� 
 ��j�� j � J� and can be considered as
a category� The evaluation functor e�CI 	 IJ � CJ is de�ned by e�x� �� � X� � X���
A �xed � induces a functor ����CI � CJ � which sends f �X � Y to f���X�� �� Y���
and a �xed X induces a functor X��� IJ � CJ sending � 
 � to X�

�
��X�� �� X���

Let proscdC denote the full subcategory of proC de�ned by the objects of proC indexed
by strongly co�nite directed sets� If X� I � C and Y �J � C are objects in proscdC� we
can take into account that IJ is co�nal in Maps�J� I� to see that�

proscdC�X�Y � � proC�X�Y � �� colim
��IJ

CJ�X��� Y �

That is� proC�X�Y � is the colimit of the functor

�IJ�
op X��
��� �CJ�op

CJ ���Y �
����� Set
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Edwards and Hastings 	E�H
 gave the construction �the Marde�si�c trick� see also 	M�S
�
page ��
� of a functor M � proC �� proscdC that together with the inclusion proscdC ��
�� proC give an equivalence of categories� We note that the category proscdC is a
quotient of the category Cscd� that is� proscdC�X�Y � is a quotient of Cscd�X�Y ��
We include the following result about co�nal subsets of II �

���� Lemma� Let I be a strongly co�nite directed set and consider
IIid � f� � II j � 
 idg� then

�� the inclusion IIid �� II is co�nal�
�� for the case I � N the directed set of non�negative integers� if In�NN� � f� �

N
N j � is injective g and In�NNid � � N

N
id � In�NN�� then In�NN� �� N

N and
In�NNid � �� N

N are co�nal�

Next� for a given strongly co�nite directed set I� we analyse the relationship between
CI and proIC� the full subcategory of proscdC de�ned by the objects indexed by a �xed
I� We are going to see that proIC is a category of right fractions of C

I � For this purpose�
�rst we recall� see 	G�Z
� under which conditions a class � of morphisms of a category C
admits a calculus of left �or right� fractions�
A class � of morphisms of C admits a calculus of left fractions if � satis�es the following

properties�

a� The identities of C are in ��
b� If u�X � Y and v�Y � Z are in �� their composition vu�X � Z is in ��
c� For each diagram X � s

��X
u
��Y where s is in �� there is a commutative square

X
u

����� Y

s

�
�
�
�
y

�
�
�
�
y

t

X � �����
u�

Y �

where t is in ��
d� If f� g�X � Y are morphisms of C and if s�X � � X is a morphisms of � such that
fs � gs� there exists a morphism t�Y � Y � of � such that tf � tg�

If we replace the conditions c� and d� by the conditions c�� and d�� below� the class �
is said to admit a calculus of right fractions�

c�� For each diagram X � u�

��Y �
t
��Y where t is in �� there is a diagram X � s

��X
u
��Y

such that u�s � tu and s is in ��
d�� If f� g�X � Y are morphisms of C and if t�Y � Y � is a morphism of � such that
tf � tg� there exists a morphism s�X � � X of � such that fs � gs�

Now for a given strongly co�nite directed set I� consider the class � of CI de�ned by
the morphisms of the form X�

�

id�X��� X where � � IIid�
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���� Proposition� � admits a calculus of right fractions�

Proof� It is clear that X�
id
id � idX and that �X�

�

id���X����
�

id� � X�
��

id � These imply a�
and b�� By considering the evaluation functor CI 	 IIid � CI � �X���� X��� we obtain
the commutative square

X��
f��

����� Y��

X�
�

id

�
�
�
�
y

�
�
�
�
y

Y �
�

id

X �����
f

Y

Hence we have that c�� is satis�ed�
Finally� if f� g�X � Y�� are morphisms such that �Y �

�
id�f � �Y �

�
id�g� we have that

��Y����
�

id��f��� � ��Y �
�

id�����f��� � ��Y �
�

id�����g��� � ��Y����
�

id��g����
��Y����

�
id��f��� � f�X�

�
id��

��Y����
�
id��g��� � g�X�

�
id��

Therefore it follows that f�X�
�
id� � g�X�

�
id�� and so d

�� is also satis�ed�

Given a strongly co�nite directed set I� we denote by CscdI and proIC the full sub�
categories of Cscd and proC� respectively� determined by objects indexed by I� Now to
compare CI��� and proIC� we consider the diagram

CI ����� CscdI

�
�
�
�
y

�
�
�
�
y

CI��� proIC

In order to have an induced functor� it su ces to see that a morphism of � is sent to
an isomorphism of proIC� A morphism of � is of the form X�

�
id�X��� X� � � IIid� We

also consider the morphism �id� �X� � ��� idX����X � X�� in the category CscdI � Using
this notation we have�

���� Lemma� The morphisms X�
�
id� �

id
� �X� induce an isomorphism in proIC�

Proof� Consider the composites

X��
�idI �X�

�

id
�

��������X
���idX���

������X��

X
���idX���

������X��
�idI �X�

�
id
�

��������X�
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We have that
��� idX����idI �X�

�
id� � ��� �X�

�
id�����

Because the following diagram is commutative

�X�����
�X����

�
�

����� �X�����

�X����
�

id

�
�
�
�
y

�
�
�
�
y
�X�

�

id
���

X�� �����
idX��

X���

it follows that �idI � idX��� � ��� �X�
�
id���� in proIC�

On the other hand� we have

�idI �X�
�
id���� idX��� � ���X�

�
id��

Since the diagram

X��
X�

�
�

����� X��

X�
�

id

�
�
�
�
y

�
�
�
�
y

X�
�

id

X �����
idX

X

is commutative� we have that ���X�
�
id� � �idI� idX� in proIC�

���� Theorem� The induced functor CI ��� �� proIC is an equivalence of categories�

Proof� Since IIid is co�nal in I
I� by Lemma ���� a morphism X � Y in proIC can be

represented in CscdI by

X
�id� �X�

����� X��
f

����� Y

where f is in CI� By Lemma ���� in the category proIC we have that f �id� �X� �
f�X�

�
id�
��� Therefore CI����X�Y �� proIC�X�Y � is surjective�

Given two morphisms X
X�

�

id

����� X��
f
�� Y � X

X�
�

id

����� X��
g
�� Y in
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CI��� such that ��� f� � ��� g� in proIC� there is a � � IIid such that the diagram

X��




x
�
�
�
�

X�
�
� �f

X����� X�� Y

�

�
�
�
�
y

X�
�
�

�g

X��

is commutative in CI � Therefore in CI��� we have that

f�X�
�
id�
�� � f�X�

�
���X�

�
id�
�� � g�X�

�
���X�

�
id�
�� � g�X�

�
id�
���

Hence CI����X�Y � �� proIC�X�Y ��

Next� we study a particular but important case� We consider the strongly co�nite
directed set N of natural numbers� In this case� the category proNC is usually denoted
by towC� We are going to prove that if C has a �nal object �� the category towC can also
be obtained from CN as a category of left fractions� As before NN denotes the strongly
directed set of functors fromN to N� We will use the following notation N� � f��g�N�
�N��� � N�� � f��g �N� and in�N � N

� denotes the inclusion� We also have the
strongly directed sets�

Cof�NN� � f� � NN j � is co�nalg

Cof��N��N� � f� � �N��N j � is co�nalg�

Notice that we have the relations�

In�NNid � � In�NN� � Cof�NN� �NN�

Given a � � Cof�NN�� de�ne !��N � N
� as follows� If n 	 ��
�� then !��n� � ���

Otherwise� there is an i � N such that ��i� � n 	 ��i � ��� and then de�ne !��n� � i�
Suppose that n � m� we have that if n 	 ��
�� then !��n� � !��m�� otherwise ��i� � n 	
��i � ��� n � m� and we again have that !��n� � !��m�� Similarly� it is easy to check
that idN � in and that if � � �� then !� 
 !�� Therefore we have de�ned a contravariant
functor

��Cof�NN� �� Cof��N��N��
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If C is a category with a �nal object �� we also consider the functor ��CN �� CN
�

which sends an object X in CN to X�� de�ned by X�
�� � � and X

�
n � Xn for n 
 
�

Now we de�ne the functor e� as the composite�

CN 	Cof�NN�
�
�
�

����� CN
�

	 Cof��N��N�
e

����� CN�

so e��X��� � e�X�� !�� � X�
� !�� we also use the shorter notation e��X��� �

� X��� For a �xed �� we have a functor ����CN �� CN and for a �xed X� we
have the contravariant functor X���Cof�NN� �� CN�

���� Proposition� Let C be a category with a �nal object�
�� If � � In�NNid �� then ��� is left adjoint to ���� that is� there is a natural trans�

formation CN�X��� Y � �� CN�X�Y ��� that will be denoted by f � f b� g� � g�
�� If � � In�NNid �� the following diagram is commutative

X
fb

����� Y ��

X�
�

id

x
�
�
�
�

x
�
�
�
�

Y �
�

id

X�� �����
f

Y

�� If ��� � In�NNid �� � � �� for the diagram X��
X�

�
�

��X��
f
��Y we have that

�f�X�
�
���

b
� �Y ��

��f
b�

Proof� �� � We note that if � � In�NNid �� !�� � in�N � N
�� Therefore for a given

object Y in CN� we have

�Y ����� � �Y
�
� !���� � Y �

�� !��� � Y �
�in � Y

De�ne ��CN�X�Y ��� �� CN�X��� Y � by g� � g��� It is clear that the counit
transformation is� in this case� the identity�
To de�ne the inverse transformation b�CN�X��� Y � �� CN�X�Y ���� we have that

�� !� � in� since � is injective and � 
 id� We also have that
X � X�

�in
�X���

�� � �X���
�
� !� � �X�

��
��� !� � X�

��
� !�

Now� given f �X��� Y � de�ne f b � �f����X in
��� ���� that is� it is the composite

X
X�

�
in

�� ��

����� �X�����
f��

����� Y �� �
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By considering the formulas

�f b�
�
� 	�f����X�

�
in
�� ���


� � ��f��������X�
�
in
�� ������ � f�X�

�
in �

��in
� � f�

�g��
b
� �g���

b � ��g���
����X�

�
in
�� ��� � ��Y

�����in�� ���g �

� ��Y �
� !����in�� ���g � ��Y

����
���in
����� ���g � ��Y

����
���in
in� ���g � g�

it follows that the transformations above de�ne a natural isomorphism�

�� The commutativity of the diagram is proved by the following equalities

f b�X�
�
id� � �f

�
� !���X�

�
in
�� �����X�

�
id�

�
� in� � �f�� !����X�

�
in
�� �����X

�
�
��in
in � �

� �f�� !���X�
�
��in

�� �� � � �f
�
� !����X�

��
���in�� � � �f

�
� !����X�����in�� � � �Y

�
�
in
�� �f �

� �Y � �
id �f �

�� It follows from the following relations

�f�X �
� � ��

b
� ��f�X�

�
���

�
�
!���X�

�
in
�� ��� � ��f

��X�
�
��

��
��� !���X�

�
in
�� ���

� �f�� !���X�
�
�� ��
�� ����X

�
�
in
�� ��� � �f

�
�
!���X�

�
in
�� ���

� �f�� !���X�
�
�� ��
�� ��
��X�

�
in
�� ��� � �f

�
�
!����X�����

��
��
��X�

�
in
�� ���

� �Y �
�
��
����f

�
� !���X�

�
in
�� ��� � �Y

��
�� f

b

���� Lemma� Let C be a category with �nal object �� and ��� � In�NNid �� then

�� ������� � �
�����

�� �Y �����id � Y ����

Proof� It is easy to check that !�� !� � in���� Therefore we have�

�� �Y ����� � �Y �
� !���� � �Y �

� !���� !� � �Y ���� !��� !� �

�Y ���� !�� !� � �Y ���� in��� �

� Y �
� �� � Y ������

�� �Y �����id � �Y
�
� !���

�
id � �Y

�
� !��

� in

� �� � �Y ���� !���in��

� �Y ����
���in
��� �� � �Y

����
in� ��

in���
� Y �

�
��

��
� Y ���� �

Now we de�ne a class � of morphisms in CN that admits a calculus of left fractions�
The category ���CN will be equivalent to towC � proNC�

Consider the class � de�ned by the morphisms of the form Y � �
id �Y �� Y ��� where

Y is an object in CN and � � In�NNid � �C has a �nal object��

���� Proposition� � admits a calculus of left fractions�

Proof� a� It is clear that Y �id
id � idY �

b� By Lemma ���� we have

��Y �����id��Y
��
id� � �Y

���
� ��Y

��
id� � Y ���id
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c� For each diagram X��
X��

id

����� X
f

����� Y � we have the commutative diagram

X
f

����� Y

X��
id

�
�
�
�
y

�
�
�
�
y

Y �
�
id

X�� �����
f��

Y ��

where Y ��id is in ��

d� Consider a diagram X
X��

id

����� X��

f

�����
�����

g

Y such that f�X��
id� � g�X��

id��

Applying Lemma ��� we have

�Y ��id�f � �f
�����X�����id� � �f

����X���
� � � �f

�����X��
id�
��� � �f�X��

id��
�� �

� �g�X��
id��

�� � �g����X���
� � � �g

����X����id � �Y
��
id�g�

Therefore there exists Y ��id in � satisfying the desired relation�

If we consider the diagram

Cscd
N ����� CN

�
�
�
�
y

�
�
�
�
y

proNC ��� CN

we can see that a morphismX��
id�X �� X�� of � has an inverse 
�id�X� in proNC� De�ne


�id �X� � ��� idX� in C
scd
N�

���� Lemma� The morphisms X��
id and 
�id�X� give an isomorphism in the category

proNC � towC�

Proof� We have that

�idN�X
��
id���� idX� � ���X

��
id�
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Since the following diagram is commutative

�X�����
�X����

�
�

����� �X�����

�X����
�

id

�
�
�
�
y

�
�
�
�
y
�X����

�

id

X��
id

����� X��

we have that ���X��
id� � �idN� idX����

On the other hand we have

�X��
id��� � �X

�
�
in

�� ��� � X�
�
in�

��� � X�
�
in �

in id � X��
id �

��� idX��idN�X
��
id� � ��� �X

��
id���� � ���X

��
id��

We have already seen in the proof of Lemma ��� that ���X�
�
id� � �idN� idX��

���� Theorem� For a category C with �nal object� the induced functor ���CN ��
proNC is an equivalence of categories�

Proof� It su ces to dualize the proof of Theorem ����

���
� Remark� �� We can also prove this theorem taking into account the de�nition of
the hom�set� see 	G�Z
� and Proposition ���

���CN�X�Y � � colim
��In�NN

id
�

CN�X�Y ��� �� colim
��In�NN

id
�

CN�X��� Y � �� proNC�X�Y ��

�� The equivalence of categories CN��� �� ���CN is given by

�X
X�

�

id

����� X��
f

����� Y � �� �X
fb

����� Y ��
Y �

�

id

����� Y � �

Consider the class �C of morphisms of CN of the from X�
�
id�X�� �� X� If D is

a �nite category and CD denotes the category of functors of the form D � C we can

consider the class �CD of morphisms of �C
D�
N
of the form A��� A� The corresponding

category of fractions is denoted by tow�CD�� Notice that we also have the equivalence

of categories �CD�
N
� �CN�

D
and the functor CN � towC induces the natural functor

�CN�
D
� �towC�D�

With this notation we have the following result�
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����� Proposition� If D is a �nite category� then there is a diagram

�CD�
N

����� �CN�
D

�
�
�
�
y

�
�
�
�
y

tow�CD� ����� �towC�D

which is commutative up to isomorphism and is such that the induced functor tow�CD� ��
�towC�D is a full embedding�

Proof� Let X denote an object of �CD�
N
and the corresponding object in �CN�

D
� If X

is an object in �CD�
N
� X�n� denotes a diagram of CD and if X is thought of as an object

in �CN�
D
� then Xd is an object in CN� We note that X�n�d � Xd�n��

Now suppose that X�Y are objects in �CD�
N
�or in �CN�

D
� and f �X � Y is a

morphism in �towC�D� Then for each d an object of D� we can represent fd for all d by

Xd �� �Xd���d
f �
d��Yd� By considering a map � � In�NNid � such that � 
 �d� d � Ob D�

we can represent fd for all d by Xd �� �Xd���
f �
d��Yd� Then we have that X �� X�� is

a morphism in �CD�
N
� However� if d�

���� d� is a morphism in D� then

Xd���
f �
d�

����� Yd�

�X�����

�
�
�
�
y

�
�
�
�
y

Y ��

Xd��� �����
f �
d�

Yd�

is only commutative in towC� Nevertheless we can choose ��� � In�NNid � such that

Xd�������

f ��
d�

����� Yd�
�
�
�
�
y

�
�
�
�
y

Xd������� �����
f ��
d�

Yd�
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is commutative in CN� Since the set of morphisms of D is �nite� we �nally obtain

representatives maps Xd �� X�������� � ����r
�fd��Yd such that X �� X������� � � �

���r
�f

�����Y is a diagram in �CD�
N
�

This diagram represents a morphisms from X to Y in tow�CD� that is sent to
f �X � Y by the functor tow�CD� �� �tow C�D�

Now if f� g�X � Y are maps in �CD�
N
such that f � g in �tow C�D� we have for each

d � Ob D a map �d � In�NNid � such that fd�Xd�
�d

id � � gd�Xd�
�d

id �� If � 
 �d� d � Ob D�
then fd�Xd�

�

id� � gd�Xd�
�

id�� Therefore f�X�
�

id� � g�X�
�

id�� This implies that f � g in
tow�CD��

����� Remark� Meyer 	Mey
 has proved that if the category C has �nite limits� then
the functor pro�CD� �� �proC�D is an equivalence of categories�

�� Preliminaries on monoids� near�rings and rings

In this section� we establish the notation and properties of monoids� near�rings and rings
that will be used in next sections� We usually consider the categories of sets� pointed sets�
groups and abelian groups which are denoted by Set� Set�� Grp and Ab� respectively�
A monoid consists of a set M and an associative multiplication � � M 	M �� M

with unit element � ���m � m � m��� for every m �M�� If M has also a zero element 

�m�
 � 
 � 
�m� for every m �M� it will be called a 
�monoid�
A set R with two binary operations "�� and "��� is a unitary �left� near�ring if �R��� is

a group �the additive notation does not imply commutativity�� �R� �� is a semigroup and
the operations satisfy the left distributive law�

x � �y � z� � x � y � x � z� x� y� z � R�

A near�ring R satis�es that x � 
 � 
 and x � ��y� � ��x � y�� but in general� it is not true
that 
 � x � 
 for all x � R� If the near�ring also satis�es the last condition it is called
a zero�symmetric near�ring� In this paper we will only work with zero�symmetric unitary
near�rings� In this case� �R� �� is a 
�monoid�
If a zero�symmetric unitary near�ring also satis�es the right distributive law�

�x� y� � z � x � z � y � z� x� y� z � R

then �R��� is abelian and R becomes a unitary ring�

���� Example� If C is a category and X is an object of C� then C�X�X� is a monoid
with the composition of morphisms� �g� f� � g � f � In next sections C will be one of the
categories proC or towC�

���� Example� If C is a category with a zero object� the monoid C�X�X� has a zero
element 
�X � X and C�X�X� is a 
�monoid� If C has a zero object� the categories
proC and towC also have zero objects�
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���� Example� Let F be a free group generated by a set X� then the set of endomor�
phisms of F � End�F �� becomes a zero�symmetric unitary left near�ring if the operation �
is de�ned by

�f � g�x � fx � gx� f� g � End�F �� x � X�

���� Example� If A is an abelian group or an object in an abelian category� then End�F �
is an unitary ring�

Let M be a monoid and C a category� A left M�object X in C consists of an object
X of C and a monoid homomorphism M �� C�X�X� � m � #m � X �� X� If M is a

�monoid and C has a zero object� we will also assume that an M�object X in C satis�es
the additional condition #
 � 
� We denote by MC the category whose objects are the
�left� M�objects in C� By considering monoid �antimorphisms� M �� C�X�X� we have
the notion of right M�object in C and the category CM �

For the case C � Set �C � Set�� we have the notion of M �set �M �pointed set� and the
categories MSet� SetM �MSet�� Set�M�� If X is a group� then Set��X�X� has a natural
structure of zero�symmetric unitary right near�ring� If R is a zero�symmetric unitary
right near�ring� a structure of left R�group on X �left near�module� is given by a near�
ring homomorphism R �� Set��X�X�� If R is a zero�symmetric unitary left near�ring
and R �� Set��X�X� is a group homomorphism and a monoid antimorphism� then X
is said to have a structure of right R�group� We denote by RGrp the category of left
R�groups and by GrpR the category of right R�groups�

If X is an abelian group� then Ab�X�X� has a natural structure of unitary ring� If R
is a ring� a structure of left R�abelian group �R�module� is given by a ring homomorphism
R �� Ab�X�X�� If R �� Ab�X�X� is a group homomorphism and a monoid antimor�
phism� then X is said to be a right R�abelian group �R�module�� We denote by RAb the
category of left R�abelian groups and by AbR the category of right R�abelian groups�

���� Example� Let C be a category� For each object X of C� we have the monoid
End�X� � C�X�X� and C�X��� � C �� SetEnd�X� is a functor which associates to
an object Y the right End�X��object de�ned by End�X� �� Set�C�X�Y �� C�X�Y �� �
� �� #�� #��f� � f�� f � C�X�Y �� If C has a zero object� we also have the functor�
C�X���� C �� Set�End�X��

���� Example� Let F be a free group generated by the set X� We have noted in Example
�� above that End�F � is a left near�ring� Is is easy to see that for any group Y � Grp�F� Y �
has a natural structure of right End�F ��group� Therefore there is an induced functor
Grp�F��� � Grp �� GrpEnd�F ��

���� Example� IfX is an object in an abelian categoryA� thenA�X��� de�nes a functor
from A to the category of End�X��abelian groups � End�X��modules��

Recall that in this paper we are using the following uni�ed notation� We denote by C
one of the categories� Set� Set�� Grp� Ab� The small projective generator of C is denoted
by G� We also denote by �� S�� Z� Za the corresponding generators of these categories�
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Because the categories of the examples above have some common properties� we will use
the following notation�
�� If C � Set and R is a monoid� CR denotes the category of right R�sets�
�� If C � Set� and R is a 
�moniod� CR denotes the category of right R�pointed sets�
�� If C � Grp and R is a zero�symmetric unitary left near�ring� CR denotes the

category of right R�groups �R�near�modules��
�� If C � Ab and R is an unitary ring� CR denotes the category of right R�abelian

groups �R�modules��
It is interesting to note that CR and C are algebraic categories and there is a natural

forgetful functor U �CR �� C which has a left adjoint functor
F � � � R�C �� CR� If C � Set and X is a set� then X � R � X 	 R and if
C � Set�� then X �R � X 	R���� 	R� � �X 	 
��� It is also easy to de�ne ��R for
the cases C � Grp and C � Ab�
If the functor F �A� B is left adjoint to the functor U �B � A� then it is well known

that F preserves colimits and that U preserves limits� A functor U �B � A re$ects �nite
limits if it veri�es the following property� If X is the �cone� over a �nite diagram D in B
and UX is the limit of UD� then X is the limit of D�
We summarise some properties of the functors above in the following�

���� Proposition� The forgetful functor U �CR �� C has a left adjoint functor
F � � � R�C �� CR� Moreover� the functor U preserves and re	ects �nite limits�
in particular if Uf is an isomorphism� then f is also isomorphism�

Proof� It su ces to check that U re$ects �nite products and di�erence kernels� If Y�� Y�
are objects in CR� then UY�	UY� admits an action of R de�ned by �y�� y��r � �y�r� y��r�
if r � R� Now it is easy to check that for the di�erent cases� C � Set� Set�� Grp�Ab�
this action satis�es the necessary properties to de�ne an object Y� 	 Y� in CR such that
U�Y� 	 Y�� � UY� 	 UY�� Similarly if f� g�Y � Y � are morphisms in CR� then the
di�erence kernel K�Uf�Ug� is de�ned by K�Uf�Ug� � fx � UY j Ufx � Ugxg� In
this case the action of R on Y induces an action on K�Uf�Ug� that satis�es the necessary
properties� and therefore de�nes an object K�f� g� such that UK�f� g� �� K�Uf�Ug��

Given a morphism R� � R�� there is an induced functor V �CR�
�� CR�

which has
a left adjoint functor ��R�

R� � CR�
�� CR�

� It is not hard to give a more explicit
de�nition of the functor ��R�

R� for the cases C � Set� Set�� Grp� Ab�
In next sections� we will consider the properties of the following construction to study

the inverse limit functor�
Let s be an element of R �if C � Gps and R a left near�module� we also assume that

s is a right distributive element� �x�y�s � xs�ys�� and let X be an object in CR� de�ne

FsX � fx � X j x � s � xg�

This gives a functor Fs�CR �� C which has a left adjoint ��sR�C �� C de�ned as
follows� Let X be an object of C� the functor ��R�C �� CR carries X to X � R�
Consider on X �R the equivalence relation compatible with the corresponding algebraic
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structure and generated by the relations x � r � x � sr� Denote the quotient object by
X �s R� and the equivalence class of x� r by x�s r� We summarise this construction in
the following

���� Proposition� The functor ��s R�C �� CR is left adjoint to Fs�CR �� C�

�� Brown�s construction�

In this section we de�ne the P functor for the categories of pro�sets� pro�pointed sets� pro�
groups and pro�abelian groups� As in the section above� C denotes one of the following
categories� Set� Set�� Grp� Ab�
Because the category C has products and sums� then we can de�ne the functors

c�C �� CN and p�CN �� C by the formulas

�cX�i � �
j�i

Xj � Xj � X� j 
 i�

pY �
��

%
i��

Yi

It is easy to check that CN�cX� Y � �� C�X� pY �� therefore we have�

���� Proposition� The functor c�C �� CN is left adjoint to p�CN �� C�

Associated with the generator G of C� we have the pro�object cG and the endomor�
phism set PcG � proC�cG� cG� which has the following properties�
�� If C � Set� the morphism composition gives to Pc� a monoid structure�
�� If C � Set�� PcS

� is a 
�monoid �see section � ��
�� If C � Grp� PcZ is a zero�symmetric unitary left near�ring�
�� If C � Ab� PcZa is a ring�
For any object X of proC� we consider the natural action

proC�cG�X� 	 proC�cG� cG� �� proC�cG�X�

which applies �f� �� to f�� if f � proC�cG�X� and � � proC�cG� cG��
The morphism set proC�cG�X� has the following properties�
�� If C � Set� proC�cG�X� admits a natural structure of PcG�set� Thus the action

satis�es

�f��� � f����

f� � f

f � proC�cG�X�� �� �� � � proC�cG� cG��
�� If C � Set�� proC�cG�X� and proC�cG� cG� have zero morphisms that satisfy

f
 � 
� f � proC�cG�X��


� � 
� � � PcG�
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that is� PcG is a 
�monoid �see section �� and proC�cG�X� is a PcG�pointed set�
�� If C � Grp� we also have that proC�cG�X� has a group structure and the action

satis�es the left distributive law�

f�� � �� � f�� f�� f � proC�cG�X�� �� � � PcG

Notice that the sum � need not be commutative� In this case� PcG becomes a zero�
symmetric unitary left near�ring and proC�cG�X� is a right PcG�group �near�module��
see 	Mel
 and 	Pilz
�
�� If C � Ab� we also have a right distributive law�

�f � g�� � f� � g�� f� g � proC�cG�X�� � � PcG�

Now PcG becomes a unitary ring and proC�cG�X� is a right PcG�abelian group �PcG�
module��
In order to have a uni�ed notation� CPcG denotes one of the following categories�
�� If C � Set� CPcG is the category of PcG�sets�
�� If C � Set�� CPcG is the category of PcG�pointed sets�
�� If C � Grp� CPcG is the category of PcG�groups �near�modules��
�� If C � Ab� CPcG is the category of PcG�abelian groups �modules��

Using the notation above we can de�ne a functor P� proC �� CPcG as the repre�
sentable functor

PX � proC�cG�X�

together with the natural action of PcG� where G is the small projective generator of C�
For the full subcategory towC we will also consider the restriction functor P� towC ��
CPcG�
Because C has sums� products and a �nal object �� for any object Y of C� we can

consider the direct system

%
i��

Y � � %
i��

Y �	 � � � %
i��

Y �	 � 	 � � � � �

where the bonding maps are induced by the identity id�Y � Y and the zero map Y � ��
The reduced product IY of Y is de�ned to be the colimit of the direct system above� We
also recall the forgetful functor U �CPcG �� C considered in section � which will be used
in the following

���� Proposition� The functor UP� proC �� C has the following properties

�� If X � fXjg is an object of proC� then

UPX �� limjIXj�

�� If X � fXj j j � Jg is an object of proC� where J is a strongly co�nite directed
set� then

UPX �� colim
��NJ

CJ�cG���X��
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�� If X is an object in towC� then

UPX �� colim
��In�NN

id
�

p�X����

Proof� For ��� it su ces to consider the de�nition of the hom�set in proC�

UPX � lim
j
colim

i
C��cG�i�Xj�

�� lim
j
colim

i
%
k�i

Xj

�� lim
j
IXj

�� follows since N� J are strongly co�nite directed sets�
�� By Remark �� after Theorem ��� and Proposition ���� we get

UPX � towC�cG�X�

�� colim
��In�NN

id
�

CN�cG�X���

�� colim
��In�NN

id
�

C�G� p�X����

�� colim
��In�NN

id
�

p�X���

���� Proposition� The functor P� proC �� CPcG preserves �nite limits�

Proof� We have that UP preserves �nite limits since UP � proC�cG��� is a repre�
sentable functor� see 	Pa� Th �� Sect �� Ch��
� By Proposition ���� we have that U re$ects
�nite limits� Therefore we get that P preserves �nite limits�

Now we recall that Grossman in 	Gr��
 proved that the functor UP� towC �� C
re$ects isomorphisms� Since P preserves �nite limits we have�

���� Theorem� P� towC �� CPcG is a faithful functor�

Proof� Let f� g�X � Y be two morphisms in towC� If we consider the di�erence kernel
i�K�f� g� �� X� the Proposition above implies that PK�f� g� �� K�Pf�Pg�� Suppose
that Pf � Pg� then K�Pf�Pg� �� PX and Pi�PK�f� g� �� PX is an isomorphism�
Applying the forgetful functor U �CPcG �� C� we have that UPi is an isomorphism� Now
Grossman�s result implies that i is also an isomorphism� Therefore f � g�

���� Remark� �� Since P� towC �� CPcG is a representable faithful functor� we have
that P preserves monomorphisms and re$ects monomorphisms and epimorphisms�
�� Notice that the proof given does not work for the larger category proC�
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���� Proposition� P� towC �� CPcG and UP� towC �� C preserve epimorphisms�

Proof� Let q��X � �� Y � be an epimorphism in towC� by the Remarks at the end of
ChII� x��� of 	M�S
 it follows that q� is isomorphic in Maps�towC� to q�X �� Y where
q is a level map fqi�Xi �� Yig and each qi�Xi �� Yi is a surjective map� Now we have
that UPq � colim� p�q���� and since ���� p���� colim� preserve epimorphisms� we get
that UPq and Pq are epimorphisms�

���� Definition� Let S be a full subcategory of proC� An object X in S is said to be
admissible in S if for every Y of S the transformation

P� proC�X�Y � �� CPcG�PX�PY �� f � Pf�

is bijective� If S � proC� X is said to be admissible�

���� Proposition� The object cG is admissible�

Proof� We have the following natural isomorphisms

proC�cG�X� �� UPX
�� C�G�UPX�
�� CPcG�G�PcG�PX�
�� CPcG�PcG�PX�

which send a map f � cG� X to Pf �PcG� PX�

���� Proposition� Let p�X � Y be an epimorphism in towC� If X is admissible in
towC� then Y is also admissible in towC�

Proof� We can suppose that p is a level map fpi�Xi �� Yig such that each pi�Xi �� Yi
is a surjective map� Let Xi	

Yi

Xi denote the equivalence relation associated with pi� that

is� Xi	
Yi

Xi � f�x� x
�� � Xi 	Xi j pix � pix

�g� Then the diagram

X 	
Y
X

pr�
�����
�����

pr�

X
p

����� Y

is a di�erence cokernel in towC� where X 	
Y
X � fXi	

Yi

Xig�

Let Z be an object in towC� Given a morphism ��PY �� PZ in CPcG� since X is
admissible in towC� there is a morphism f �X � Z in towC such that � Pp � Pf �

P�f pr�� � Pf Ppr� � � Pp Ppr� � � P�p pr�� �

� P�p pr�� � � Pp Ppr� � Pf Ppr� � P�f pr���

Because P is faithful� it follows that f pr� � f pr�� Now we can use that p is a di�erence
cokernel to obtain a morphism g�Y � Z such that gp � f � We have that Pg Pp �
Pf � � Pp� By Proposition ���� Pp is an epimorphism� then we have that Pg � �� This
implies that Y is also admissible in towC�
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���
� Definition� An object X of towC is said to be �nitely generated if there is an
�e�ective� epimorphism of the form �

finite
cG �� X�

����� Theorem� Let X be an object in towC� If X is �nitely generated� then X is
admissible in towC� Consequently� the restriction functor P� towC�fg �� CPcG is a full
embedding� where towC�fg denotes the full subcategory of towC determined by �nitely
generated towers�

Proof� It is easy to check that �
finite

cG is isomorphic to cG� By Proposition ���� it

follows that �
finite

cG is admissible� Because X is �nitely generated� there is an e�ective

epimorphism �
finite

cG �� X� Now taking into account Proposition ���� we obtain that

X is also admissible�

����� Proposition� Let Y � f� � � � Y� �� Y� �� Y�g be an object in towC� where
the bonding morphisms are denoted by Y l

k �Yl �� Yk� l 
 k� If for each i 
 
� there is
a �nite set Ai � Yi such that for each n 
 
� �

j�n
Y j
nAj generates Yn� then Y is �nitely

generated�

Proof� De�ne Xn � �
j�n

�
Aj

G and consider the diagram

� � � �� Xn�� �� Xn �� � � �

pn��

�
�
�
�
y

�
�
�
�
y

pn

� � � �� Yn�� �� Yn �� � � �

where the restriction of pn to �
Aj

G is induced by the map Y j
n �Aj � Yn� It is clear that

X �� cG and p�X � Y is an epimorphism� Therefore Y is �nitely generated�

����� Corollary� �� A tower of �nitely generated objects of C is a �nitely generated
tower�

�� A tower of �nite objects of C is �nitely generated�
�� The restricted functors

P� tow�C�fg� �� CPcG

P� tow�C�f� �� CPcG

are a full embeddings� where C�fg and C�f denote the full subcategories determined by
�nitely generated objects and �nite objects� respectively�
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����� Remark� A particular case of Corollary ���� are Theorem ��� and Corollary ���
of 	Ch��
�

Next we study some relations between the P functor and the lim functor�
Recall that for i 
 
� �cG�i � �

k�i
Gk� where Gk is a copy of the generator G� The

identity of G induces a map Gk � Gk��� k 
 i� We denote by sh� cG� cG the level map
fshi� �

k�i
Gk �� �

k�i
Gkg induced by the maps Gk � Gk���

Given an object Y in CPcG� we denote by FshY the object of C de�ned by

FshY � fy � Y j y � sh � yg

Notice that Fsh de�nes a functor from CPcG to C�

����� Theorem� The following diagram

towC
lim

����� C

P � � Fsh

CPcG

is commutative up to natural isomorphism� That is� limX �� fx � PX j x � sh � xg�

Proof� For each � � In�NNid �� there is a map SH�P �X
��� �� P �X��� which applies

x � �x����� x����� x����� � � �� to the element
xSH � ��xSH������ �xSH������ � � ���

where for i

� �xSH���i� � X
��i���
��i� x��i���� Notice that if xSH � x� then

X
��i���
��i� x��i��� � x��i�� Therefore x � limX

���
Associated with the map X �� X��� we have the commutative diagram

lim X ����� P �X�

SH

�����
�����

id

P �X�
�
�
�
�
y

�
�
�
�
y

�
�
�
�
y

lim�X��� ����� P �X���

SH

�����
�����

id

P �X���

where limX is the di�erence kernel of SH and id� and similarly for lim�X���� Because
X �� X�� is an isomorphism in towC it follows that limX �� lim�X��� is an iso�
morphism� Now taking into account that colim� preserves di�erence kernels� we obtain
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that

lim X �� PX

sh

�����
�����

id
PX

is a di�erence kernel� Therefore limX �� fx � PX j x � sh � xg � FshPX�

Now we can use that � �sh PcG�C �� CPcG is left adjoint to the functor
Fsh�CPcG �� C to obtain the following result�

����� Corollary� The functor lim� towC �� C can also be represented as follows


limX �� CPcG�G �sh PcG�PX�

limX �� CPcG�P�conG��PX�

Moreover� there is a natural map G�shPcG �� P�conG�� where conG denotes the level�

wise constant tower f� � � � G
id
��Gg�

Proof� This follows� because con�C �� towC is left adjoint to lim� towC �� C and
� �sh PcG��� CPcG is left adjoint to Fsh�CPcG �� C� see Proposition ���� It is also
necessary to take into account the fact that conG is admissible in towC� This follows
because conG is a tower of �nitely generated objects� see Corollary ���� and Theorem
�����

����� Remark� �� Theorem ���� gives a relation between the P functor and the lim
functor for the case of towers� If X � fXig is a tower� then PX �� lim IXi� where IXi

is the reduced countable power� For a more general pro�object X � J � C� Porter 	Por��

uses more general reduced powers to �compute� the lim and limq functors�
�� For a tower of groups X� an action of PX on PX can be de�ned by

xy � x� y � x � sh x� y � PX�

It is easy to check that the space of orbits of this action is isomorphic to the pointed
set lim�X� The di�erence of two elements of the same orbit is of the form x�y�x �sh�y�
Notice that the quotient group obtained by dividing by the normal subgroup generated
by the relations x � y � x � sh � y� satis�es that the action of sh is trivial and it is an
abelian group�
�� For a tower X of abelian groups� we get isomorphisms

lim�X �� Ext��Za �sh PcZa�PX�

lim�X �� Ext��P�conZa��PX�

In this case� we also have that lim�X is obtained from PX by dividing by the subgroup
generated by the relations x� x�sh for all x � PX�
�� A global version of Brown�s P functor can be de�ned for global category �proC�C�

�for the de�nition of �proC�C� see 	E�H
�� If X is an object in �proC�C�� then PgX is
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de�ned to be the hom�set PgX � �proC�C��cG�X�� where cG is considered as an object
in �proC�C�� provided with the structure given by the action of PgcG� We note that for
the global version of the P functor� if X is an object in �towC�C�� then

UPgX �� colim
��In��NNid �

P �X����

where In��N
N
id � � f� � In�NNid � j ��
� � 
g�

�� Applications and properties of the P functor

In this section� �rstly we obtain some consequences of the main Theorems of section
�� We also analyse the structure of the endomorphism set PcG for the di�erent cases
C � Set� Set�� Grp�Ab� Finally� we study some additional properties of the P functor for
the cases C � Grp�Ab�

If C is one of the categories� Set� Set�� Grp�Ab� we will denote by TC the correspond�
ing topological category� That is� TC will respectively be one the categories� topological
spaces� topological pointed spaces� topological groups or topological abelian groups� We
denote by zcmTC the full subcategory of TC determined by zero�dimensional compact
metrisable topologies�

Let X be an object in C� Consider the set of quotient objects of the form
p�X �� Fp where Fp is a �nite discrete object in C� Given two quotients of this form
p�X �� Fp and p��X �� Fp�� we say that p 
 p� if there is a commutative diagram

X

p
 � p�

Fp �� Fp�

It is easy to check that & � fp�X �� Fp j Fp is a �nite discrete quotient object g with 
�
is a directed set� Therefore we can de�ne the functor TC �� pro�C�f��X �� fFpgp�	�
where C�f denotes the full subcategory of C determined by �nite objects� If X has a
zero�dimensional compact metrisable topology� then there is a sequence pi�X �� Fi such
that pi�� 
 pi and for any p of &� there is i 
 
 such that pi 
 p� Hence fpigi�� is co�nal
in &� and the tower fFigi�� is isomorphic to fFpgp�	�

Consequently it is clear that�

���� Theorem� The category tow�C�f� of towers of �nite objects in C is equivalent to
the category zcmTC of objects in TC which have a zero
dimensional compact metrisable
topology�
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���� Remark� T� Porter has pointed out to me that Theorem ��� is closely connected
with a famous theorem of M�H� Stone 	Sto
 which gives category equivalences between the
category of Boolean spaces� the category of Boolean algebras and the category of Boolean
rings�

���� Theorem� There is a full faithful functor zcmTC �� CPcG�

���� Remark� �� There is a full embedding � from the proper homotopy category of
��compact locally compact Hausdor� spaces into the homotopy category of prospaces
considered by Edwards�Hastings 	E�H
� If X is a ��compact locally compact simplicial
complex� then there is a co�nal sequence fKig of compact subsets of X such that for every
i 
 
� ���cl�X � Ki�� is a �nite set� Therefore ���X � f���cl�X �Ki��g is admissible
in towSet� If �� 	
��� � X is a proper ray� then � determines a path�component of
���cl�X �Ki�� and ���X can be considered as an object in towSet�� If X is a simplicial
complex as above� we will suppose that � is a simplicial injective map� In this case� the
fundamental pro�group can be de�ned by ����X��� � f���cl�X �Ki� � Im����
��g� If
X has one Freudenthal end� it is easy to check that ����X��� is admissible in towGrp�
Finally� we also note that for q 
 
� the tower Hq�X � fHq�cl�X �Ki��g is admissible
in towAb� where Hq denotes the singular homology�
�� Let X be a compact metrisable pointed space� Denote by �CX the pro�pointed

simplicial set of the �Cech nerves associated with the directed set of open coverings of
X� In this case� it is easy to check that �� �CX is isomorphic to an admissible object in
towSet�� �� �CX is isomorphic to an admissible object in towGrp� and Hq

�CX is isomorphic
to an admissible object in towAb�
�� As a consequence of Theorems ��� and ���� for the category of connected locally

�nite countable simplicial complexes� the following categories are adequate for modelling
the proper 
�type� The category of zero�dimensional compact metrisable spaces and the
Freudenthal end functor e� the category tow�finite sets� and the ��� functor and Set�PcS�
and the Brown�Grossman 
�homotopy group �BG� � The relations between these functors
are given by e � lim �� �� ��

BG � P �� �� Similarly� for the shape 
�type of compact
metrisable spaces� we have the functors lim�� �C� �� �C and P�� �C�

Next we study the di�erent structures of the endomorphism set PcG � proC�cG� cG�
for the di�erent cases C � Set� Set�� Grp�Ab�
�� C � Set

The monoid Pc� can be represented as follows� Consider the set R� of matrices of the
form A � �Aij�� with i� j � f
� �� �� � � �g� where either Aij � 
 or Aij � �� satisfying the
following properties�
a� For each j 
 
� the cardinality of fi j Aij � �g is ��
b� For each i 
 
� there exists j 
 i such that for 
 � k 	 i and j � l� akl � 
�

Write �A�i� � minfj j j 
 i and if 
 � k 	 i and j � l� then akl � 
g�

De�ne the equivalence relation � by declaring A � A� if there exists j 
 
 such that
for j � l the l�column of A agrees with the l�column of A�� that is� A and A� di�er only
on a �nite number of columns�
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Matrix multiplication induces over R� a monoid structure that is compatible with
the relation �� Therefore the quotient R�

� inherits a monoid structure from R�� If we
�also� denote by N the set of natural numbers provided with the discrete topology� we
can consider the monoid P �N�N� of proper maps N � N and the monoid of germs of
proper maps P��N�N�� Given a matrix A of R�� we can de�ne a proper map that will
again be denoted by A�N �� N as follows� if j 
 
 the j�columm of A has only one
element Aij � �� de�ne A�j� � i� This gives monoid isomorphisms R� �� P �N�N� and
R�
� �� P��N�N�� The isomorphism

R�
� �� P c � � colim

��In�NN
id
�

p�c �� ��

is given by A �� �A�
�� A���� A���� � � �� � p�c �� �A��

Given an object X of towSet� the action PX	Pc� �� PX can be de�ned as follows�
take x � p�X��� and A � R�� then 	x
	A
 � 	y
� where y � p��X�����A�� is de�ned by

y �� ��A�j� � X� ��A�j�
�� ��A�j�

x ��A�j� � X� ��A�j�
����A�j�

��
l
x ��l Alj��

�� C � Set�
The monoid PcS� can also be represented as a matrix monoid R�

S� as follows� We
consider matricesA � �Aij� as above satisfying properties a�� and b�� where a�� is obtained
by modifying a��
a�� For each j 
 
� the cardinality of fi j Aij � �g is at most one�
Denote by N� � N � f�g the Alexandro� compacti�cation of N by a point � and

consider the monoid Top���N�� ��� �N�� ��� and the monoid �Top�����N�� ��� �N�� ��� of
germs at � of continuous maps �N�� �� �� �N�� ��� Given a matrix A� we can de�ne the
continuous map A� �N�� �� �� �N�� �� such that if j 
 
 and the j�column of A has a
unique element Aij � �� then A�j� � i� otherwise A�j� � �� This de�nes isomorphisms
RS� �� Top��N�� ��� �N�� ��� and R�

S� �� �Top��� ��N�� ��� �N�� ���� The isomorphism
R�

S� �� colim
��In�NN

id
�

p�cS���� is given by A �� �A�
�� A���� A���� � � �� � p�cS���A��

Notice that R�
� is a submonoid of R

�
S� �

�� C � Grp

Let F be the free group over the countable set of letters fx�� x�� x�� � � �g� The multipli�
cation of F will be denoted by �� then a typical word of F is of the form �x�� �x�� x��
we note that an additive notation does not imply commutativity� Let RZ denote the set
whose elements are of the form �w�� w�� w�� � � ��� where for i 
 
 wi � F � satisfying the
following property�

For each i 
 
� there exists j 
 i such that x�� � � � � xi�� are not letters of the reduction
of wl for l 
 j� For a given element w � �w�� w�� w�� � � �� of RZ� write
�w�i� � minfj j j 
 i and x�� � � � � xi�� are not letters of the reduction of wl for l 
 jg�
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The sum is de�ned by components

�w�� w�� w�� � � �� � �w
�
�� w

�
�� w

�
�� � � �� � �w� � w�� w� � w�� w� � w��� � � ��

Denote by w�xn� � � � � � xnr� a word whose reduction has the letters xn� � � � � � xnr � The
product is de�ned by substitution as follows
�w�� w�� w�� � � ���w���xn�

�
� � � � � xn�r�

�� w���xn�
�
� � � � � xn�r�

�� w���xn�
�
� � � � � xn�r�

�� � � �� �

� �w���wn�
�
� � � � � wn�r�

�� w���wn�
�
� � � � � wn�r�

�� w���wn�
�
� � � � � wn�r�

�� � � ��

It is easy to check that � and � give the structure of a zero�symmetric near�ring to RZ�
The zero element is �
� 
� 
� � � �� and the unit is represented by �x�� x�� x�� � � ��� Another
distinguished element is the shift operator �x�� x�� x
� � � �� that plays an important role in
connection with the inverse limit functor�
Let IZ be the subset of RZ de�ned by the elements w � �w�� w�� w�� � � �� such that

there exists m 
 
 such that wl � 
 for l 
 m� Then it is easy to check that IZ is a
normal subgroup of RZ� �RZ��IZ� � IZ and �r� i�s� rs � IZ for all i � IZ� r� s � RZ�
Then IZ is a ideal of RZ and we can consider the quotient near�ring R

�
Z
� RZ�IZ�

For RZ and R
�
Z
we have the near�ring isomorphisms

RZ �� colim
��In��NNid �

p�cZ���

R�
Z �� colim

��In�NN
id
�

p�cZ���

de�ned by w � �w�� w�� w�� � � �� �� 	�w�� w�� w�� � � ��
� where �w�� w�� w�� � � �� � p�cZ��w�
and �w is the map de�ned above�

�� C � Ab
Let RZa denote the ring of integer matrices A � �aij� where i and j are non negative

integers and each row and each column have �nitely many non zero elements�
If A is a matrix of RZa for each i 
 
� there exists j 
 i such that akl � 
 for l 
 j

and k 	 i� For a given matrix A� write �A�i� � minfj j j 
 i and if k 	 i and l 
 j� then
akl � 
 g� Let IZa be the subset of RZa de�ned by the �nite matrices� Then it is easy to
check that IZa is an ideal of RZa and we can consider the quotient ring R

�
Za
� RZa�IZa�

We also have the canonical ring isomorphisms�

RZa�� colim
��In��NNid �

p�cZa
���

R�
Za
�� colim

��In�NN
id
�

p�cZa
���

de�ned by
A �� 	�
�column of A� ��column of A� ��column of A� � � ��
�

where �
�column of A� ��column of A� ��column of A� � � �� � p�cZa��A� and �A is the map
de�ned above�
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Let F a be the free abelian group generated by the countable set fx�� x�� x�� � � �g�
That is� F a � fafx�� x�� x�� � � �g� where fa�Set �� Ab denotes the free abelian func�
tor� Consider the following sequence of subgroups � F a

� � F a� F a
� � fafx�� x�� � � �g�

F a
� � fafx�� x
� � � �g� etc� This family of subgroups de�nes on F a the structure of a
topological abelian group� Denote by TAb the category of topological abelian groups�
Let EndTAb�F a� F a� denote the ring of continuous endomorphisms of F a� If f �F a ��

�� F a is a continuous homomorphism� because xi �� 
� we have that wi � fxi �� 
�
This implies that we have a canonical isomorphism RZa �� EndTAb�F a� F a��
Given two continuous homomorphisms f� g�F a �� F a we say that f and g have

the same germ if there exists n� such that for every n 
 n� f�xn� � g�xn�� Let
End�TAb�F

a� F a� denote the ring of selfgerms of F a� it is also clear that R�
Za
is isomorphic

to End�TAb�F
a� F a��

Next we compare the di�erent P functors for the cases C � Set�� Grp�Ab�

���� Proposition� Consider the diagram

towGps
P

����� GpsPcZ

f

x
�
�
�
�

x
�
�
�
�

f

towSet� �����
P

Set�PcS�

where the functor f � towSet� � towGps is induced by the free functor Set� � Gps and
f �Set�PcS� � GpsPcZ is the free functor associated with the algebraic �forgetful� functor
GpsPcZ � Set�PcS� �see �Pa� th � of ������ Then the unit X �� ufX �of the pair of
adjoint functors
 f � towSet� �� towGps� u� towGps �� towSet�� induces a natural
and epimorphic transformation �X � fPX �� PfX�

Proof� The unit transformation Y �� ufY induces the transformation
PY �� PufY � uPfY � By adjointness we obtain the desired transformation
fPY

�

�����PfY �
An element of PfY can be represented as a sequence of words�

a � 	����y� � � � � � �r�yr�� ������ ��r���yr��� � � � � � �r�yr�� ������ � � ��


where �k � f��� 
� �g� y�� � � � � yr� � Y �
������ yr���� � � � � yr� � Y �

������ etc�
If you take� one by one� the �letters� of these words� you obtain an element of fPY

b � 	�y�� � � � � yr�� yr���� � � � � yr�� yr���� � � ��
�

If you replace the y�s of a by x�s� you will have an element of PcZ

w � 	����x� � � � � � �r�xr�� ������ ��r���xr��� � � � � � �r�xr�� ������ � � ��
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It is clear that ��b�w � a� then ��bw� � a� Therefore �X � fPY �� PfY is a surjective
map�

���� Corollary� Consider the functor f � towSet� �� towGps� If X is admissible in
towSet�� then fX is admissible in towGrp�

Proof� We use the facts that P is a faithful functor and fPX �� PfX is an epimor�
phism to obtain�

towGps�fX� Y � � GpsPcZ�PfX�PY � � GpsPcZ�fPX�PY � �

� Set�PcS��PX�uPY � � Set�PcS��PX�PuY � �

� towSet��X�uY � � towGps�fX� Y ��

where ��� denotes an injective map and ��� denotes an isomorphism� Because the
composite is the identity� we have towGps�fX� Y � �� GpsPcZ�PfX�PY ��

We include here some additional properties of the P functor for the category of towers
of abelian groups�

���� Proposition� The functor P� towAb �� AbPcZa preserves �nite colimits�

Proof� In an abelian category the product and coproduct of X and Y are both given
by an object Z and morphisms i�X � Z� j�Y � Z� p�Z � X and q�Z � Y such that
pi � id� qj � id� qi � 
� pj � 
 and ip � jq � id� Since towAb is an abelian category�
see 	A�M
� and P is an additive functor� it follows that P preserves �nite coproducts�

Given a morphism f �X � Y in towAb� f factorizes as X
g
��X � k

��Y � where g is an
epimorphism and k is a monomorphism� It is easy to check that coker f �� coker k�
By Remark �� after Theorem ��� and by Proposition ���� we have that P preserves
monomorphisms and epimorphisms� so we also obtain that coker Pf �� coker Pk� Because
UP �� towAb�cZa���� we have the exact sequence�

UPX � �� UPY �� UPcoker k �� ExttowAb�cZa�X
��

Since cZa is a projective object� see 	He��
� we have that ExttowAb�cZa�X �� �� 
� Therefore

 �� UPX � �� UPY �� UPcoker k �� 
 is a short exact sequence� Since U
re$ects monomorphisms� epimorphisms and kernels� we also have that 
 �� PX � ��
PY �� Pcoker k �� 
 is a short exact sequence� Then Pcoker f �� Pcoker k ��
coker Pk �� coker Pf �

We next consider the inclusion functor i�Ab �� Gps and the abelianization functor
a�Gps �� Ab which is the left adjoint of i� that is� Ab�aX� Y � �� Gps�X� iY �� We shall
also consider the unitary near�ring epimorphismPcZ �� PcZa that induces an inclusion
functor i�AbPcZa �� GpsPcZ which has a left adjoint d�GpsPcZ �� AbPcZa� It is easy to
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check that the diagram

towAb
P

����� AbPcZa

i

�
�
�
�
y

i

�
�
�
�
y

towGps �����
P

GpsPcZ

is commutative up to natural isomorphism� The following result proves that Pa � dP�

���� Theorem� Consider the diagram

towAb
P

����� AbPcZa
U

����� Ab

a

x
�
�
�
�

x
�
�
�
�

d

x
�
�
�
�
a

towGps �����
P

GpsPcZ �����
U

Gps

where a and d are left adjoint to the corresponding inclusion functors� Then
�� There is a natural equivalence dPX �� PaX induced by the unit transformation

X �� iaX �dPX �� dPiaX �� diPaX �� PaX��
�� The natural transformation aUY �� UdY is epimorphic�

Proof� Given an object X in towGps� consider the following diagram� where several
notational abuses are made in order to have a shorter notation�

P	X�X
 ����� PX ����� PaX

�

x
�
�
�
�

id

x
�
�
�
�

DPX ����� PX ����� dPX

�

x
�
�
�
�

id

x
�
�
�
�

	PX�PX
 ����� PX ����� aPX

where if X � fXig� 	X�X
 � f	Xi�Xi
g and 	 � 
 denotes the normal subgroup generated
by the commutators 	x� y
 � x � y � x� y� By ������ Remark �� after Theorem ��� and
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������ the �rst row of the diagram above is exact� In the second row DPX is the sub
PcZ�group generated by xw�yw��x�y�w where x� y are elements of PX and w � PcZ�
Notice that if w � ��� we have �x�y�x�y� Therefore DPX contains the commutator
subgroup 	PX�PY 
� Recall that if H is a group and y � 	H�H
 then y � �� y�� � � ���r yr
where �i � f��� 
� �g and yi � 	ai� bi
 with ai� bi � H�
An element a of P	X�X
 can be represented by a sequence of words
a � 	���� y� � � � �� �r� yr������� ��r��� yr��� � � � �� �r� yr������� � � ��


where �k � f��� 
� �g� y�� � � � � yr� are basic commutators of X
�
����� yr���� � � � � yr� are basic

commutators of X�
����� etc�

If you take� one by one� the basic commutators of these words� you obtain an element
of 	PX�PX


b � 	�y�� � � � � yr�� yr���� � � � � yr�� yr���� � � ��

and by replacing the y�s of a by x�s� we get an element of PcZ�

w � 	���� x� � � � �� �r� xr������� ��r��� xr��� � � � �� �r� xr� ������ � � ��

satisfying bw � a� Since DPX is a sub�PcZ�group� a � D�PX�� Therefore DPX �
P	X�X
 and this implies that PaX � dPX�

	� The left adjoint for the P functor�

In this section� we construct a left adjoint functor for the P functor�
First we introduce some notation and a technical result �Proposition ���� that gives

the construction of the left adjoint� Applying this proposition to the P functor� we have
the desired result�
Assume that A�B are categories with in�nite sums� P�A �� B is a given functor and

H is an object of A such that for any X of A

P�A�H�X� �� B�PH�PX�

is a bijection�
Let S be the category whose objects are objects of B with a given decomposition

of the form �
��A

PH�� where A is an index set� � denotes the sum or coproduct in B

and H� � H for all � � A� The morphism�set from �
��A

PH� to �
��B

PH� is given by

B� �
��A

PH�� �
��B

PH��

Let inH�
�H� �� �

��B
H� denote the canonical �inclusion� into the coproduct� where

it is assumed that H� � H for any � � B� Applying the functor P and the universal
property of the sum we have the morphisms�

PinH�
�PH� �� P� �

��B
H��

�
��B

PinH�
� �
��B

PH� �� P� �
��B

H��
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Next we are going to construct a functor l�S �� A� Given an object �
��A

PH� of S�

de�ne

l� �
��A

PH�� � �
��A

H�

where H� � H for any � � A�

If u� �
��A

PH� �� �
��B

PH� is a morphism of S� then u � �
��A

u�� where

u� � u inPH� and inPH��PH� �� �
��A

PH� are the canonical �inclusions��

For each � � A� consider the composition

PH�

u�
����� �

��B
PH�

�
��B

PinH�

�������P� �
��B

H���

Since P�A�H�� �
��B

H�� �� B�PH��P� �
��B

H��� is a bijection� there is a unique

lu��H� �� �
��B

H� such that Plu� � � �
��B

PinH�
�u�� Then de�ne

lu � �
��A

lu�

Next� we check that l�S �� A is a functor� We start by showing that l preserves
identities�

The canonical �inclusions� inH��H� �� �
��A

H� are such that the diagram

P� �
��A

H��

PinH� �

x
�
�
�
�
�
��A

PinH�

PH� �����
inPH�

�
��A

PH�

is commutative� therefore

l�id� � l� �
��A

inPH�� � �
��A

l inPH� � �
��A

inH� � id�

Given two morphisms

�
��A

PH�
u
�� �

��B
PH�

v
�� �

��C
PH�
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we have the commutative diagram

P� �
��B

H��
P��lv��

����� P� �
��C

H��

Plu� � �PinH�

x
�
�
�
�

�Plv� �

x
�
�
�
�
�PinH�

PH������
u�

�
��B

PH� �����
v��v�

�
��C

PH�

Therefore l�vu�� � � �
��B

lv��lu�� Then we have�

l�vu� � l� �
��A
�vu��� � l� �

��A
vu�� � �

��A
l�vu�� � �

��A
� �
��B

lv��lu� �

� �
��A

lv lu� � lv � �
��A

lu�� � �lv��lu��

This implies that l�S �� A is a functor�

The following properties of l will also be used
a� The transformation

A�l� �
��A

PH��� Y � �� B� �
��A

PH��PY �

given by f � �
��A

f� �� �
��A

Pf� is a bijection�

b� Given morphisms u� �
��A

PH� �� �
��B

PH� and g�Y �� Y �� the following diagram

is commutative

A�l� �
��A

PH��� Y
�� ����� B� �

��A
PH��PY

��

x
�
�
�
�

x
�
�
�
�

A�l� �
��B

PH��� Y � ����� B� �
��B

PH��PY �

that is� for a given f � l� �
��B

PH�� �� Y � we have

�
��A

P�gfu�� � Pg� �
��B

Pf��u

Using this notation and the properties of l�S �� A� we can prove�
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���� Proposition� Suppose that A�B are two categories with in�nite sums and di�er�
ence cokernels and P�A� B a functor� Assume that we have


a� An object H of A such that for any X of A� the map

P�A�H�X� �� B�PH�PX�� f �� Pf

is a bijection�
b� Two functors F�� F��B �� S� where S is the category de�ned above� and two natural

transformations u� v�F� �� F� such that the functor difcoker�u� v��B �� B de�ned by

difcoker�u� v�B � difcoker�F�B

uB
�����
�����

vB

F�B�

is equivalent to the identity functor of B�
Then the functor P�A �� B has a left adjoint L�B �� A�

Proof� By considering the functor l�S �� B de�ned above� we de�ne L�B �� A by

LB � difcoker�lF�B

luB
�����
�����

lvB

lF� B��

Now we have

A�LB�A� � A�difcoker�lF�B

luB
�����
�����

lvB

lF�B�� A�

�� difker�A�lF�B�A�

�luB�
�

�����
�����
�lvB�

�

A�lF�B�A��

�� difker�B�F�B�PA�

u�
B

�����
�����

v�
B

B�F�B�PA��

�� B�difcoker�F�B

uB
�����
�����

vB

F�B��PA�

�� B�B�PA��

To apply Proposition ���� we need to have a category with in�nite sums and di�erence
cokernels� The category proC has di�erence cokernels and the following Lemma shows
that it also has in�nite sums�

���� Lemma� If C has in�nite coproducts then proC is also provided with in�nite co�
products�
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Proof� Suppose we have� for each i � I� a pro�object Xi�Ji �� C� Consider the
left �ltering small category %

i�I
Ji and de�ne �

i�I
Xi� %

i�I
Ji �� C by �

i�I
Xi ��ji�i�I� �

� �
i�I

Xi�ji�� ��ji�i�I� � %
i�I

Ji� Associated with the projections pi� %
i�I

Ji �� Ji we have

the maps ini�pi��ji�i�I���Xi�ji�� �
i�I

X�ji� that de�ne the �inclusions� ini�Xi �� �
i�I

Xi�

It is easy to check that �
i�I

Xi veri�es the universal property of the coproduct in proC�

Recall that C denotes one of the categories� Set� Set�� Grp� Ab� and CPcG respec�
tively denotes one of the categories�SetPc�� Set�PcS� � GpsPcZ � AbPcZa�

To shorten notation� the composition of forgetful functors CPcG
U

�����C
u

�����Set will
be denoted by v � uU �CPcG �� Set and the composition of free functors
Set

f

�����C
F

�����CPcG by g � Ff �Set �� CPcG�
The main result of this section is the following�

���� Theorem� The functor P� proC �� CPcG has a left adjoint L�CPcG �� proC�

Proof� We are going to check that the conditions of Proposition ��� are satis�ed� Take
A � proC and B � CPcG�

a� By Proposition ���� the object H � cG is admissible� Then for any X in proC�

proC�cG�X� �� CPcG�PcG�PX��

In the cases we are considering for any object B of CPcG� the natural transformation
pB� gvB �� B is a �surjective� epimorphism� By Lemma � and Corollary � of section ���
of 	Pa
� we have that if we consider the �bre product

�gvB	
B
gvB�

pr�
����� gvB

pr�

�
�
�
�
y

�
�
�
�
y

pB

gvB �����
pB

B

then

gvB	
B
gvB

pr�
�����
�����

pr�

gvB�����
pB

B

is a di�erence cokernel� Since gv�gvB	
B
gvB� �� gvB	

B
gvB is an epimorphism� it also

follows that

gv�gvB	
B
gvB�

pr�p

�����
�����
pr�p

gvB�����
pB

B

is also a di�erence cokernel�
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Then we can de�ne the functors F�� F��CPcG �� S by

F�B � gvB

F�B � gv�gvB	
B
gvB�

and the natural transformations by u � pr� p and v � pr� p�
Now we are under the conditions of Proposition ���� to obtain that P� proC �� CPcG

has a left adjoint L�CPcG �� proC�

���� Corollary� The functors P� proSet �� SetPc�� P� proSet� �� Set�PcS��
P� proGps �� GpsPcZ and P� proAb �� AbPcZa have left adjoints�

���� Remark� M�I�C� Beattie 	Be
 has constructed an equivalence between the cate�
gory of �nitely presented towers of abelian groups and �nitely presented PcZa�abelian
groups or PcZa�modules� This equivalence is also given by the restrictions of the functor
P� proAb �� AbPcZa and its left adjoint L�AbPcZa �� proAb to the corresponding full
subcategories�


� Global towers and topological abelian groups�

In this section we analyse some relations between towers of abelian groups and topological
abelian groups� As a consequence of these relations� we prove that the categories of towers
and global towers of abelian groups do not have countable sums� This implies that neither
category is equivalent to a category of modules�

���� Definition� Let N be a neighbourhood of the zero element 
 of a topological group
B� We will say that N is structured if N is also a subgroup of B� A topological abelian
group is said to be locally structured if it has a neighbourhood base at 
 of structured
neighbourhoods�

Let TAb denote the category of topological abelian groups and STAb the full subcat�
egory determined by locally structured topological abelian groups�
Next we de�ne two functors L� �proAb�Ab� �� STAb and N �STAb �� �proAb�Ab�

such that L is left adjoint to N �
Recall that an object X of �proAb�Ab� is a morphism X � ��X �� X�� where �X

is an object of proAb and X� is an object of the category Ab which can be considered as
a full subcategory of proAb� A morphism f �X �� Y in �proAb�Ab� consists of a pair of
morphisms f � ��f� f�� such that the following diagram

�X
�f

����� �Y
�
�
�
�
y

�
�
�
�
y

X� �����
f�

Y�
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is commutative in proAb�
Any object of �proAb�Ab� can be represented up to isomorphism by a functor

X� & �� Ab where & is a directed set with a �nal element 
 �� 
 
����� If � 
 ��
let X	


 �X	 �� X
 denote the corresponding bonding morphism� Associated with X we
have �X � X� & �� Ab which is an object of proAb� X� which is an object of Ab �or a
constant pro�abelian group� and the natural morphism �X �� X� given by the identity
�X� �� X��
Next we use this notation to de�ne a functor L� �proAb�Ab� �� STAb� Given an

objectX of �proAb�Ab�� LX is de�ned to be the abelian groupX� together with the locally
structured topology de�ned by the subgroups ImX	

� � where X
	
� �X	 �� X� are bonding

maps of X� Notice that given �� � there exists � such that ImX�
� � �ImX

	
� � � �ImX



o ��

This implies that the neighbourhood local base fImX	
� g de�nes a topology on X��

If f �X �� Y is a morphism in �proAb�Ab�� then the functor L is de�ned by
Lf � f��X� �� Y�� We must check that f� is continuous� Assume that f �X �� Y
is given by a map �� &Y �� &X ��
 � 
� and homomorphisms f
�X��
� �� Y
� If
ImY 


� is a neighbourhood at 
 � Y�� there is a � � &X such that the following diagram is
commutative

X��
�

f�

����� Y


X	
�
�

�
�
�
�
y

Y
�
�

X� �����
f�

Y�

This implies that f��ImX
	
� � � ImY



� � Therefore Lf �LX �� LY is a continuous homo�

morphism�
To de�ne a functor N �STAb �� �proAb�Ab�� for a given object B of STAb consider

the directed set & � fS j S is a subgroup of B and S is a nbh at 
 g which has a �nal
element S � B� Now de�ne NB� & �� Ab by NBS � S� S � &� Notice that NB� � B�

���� Proposition� Consider the functors L and N de�ned above� then
�� L� �proAb�Ab� �� STAb is left adjoint to N �STAb �� �proAb�Ab�
�� The unit� B �� LNB� induced by the pair of adjoint functors� is a natural equiv�

alence� Then STAb can be considered as a full subcategory of �proAb�Ab��

Proof� Let X be an object of �proAb�Ab� and Y an object of STAb� If f �LX �� Y
is a continuous homomorphism� for each structured neighbourhood S of Y � there exists
a structured neighbourhood ImX�S

� at 
 such that f�ImX�S
� � � S� for S � Y we take

�S � 
� De�ne f b�X �� NY by f b � ��� f bS� where f
b
S�X��S� �� S is the composition

f bS � �f jImX
�S
� �X

�S
� �

For a given g�X �� NY � de�ne g��LX �� Y by g� � g�� Now it is easy to check

that �f b�
�
� f and �g��

b
� g�
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If STAb�fc denotes the full subcategory of STAb determined by �rst countable topo�
logical abelian groups� we also have�

���� Proposition� The restriction functors
L� �towAb�Ab� �� STAb�fc and
N �STAb�fc �� �towAb�Ab� satisfy
�� L is left adjoint to N
�� The unit B �� LNB is a natural equivalence and STAb�fc can be considered as

a full subcategory of �towAb�Ab��

We also consider the following functors g�STAb �� Ab that forgets the topology and
the functor t�Ab �� STAb de�ned as follows� If A is an abelian group� tA is the abelian
group A together with the trivial topology� Notice that t is also a functor of the form
t�Ab �� STAb�fc� We have the following properties�

���� Proposition� The functors above satisfy
�� g�STAb �� Ab is left adjoint to t�Ab �� STAb
�� g�STAb�fc �� Ab is left adjoint to t�Ab �� STAb�fc�

Next we prove that the category STAb�fc does not have countable sums� To do this�
we take X � LcZa that is given by the free abelian group

X � X�
� � fafx�� x�� x�� � � �g

and the local neighbourhood base at 
 given by

X�n� � fafxn� xn��� xn��� � � �g

In the category STAb� we can consider the countable sum S �
�
�
i��

Xi together the

topology given by the following local base� For each sequence n � �n�� n�� n�� � � �� �
� N	N	N	 � � � we consider

S�n� � X�n���X�n���X�n��� � � �

It is not di cult to check that S is the countable sum in the category STAb�

���� Lemma� S �
�
�
i��

Xi is a non �rst countable topological abelian group�

Proof� Assume that we have a countable neighbourhood base at 
� This implies the
existence of a sequence � � �m� 
m� 
m� in N	N	N	 � � �� where
m

� � �m�
��m

�
��m

�
�� � � ��

m
� � �m�

��m
�
��m

�
�� � � ��

m
� � �m�

��m
�
��m

�
�� � � ��

� � �
such that S�m�� � S�m�� � S�m�� � � � � is a countable neighbourhood base at 
� where

S�m�� � X�m�
���X�m�

���X�m�
��� � � �
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S�m�� � X�m�
���X�m�

���X�m�
��� � � �

S�m�� � X�m�
���X�m�

���X�m�
��� � � �

� � �

Now consider m � �m��m��m�� � � �� such that

m� 
 m�
�

m� 
 m�
� � maxfm�

��m
�
�g

m� 
 m�
� � maxfm�

��m
�
��m

�
�g

� � �

Then we have that

S�m� � X�m���X�m���X�m��� � � �

is a neighbourhood at 
 that does not contain S�mi� for i 
 
� This contradiction comes
from the assumption that S was �rst countable� Therefore S is non �rst countable�

���� Corollary� The full subcategory STAb�fc of STAb is not closed under countable
sums�

���� Lemma� The category STAb�fc does not have the countable sum
�

�
i��

X� where X �

LcZa�

Proof� Suppose that we have a �rst countable topological abelian group
�

�
i��

Xi� where

Xi � X for i 
 
� Let ini�Xi ��
�

�
i��

Xi be the canonical �inclusions�� Now since

g�STAb�fc �� Ab is a left adjoint by Proposition ���� it follows that g preserves sums�

Therefore there exists an isomorphism �� g�
�

�
i��

Xi� ��
�
�
i��

gXi such that for each i 
 
�

the following diagram is commutative

g�
�

�
i��

Xi�
�

�����
�
�
i��

gXi

gini � � ingXi

gXi

where gXi � X for i 
 
� The isomorphism � induces a topology 
f on
�
�
i��

Xi such

that inXi
�Xi ��

�
�
i��

Xi is continuous for each i 
 
� Then �
�
�
i��

Xi� 
f� together with the

�inclusions� is the sum in the category STAb�fc�

Let �
�
�
i��

Xi� 
n� be the sum in the category STAb� Since ini�Xi ��
�
�
i��

Xi is continuous

for the topology 
f � it follows that id� �
�
�
i��

Xi� 
n� � �
�
�
i��

Xi� 
f � is continuous� Therefore


n is �ner than 
f �
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For each n � �n�� n�� n�� � � ��� consider the abelian group
�
�
i��

Xi�X�ni� provided with

the discrete topology� dis� which is �rst countable� As ini�Xi ��
�
�
i��

Xi�X�ni� is contin�

uous for i 
 
� the natural projection p� �
�
�
i��

Xi� 
f � � �
�
�
i��

Xi�X�ni�� dis� is continuous�

Then p���
� �
�
�
i��

X�ni� is an open neighbourhood of 
 for 
f � This implies that 
f is

�ner than 
n� As 
f � 
n� we have 
n is a �rst countable topology� This fact contradicts
Lemma ����

���� Corollary� STAb�fc does not have countable sums�

���� Corollary� The category �towAb�Ab� does not have the countable sum
�

�
i��

cZ�

���
� Corollary� The category �towAb�Ab� does not have countable sums�

����� Corollary� The category �towAb�Ab� is not equivalent to a category of modules�

Proof� Assume that the object
�

�
i��

cZ exists� Since L� �towAb�Ab� �� STAb�fc is a

left adjoint functor� it follows that L preserves sums� Then L�
�

�
i��

cZ� ��
�

�
i��

LcZ� This

contradicts Lemma ����

����� Corollary� The category towAb does not have the countable sum
�

�
i��
��cZ��

����� Corollary� The category towAb does not have countable sums�

����� Corollary� The category towAb is not equivalent to a category of modules�

Proof� If there is a countable sum
�

�
i��
��cZ� in towAb�

�

�
i��
��cZ� ��

�

�
i��

cZ� would be

isomorphic to a countable sum
�

�
i��

cZ in �towAb�Ab�� This is not possible by Corollary

����

Next we use topological abelian groups to prove that the extended functor
P� proAb �� AbPcZa is not faithful� This implies that cZa is not a generator of all
the category proAb�
Let S be an in�nite set and let faS be the free abelian group generated by S� Consider

the topology de�ned on faS by the family of subgroups of the form faT where T�S and
S�T is a countable set� We are going to see that if a sequence yk in faT converges to zero�
then there exists k� such that yk � 
 for every k

� Assume that there is a subsequence
xi � yki with xi �� 
 for every i� Since yk � 
� it follows that xi � 
� Each xi can be
written as a linear combination of �nitely many elements of S� Therefore the sequence
xi determines a countable set S� of generators such that xi �� fa�S � S�� for every i

�
However this contradicts the fact that xi � 
�
Using the functor N �STAb �� �proAb�Ab� we have the global proobject NfaS that

also de�nes a proobject denoted in the same way in proAb�

����� Proposition� proAb�cZa� NfaS� �� 
�
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Proof� The hom�set proAb�cZa� NfaS� is a quotient of �proAb�Ab��cZa� NfaS��
By Proposition ���� �proAb�Ab��cZa� NfaS� �� STAb�LcZa� faS�� Notice that
STAb�LcZa� faS� is the set of sequences in faS converging to zero� Two converging
sequences de�ne the same morphism in proAb�cZa� NfaS� if and only if they have the
same germ as the zero sequence� Therefore it follows that proAb�cZa� NfaS� �� 
�

����� Corollary� The functor P� proAb �� AbPcZa is not faithful�

Proof� Since the bonding morphisms of NfaS are non trivial� we have that NfaS is not
isomorphic to the zero object� This implies that the identity id of NfaS is not equal to
the zero map 
�NfaS � NfaS� By Proposition ���� we have that P�id� � P�
� � 
�

����� Remark� Grossman�s result that P re$ects isomorphisms does not work for the
extended functor P� proAb �� AbPcZa�

����� Corollary� The object cZ does not generate the whole of the category proAb�

Proof� It is easy to prove that if cZ were a generator for proAb� then P� proAb ��
AbPcZa would be a faithful functor�

����� Remark� At present� the author 	He��
 is writing a paper that contains some
topological applications of the embeddings given in this paper� It considers an extension
of the P functor to categories whose objects are towers of simplicial sets or towers of
simplicial groups� One of the main results of the new paper is the construction of a
simplicial set hoPX associated with a tower of simplicial sets X� This space is constructed
by considering a right�derived functor hoP of the version of Brown�s P functor de�ned for
the category of towers of simplicial sets� Recall that the homotopy limit functor� holim�
can be de�ned as the right�derived functor of the lim functor� The simplicial set holimX
is a simplicial subset of hoPX� It is well known that the Hurewicz homotopy groups of
holimX are the strong �or Steenrod� homotopy groups of the tower X� we obtain that the
Hurewicz homotopy groups of the larger space hoPX are the Brown�Grossman homotopy
groups of the tower X�
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